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Abstract. In ad hoc networks, node mobility causes the network topol-
ogy to change dynamically over time, which complicates important tasks
such as routing and flow control. We propose a distributed scheme for ac-
curately and efficiently tracking the mobility of nodes in ad hoc networks.
A first-order autoregressive model is used to represent the evolution of
the mobility state of each node, which consists of position, velocity, and
acceleration. Each node uses an extended Kalman filter to estimate its
mobility state by incorporating network-based signal measurements and
the position estimates of the neighbor nodes. Neighbor nodes exchange
their position estimates periodically by means of HELLO packets. Each
node re-estimates its mobility model parameters, allowing the scheme to
adapt to changing mobility characteristics. In practice, a small number
of reference nodes with known coordinates is required for accurate mo-
bility tracking. Simulation results validate the accuracy of the proposed
tracking scheme.

1 Introduction

The absence of a fixed infrastructure in mobile ad hoc networks makes them
suitable for applications such as military battlefields, disaster relief, emergency
situations, and low cost commercial communication systems. However, the flexi-
bility of a highly dynamic ad hoc network complicates important network control
and management tasks such as routing, flow control, and power management.
The mobility of nodes leads to dynamic changes in link availability, resulting in
frequent route failures. This can adversely affect network performance in terms
of increased packet loss or delay. If the dynamics of the network topology could
be predicted in advance, a route discovery mechanism could select paths that
were more stable or long-lived in order to avoid or reduce route failures. In ad hoc
networks, the network topology dynamics can be inferred from the mobility of
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the nodes. Therefore, a mechanism to track node mobility could be of significant
benefit to resource management in ad hoc networks.

We present a distributed scheme to accurately track real-time node mobility
in an ad hoc network in terms of an autoregressive model (AR-1) of mobility
[1]. The AR-1 model is sufficiently simple to enable real-time mobility tracking,
but general enough to accurately capture the characteristics of realistic mobil-
ity patterns in wireless networks. Some of the more prominent mobility models
(cf. [2]) that have been proposed in the literature include random walk models,
the random waypoint model, Gauss-Markov models, and linear system models.
The random walk and random waypoint models have the important feature of
simplicity, making them amenable for use in simulations and in some cases ana-
lytical modeling of wireless network behavior. However, recent work has shown
that such models do not accurately represent actual user trajectories in real
wireless networks [3]. Consequently, such models may result in misleading char-
acterizations of network performance. Moreover, such models are not sufficiently
rich to enable accurate and precise real-time mobility tracking.

A linear system model of mobility can capture the characteristics of realis-
tic mobile trajectories and has been applied to real-time mobility tracking for
cellular and ad hoc networks [4, 5]. However, the specification of an optimal
set of linear system model parameters is not straightforward. Mobility tracking
schemes derived from the linear dynamic system model perform well as long as
the model parameters match the mobility characteristics of the user. However,
they cannot adapt to significant changes in the model parameters over time. The
AR-1 model has a similar structure to the linear system model. An important
feature of the AR-1 model is that optimal parameter estimates for the model
can be determined efficiently via the Yule-Walker equations [6].

Our proposed mobility estimation scheme integrates optimal parameter es-
timation via the Yule-Walker equations with mobility state estimation using
Kalman filtering. The mobility state estimation scheme utilizes network-based
signal measurements, such as received signal strength indicators (RSSI) or time-
of-arrival of signals (TOA), to infer relative distances between neighbor nodes.
A key feature of the proposed tracking scheme is that it provides estimates of
position, velocity, and acceleration for each node. The algorithm is distributed
and computationally feasible for real-time tracking applications, as it requires
that each node perform a constant number of Kalman filtering and Yule-Walker
steps at each estimation instant. Further, the mobility information generated by
the tracking scheme can be used to predict future mobility behavior and hence
future link availability in an ad hoc network.

The integrated mobility estimation scheme can adapt to changes in the mo-
bility characteristics over time, since the model parameters are continuously
re-estimated using new observation data. Moreover, the tracking scheme incurs
relatively low communication overhead, which consists of periodic broadcasts of
short HELLO messages containing mobility state information. Each node exe-
cutes a Kalman filter to track its mobility state based on the observation data
received from neighbor nodes. The accuracy of the tracking scheme improves as



the nodal density increases. The presence of a small number of reference nodes
with known coordinates in the network is needed to maintain accurate mobility
tracking performance.

Several location estimation algorithms have been proposed in the literature
for ad hoc wireless networks. The global positioning system (GPS) has been
applied to location-aided services in ad hoc networks [7–9]. This technology has
some limitations, as GPS receivers require a clear view of the sky in the line-
of-sight of the satellites, which precludes their use in indoor or RF-shadowed
environments. Moreover, the size, energy consumption, and cost of GPS receivers
can make them impractical for some types of ad hoc networks or for certain types
of nodes in an ad hoc network. In [10], position estimates of the network nodes
or terminodes (terminals plus nodes) are obtained by triangulating TOA signals.
However, the implementation of this scheme has significant overhead and delay
problems due to the need to coordinate network topology information among
the mobile nodes.

Other approaches to location tracking using network-based signal measure-
ments require a relatively large number of reference nodes with known coor-
dinates placed throughout the network [11, 12]. The location tracking scheme
proposed in [11] uses angle-of-arrival (AOA) measurements to triangulate the
position of nodes in the network. The mobility tracking scheme proposed in [12]
is closest in spirit to the scheme proposed in the present paper in that it em-
ploys Kalman-filtering based on a dynamic system model of mobility. However,
the scheme of [12] relies on the presence of at least three special references nodes
with known coordinates for each mobile node. In contrast, our proposed tracking
scheme requires the presence of a small number of reference nodes, i.e., at least
two reference nodes, in the network. Moreover, the scheme of [12] assumes that
the model parameters are known, whereas our scheme re-estimates the model
parameters at each estimation cycle.

The work described in the present paper extends the AR-1 model-based
mobility tracking scheme developed for cellular networks in [1] and the linear
system model-based tracking scheme for ad hoc networks in [5]. Unlike cellular
networks, ad hoc networks do not have fixed base stations with known coordi-
nates which the mobile units can use as reference points. The relay points in
an ad hoc network are generally themselves mobile and their coordinates must
also be estimated. Thus, the problem of accurate mobility estimation is more
challenging in an ad hoc network. The mobility tracking scheme presented here
effectively deals with the constraints imposed by the ad hoc networking environ-
ment. The algorithm proposed in the present paper differs from the one presented
in our earlier paper [5] in the following aspects: 1) the mobility model used is
the AR-1 model, which supports adaptive re-estimation of model parameters,
rather than the linear system model; 2) the Kalman filter-based state estimation
is distributed among the nodes.

The remainder of the paper is organized as follows. Section 2 reviews the lin-
ear system model of mobility as well as the AR-1 mobility model of [1]. Section



3 presents our distributed mobility tracking algorithm. Some representative nu-
merical results are discussed in section 4. Finally, section 5 concludes the paper.

2 Mobility Models

In this section, we briefly describe two mobility models: the linear system model
(cf. [4]) and the AR-1 mobility model introduced in [1]. The AR-1 model provides
the basis for our proposed mobility tracking scheme as discussed in section 3.
The linear system model is used to generate mobility patterns for our simulation
experiments presented in section 4.

2.1 Linear System Mobility Model

The linear system model has been applied to tracking dynamic targets in [13,
14] and location tracking in cellular networks [4, 15, 16]. The mobile unit’s state
at time n is defined by a (column) vector1

sn,i = [xn,i, ẋn,i, ẍn,i, yn,i, ẏn,i, ÿn,i]′, (1)

where xn,i and yn,i specify the position, ẋn,i and ẏn,i specify the velocity, and
ẍn,i and ÿn,i specify the acceleration of the mobile node Ni at time n in the x
and y directions in a two-dimensional grid. The discrete-time state equation of
the linear dynamic system is given by

sn+1,i = Asn,i + Bun + wn, (2)

where un = [ux,n, uy,n]′ is a vector of two independent semi-Markov processes
and the process wn is a 6 × 1 discrete-time zero mean, stationary Gaussian
vector with autocorrelation function Rw(k) = δkQ, where δ0 = 1 and δk = 0
when k 6= 0, and Q is the covariance matrix of wn. The matrices A, B, and
Q depend on the sampling time interval T and another parameter α, which is
defined as the reciprocal of the acceleration time constant (see [15]).

The specification of an optimal set of linear system model parameters, i.e., α
and the semi-Markov processes ux,n and uy,n is not straightforward in general.
Mobility tracking schemes derived from the linear dynamic system model are
accurate as long as the model parameters match the mobility characteristics
of the user. However, they cannot adapt to significant changes in the model
parameters over time.

2.2 AR-1 Mobility Model

The AR-1 mobility model differs from the linear system model in that the semi-
Markov processes, i.e., ux,n and uy,n, are not incorporated in state evolution.
In the AR-1 mobility model [1], the mobility state of node Ni at time n is also

1 The notation ′ indicates the matrix transpose operator.



defined by (1). The AR-1 model for the mobility state sn,i of node Ni is given
as follows:

sn+1,i = Aisn,i + wn,i, (3)

where Ai is a 6×6 transformation matrix, the vector wn,i is a 6×1 discrete-time
zero mean, white Gaussian process with auto-covariance matrix Qi. Numerical
experiments with the real mobility data of mobile stations (cf. [1]) indicate that
the AR-1 model is sufficient to describe the movement dynamics of nodes in
a mobile networking environment. In the AR-1 model, the matrix Ai and the
covariance matrix Qi are completely general and can be estimated based on
training data using the Yule-Walker equations [6]. This allows the model to
accurately characterize a wide class of mobility patterns. Using the Yule-Walker
equations (see [1]), a MMSE (Minimum Mean Squared Error) estimate of Ai,
denoted by Â

(n)
i , where n specifies the amount of training data available, can

be obtained from the mobility state data s1,i, · · · , sn,i. Similarly, an estimate,
Q̂

(n)
i , of the noise covariance matrix can be obtained.

3 Mobility Tracking Algorithm

In our proposed distributed mobility tracking scheme, each node tracks its own
mobility state using the signal strengths derived from packets received from
neighbor nodes. Each node periodically broadcasts its predicted mobility state,
i.e., ŝn|n−1,j and associated covariance, Mn|n−1,j , to its neighbors. The overhead
can be further reduced if only the state and covariance information related to
position coordinates are transmitted, as the node estimating its mobility state
does not need the full state and covariance matrices. This position information
is either piggybacked onto data packets if the data communication is already in
process between the nodes or written into special HELLO packets when there
is no data to transmit. Thus, the communication overhead incurred by the dis-
tributed scheme is relatively small and the computational overhead of the state
estimation process is distributed among the individual nodes.

The given node N1 requires partial knowledge of ŝn|n−1,j and Mn|n−1,j from
its neighbor nodes Nj , j = 0, 2, 3, in addition to the RSSI or TOA signal mea-
surements. We remark that not all elements of ŝn|n−1,j and Mn|n−1,j are used
in the mobility state estimation. The HELLO packets, transmitted once every
estimation cycle, contain the position estimates of Nj , i.e., the first and fourth
elements of the estimated mobility state vector (ŝn|n−1,j(1) and ŝn|n−1,j(4))
and their associated variances, i.e., Mn|n−1,j(1, 1) and Mn|n−1,j(4, 4), where the
numbers in parentheses indicate indices of the matrix.

Fig. 1 shows a block diagram of the main components of the mobility tracking
algorithm to be executed at each node, in this case node N1. The observation
vector on,1 is provided as input to a pre-filter module. The output of the pre-
filter, ôn,1 is provided as input to both the initialization module and the Kalman
filter. The initialization module initializes the node’s positions in a local coordi-
nate system as described in [10]. The initial mobility state, i.e., ŝ0,1, consists of
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Fig. 1. Block diagram of mobility tracking algorithm.

the initial position coordinates with the velocity and acceleration components
set to zero. The output ŝn,1 of the Kalman filter is the estimate of the mobility
state in the local coordinate system. Finally, the coordinate adjustment module
transforms the local state vector ŝn,1 into a global state vector s̄n,1. Coordinate
adjustment can be done using the scheme of [10], which uses standard techniques
of rotation and translation of cartesian coordinate systems. The state estimates
ŝn,i are used to re-estimate the AR-1 model parameters Â

(n)
i and Q̂

(n)
i at time n.

A recursive model parameter estimator for the AR-1 model is given in [1]. Pre-
filtering is done to reduce the noise in the observation data provided as input to
the estimation scheme. The pre-filter consists of an averaging filter and outputs
a vector of reduced-noise observations ôn,1 (cf. [16]).

3.1 Observation vector

We assume that a given node N1 receives RSSI or TOA signals from three or
more neighboring mobile nodes. Observability arguments (cf. [16]) show that
Kalman filter-based estimation can yield meaningful state estimates with fewer
than three observations from fixed base stations with known locations, but track-
ing accuracy improves with the number of independent observations. For node
N1, an observation vector is constructed consisting of the three signal measure-
ments from neighbor nodes, i.e.,

on,1 =

{
(pn,10, pn,12, pn,13)′, for RSSI,
(τn,10, τn,12, τn,13)′, for TOA,

(4)

where pn,ij denotes the RSSI received at node Ni from node Nj and τn,ij denotes
the TOA measured at Ni from Nj . The general observation or measurement
equation in a wireless environment is written as follows:

on,ij = h(∆sn,ij) + ρn,ij , (5)



where h(·) is a nonlinear function that relates the state sn,ij to the observa-
tion data (either RSSI or TOA) and ρn,ij is a zero mean, stationary Gaussian
process(cf. [1]).

To apply the extended Kalman filter for estimating the state vector, the
observation on,ij can be linearized about the estimated state vectors2 ŝn|n−1,i

and ŝn|n−1,j (cf. [1]):

on,ij ≈ h(∆s∗n,ij) + Hn,ij

(
∆sn,ij −∆s∗n,ij

)
+ ρn,ij , (6)

where ∆s∗n,ij = ŝn|n−1,i − ŝn|n−1,j and the vector Hn,ij is given by (cf. [1])

Hn,ij =
∂h

∂∆s

∣∣∣∆s=∆s∗n,ij
. (7)

Define ζn,ij = Hn,ij(sn,j − ŝn|n−1,j). The conditional density of ζn,ij given the
previous observations can be approximated by a Gaussian density as follows:

f (ζn,ij |On,j) ∼ N (0, Hn,ijMn|n−1,jH
′
n,ij), (8)

where Mn|n−1,j = Cov[sn,j |On−1,j ]. The above expression uses the fact that the
conditional density of a mobility state given the observations can be approxi-
mated by a Gaussian density (cf. [17]), i.e., f (sn,j |On,j) ∼ N (ŝn|n,j , Mn|n,j).
The expression for the conditional density can be verified easily using (3) and
(6). The linearized observation vector for node N1 is then given as

on,1 ≈ h(∆s∗n,1) + Hn,1(sn,1 − ŝn|n−1,1) + ζn,1 + ρn,1, (9)

where

h(ŝn,1) = [h(∆ŝn,10), h(∆ŝn,12), h(∆ŝn,13)]′, Hn,1 = [H ′
n,10,H

′
n,12, H

′
n,13]

′,
ζn,1 = [ζn,10, ζn,12, ζn,13]′, ρn,1 = [ρn,10, ρn,12, ρn,13]′.

The noise terms ζn,1j and ρn,1j are zero-mean independent Gaussian distributed
variables with variances σ2

ζ,1j and σ2
ρ, respectively.

3.2 Extended Kalman Filter

The steps in the extended Kalman filter are given as follows (cf. [18]). The
algorithm is executed on node N1 and N0, N2, and N3 are the neighbor nodes.

Initialization:

1. ŝ0|−1,1 is initialized as discussed in section 3.3
2. M0|−1,1 = I6

Recursive estimation (time n, n = 1, 2, · · · ):
2 We use the Kalman filter notation ŝn|n,i and ŝn|n−1,i to denote the state estimates

for Ni at time n given the observations vectors up to times n and n−1, respectively.



1. Hn,1j = ∂h
∂∆s

∣∣
∆s=ŝn|n−1,1−ŝn|n−1,j

; j = 0, 2, 3
2. σ2

ζ,1j = Hn,1jMn|n−1,jH
′
n,1j ; j = 0, 2, 3

3. R1 = diag[σ2
ζ,10, σ

2
ζ,12, σ

2
ζ,13] + σ2

ρ ∗ I3

4. Kn,1 = Mn|n−1,1H
′
n,1(Hn,1Mn|n−1,1H

′
n,1 + R1)−1

5. ŝn|n,1 = ŝn|n−1,1 + Kn,1(ôn,1 − h(ŝn|n−1,1)) [Correction step]
6. ŝn+1|n,1 = A1ŝn|n,1 [Prediction step]
7. Mn|n,1 = (I −Kn,1Hn,1)Mn|n−1,1(I −Kn,1Hn,1)′ −Kn,1R1K

′
n,1

8. Mn+1|n,1 = A1Mn|n,1A
′
1 + Q1

where Ml|k,1 = Cov(sl|k,1), l = n, k ∈ {n, n−1}, Kn,1 is the Kalman gain matrix,
and R1 is the covariance matrix of the noise in measurements.

3.3 Initialization Module

To create a coordinate system in the network, one of the nodes, say N0, assumes
the role of the origin. The origin node could be determined by a simple election
protocol. The origin node N0 then sets its position coordinates as (x0, y0) = (0, 0)
and chooses two of its neighbors, say nodes N1 and N2, respectively, to determine
the x and y axes of the local coordinate system. More precisely, N1 is chosen to
lie on the positive x axis and the coordinates of node N2 are chosen to have a
positive y-component. The coordinates of N1 and N2 are initialized as follows
(cf. [10]):

(x1, y1) = (d̂01, 0), (x2, y2) = (d̂02 cos θ12, d̂1,02 sin θ12),

where d̂ij = e(κj−ôn,ij)/10γ denotes the initial distance estimate between nodes

Ni and Nj , and θ12 = arccos
(
(d̂2

01 + d̂2
02 − d̂2

12)/2d̂01d̂02

)
denotes the angle from

the position vector corresponding to node N1 to that corresponding to N2, with
0 ≤ θ12 ≤ π. The coordinates (x1, y1) and (x2, y2) could be computed by the
origin node N0 and transmitted to nodes N1 and N2, respectively. After this
is done, the nodes N0, N1, and N2, completely determine a local coordinate
system. Once the coordinates of a given node have been initialized, the node
broadcasts its coordinates within its neighborhood. If a given node Nk has at
least three neighbors, Ni, Nj , Nl, with their coordinates already defined in the
local coordinate system (e.g., N0, N1, and N2), the node can initialize its position
coordinates via triangulation as follows:

[
xk

yk

]
= 0.5

[
xi − xj yi − yj

xi − xl yi − yl

]−1
[
−d̂2

ik + d̂2
jk + x2

i − x2
j + y2

i − y2
j

−d̂2
ik + d̂2

lk + x2
i − x2

l + y2
i − y2

l

]
.

The initialization process starts at N0, i.e., the origin of the local coordinate
system and propagates outward until a maximal set of nodes in the network is
initialized within the coordinate system.



4 Numerical Results

In this section, we present some representative simulation results to demonstrate
the operation and performance of the proposed mobility tracking scheme.

4.1 Simulation setup and assumptions

The results presented here were obtained using a Matlab-based simulation model
of an ad hoc network comprised of 30 nodes. Random mobile trajectories for each
of the nodes were generated using the linear system model discussed in section
2.1. The first 50 position coordinates of each node are used to initialize the
AR-1 model parameters as described in section 2.2. An appropriate training
data set is required for proper initialization of the AR-1 model parameters. In
our simulation experiments, each mobile trajectory contains almost 350 sample
points and the transmission range of all the nodes is assumed to be 400 m. Each
node uses signal measurements from all neighbor nodes to estimate its mobility
state.

RSSI measurements at time n were generated using the lognormal shadowing
fading model [19]:

pn,ij = κj − 10γ log(dn,ij) + ψn,ij , (10)

where pn,ij is the RSSI received at node Ni from node Nj , dn,ij is the distance
between the nodes, and ψn,ij is a zero mean, stationary Gaussian process with a
standard deviation of 4 dB. The parameter κj is assumed to be zero and γ is set
to 8. TOA measurements yield similar results to RSSI measurements (cf. [1]).
The difference in performance in real scenarios depends on the accuracy with
which the signal measurements are collected, especially in the case of TOA, and
on the accuracy of the assumed lognormal signal propagation model in the case
of RSSI.

The initial positions of these nodes are assumed to be uniformly distributed in
a square 600 m × 600 m area, but they are subsequently allowed to move outside
this area. The initial speed and acceleration, in each dimension, are assumed to
be zero for all nodes. The discrete-time interval is set as T = 0.1 s. The dynamic
system model parameters are set as follows: α = 1 s−1 and σ1 = 1 dB (cf. section
2.1). The discrete command processes ux(t) and uy(t) for the three mobile nodes
are independent semi-Markov processes, each taking on five possible levels of
acceleration comprising the set L = {−1,−0.5, 0, 0.5, 1} in units of m/s2. This
set of acceleration levels is capable of generating a wide range of dynamic motion.
The initial probability vector π for the semi-Markov model (SMM) governing
ux(t) and uy(t) is initialized to a uniform distribution. The elements of the
transition probability matrix for the SMM are initialized to a common value of
1/5. We assume that the dwell times in each state are uniformly distributed with
a common mean value of 2T s, where T is the sampling interval.
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Fig. 2. Mobility tracking with two reference nodes.

4.2 Mobility estimation

A sample simulation result showing the tracking of 30 mobile nodes is illustrated
in Fig. 2, where the coordinates are represented in meters. The initial coordi-
nates of each node are marked with ∗, as shown in Fig. 2. The first 50 position
coordinates of each node are used to initialize the AR-1 model parameters Ai and
Qi for each node Ni. Fig. 2 shows mobility tracking results when two additional
stationary reference nodes are located at (0,−300) and (0, 300) (not shown in
Fig. 2). One node is selected to serve as the origin of the local coordinate system
and the two nodes closest to the origin are chosen to determine the x and y axes
of the local system. We note that the estimation error is larger for the nodes
moving further away from the rest of the nodes than the nodes which stay closer
to the other nodes. As nodes move further apart, there are fewer neighbor nodes
to provide independent observations. We also remark that tracking accuracy gen-
erally improves with increasing nodal density, again since the presence of more
neighbors provides more observation data for the state estimation process.

We compared the performance of the proposed tracking scheme with a similar
tracking scheme based on the linear system model, in which the model parame-
ters are assumed to be known. Mobility tracking performance can be quantified in
terms of root mean square estimation error (RMSE). We use root mean squared
error (RMSE) as a figure of merit to compare a given trajectory {xn, yn} and
its estimated trajectory {x̂n, ŷn}:

RMSE =

√√√√ 1
N

N∑
n=1

[(x̂n − xn)2 + (ŷn − yn)2] (11)



Table 1 shows RMSE results for various scenarios in terms of the sample mean,
µRMSE , and standard deviation, σRMSE , of the RMSE statistic, which are com-
puted using 500 independently generated sample experiments. The first column
in the table indicates the estimation scheme and the second column shows the
availability of model parameters. The third column indicates the standard devi-
ation, σψ, of the shadowing noise in the RSSI measurements. The table shows
that the integrated AR-1 estimator has a slightly larger mean RMSE compared
to the state estimator with complete knowledge of the linear system model pa-
rameters. Interestingly, the standard deviation of the RMSE is smaller for the
AR-1 based estimator. From Table 1, we also observe that increasing the shad-
owing nodes tends to degrade tracking performance, but tracking performance
remains fairly stable even for a standard deviation of σψ = 8 dB. Moreover, the
presence of three reference nodes in the network improves the accuracy of the
estimator when compared against the case of two reference nodes.

Estimation Scheme Model Parameters σψ (dB) µRMSE (m) σRMSE (m)

Linear System known 4 4.39 8.4
Integrated AR-1 with 2 references unknown 4 8.78 3.99
Integrated AR-1 with 3 references unknown 4 7.38 1.46

Linear System known 8 7.45 12.6
Integrated AR-1 with 2 references unknown 8 13.62 5.66
Integrated AR-1 with 3 references unknown 8 10.96 2.91

Table 1. RMSE of mobility tracking over 500 sample experiments.

5 Conclusion

We have proposed a distributed scheme for tracking node mobility in ad hoc
networks based on an autoregressive model of mobility. The tracking scheme
estimates both the current mobility state and re-estimates the mobility model
parameters in an integrated fashion. Thus, the scheme does not require prior
knowledge of mobility model parameters and can adapt to wireless networking
scenarios where the mobility model parameters are not known or may change
with time. Simulation results show that the proposed tracking scheme performs
accurately under a variety of wireless networking scenarios with a small number
of reference nodes. The mobility tracking scheme can be applied in a variety
of scenarios to enhance the performance of routing, mobility management, and
resource allocation in mobile ad hoc networks. In ongoing work, we are inves-
tigating the application of the mobility tracking scheme to predict future link
availability in order to enable more efficient routing and improved quality-of-
service provisioning in ad hoc networks.
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