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proposed scheme is resistant to a wide range of security attacks and can scale 
easily to networks of large size.  
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1   Introduction 
Providing security in MANETs is an inherently challenging problem due to the lack 
of a fixed infrastructure, the dynamically changing network topology, the limitations 
of the wireless channel, and the limited capabilities of the nodes.  Since the nodes are 
mobile, they are particularly vulnerable to physical attacks from within and outside 
the network.  The nodes are typically of small size and have limited computational, 
storage, and transmission power, as well as limited battery life.  Such limitations 
place severe constraints on security architectures for MANETs.  MANETs cannot 
always guarantee online access to a centralized CA due to the often intermittent and 
unreliable nature of the wireless channel.  Thus, the use of a standard public key 
infrastructure (PKI) is generally infeasible in an ad hoc wireless environment.  
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1   Introduction

Providing security in MANETs is an inherently challenging problem due to the lack of a fixed infrastructure, the dynamically changing network topology, the limitations of the wireless channel, and the limited capabilities of the nodes.  Since the nodes are mobile, they are particularly vulnerable to physical attacks from within and outside the network.  The nodes are typically of small size and have limited computational, storage, and transmission power, as well as limited battery life.  Such limitations place severe constraints on security architectures for MANETs.  MANETs cannot always guarantee online access to a centralized CA due to the often intermittent and unreliable nature of the wireless channel.  Thus, the use of a standard public key infrastructure (PKI) is generally infeasible in an ad hoc wireless environment. 


The goal of securing ad hoc wireless networks has generated much interest in the research community in recent years.  Password-based schemes for key establishment [1], [2], [3], [4], [5] avoid the need for a CA by carrying out authentication on the basis of a shared secret or password established prior to the deployment of the network.  A security scheme similar to Pretty Good Privacy (PGP) has been proposed for MANETs [6], [7], whereby certificates are issued by users based on the establishment of chains of trust.  This approach is well-suited to the ad hoc networking environment, but provides only probabilistic security guarantees and relies on transitive trust relationships, which may not be sufficient for some applications.  Another approach to securing MANETs is based on a distributed certification authority (DCA) [8], [9] to avoid the problem of a single point of failure found in traditional PKI architectures.  This approach provides deterministic security guarantees, but raises critical issues of scalability in practical MANETs. The concept of a distributed certification authority has also been applied to wired networks in a security architecture called COCA [10], which also provides fault tolerance.  However, COCA cannot be directly applied to ad hoc networking environments where the behavior of the nodes is complicated by dynamic changes in wireless connectivity. In general, PKI architectures designed with wired networks in mind cannot be carried over straightforwardly to ad hoc networks [8]. 


We propose a comprehensive approach to providing a distributed CA-based PKI in MANETs, which potentially allows the network size to scale to hundreds or even thousands of nodes.  The key elements of our approach are:  (1) a scheme for dynamically partitioning the network into smaller clusters of nodes based on nodal mobility; (2) a distributed certification authority with multiple CA servers employing threshold-based cryptography with proactive share recovery, and replicated key repositories assigned to each cluster; (3) the use of elliptic curve cryptography (ECC).  Distributing CA servers geographically over the coverage area of the MANET makes it more difficult for an adversary to compromise multiple CA servers simultaneously.  Further, the use of threshold-based cryptography with proactive share recovery forces an adversary to simultaneously compromise more than half of the CA servers before the distributed CA itself is compromised.  The distribution of the key management architecture over clusters reduces the storage requirements of the nodes and the CA servers, as well as the computational and signaling overhead.  Finally, the use of elliptic curve cryptography dramatically reduces the computations involved in cryptographic operations, making the PKI-based scheme feasible even for nodes of modest computational power.  


The main contributions of the paper are a practical architecture for implementing a distributed CA over a MANET via dynamic clustering and a detailed study of the computational gains achievable by using elliptic curve cryptography in the MANET setting.  The proposed architecture provides a highly secure PKI with a flat trust management architecture and deterministic security guarantees.  We discuss the advantages of the proposed architecture compared to existing schemes and how the architecture can resist a wide range of security attacks.


The remainder of the paper is organized as follows.  Section 2 discusses the elements of the proposed distributed CA-based PKI architecture.  Section 3 focuses on the operational aspects of the cluster-based key management protocols within the proposed PKI architecture.  Section 4 provides a detailed analysis of the performance gains achieved by using ECC in the MANET setting.  Finally, the paper is concluded in Section 5.

2   Distributed CA-based PKI Architecture


2.1   Overview


Figure 1 gives a three-tiered logical view of how the DCA architecture is organized. At the lowest tier individual nodes are organized into clusters using standard clustering schemes [11], [12], [13], [14]. The next tier consists of one or more certificate repositories in each cluster. The top tier consists of DCA servers. Although the servers and repositories are represented at higher levels from the other nodes, the proposed scheme is in fact a flat PKI trust hierarchy.  We next discuss the details of how these logical tiers are organized. 


The number of DCA servers should be a function of the network size and the degree of resilience required against attacks. We utilize a threshold based scheme to govern this. The number of servers is defined by n = 2k+1, where k is the maximum number of servers that can be compromised in a predefined period of time. Each server participates in issuing certificates and revocation certificates (counter-certificates) and in periodically signing the certificate revocation list (CRL) that contains the serial numbers of revoked certificates from the entire network. The servers are assumed to be physically more secure and computationally more powerful nodes. The initial distribution of the CA servers is described in section 3.1. If a server is compromised but undetected, it is because it functions properly; in this case no measures are necessary. Once a server is compromised and detected, it cannot perform service as part of the DCA, until its share is recovered or renewed. It does not influence or affect the functioning of the cluster or the system.
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Fig. 1. DCA architecture (n=7, t – r = 2)

Table 1. Certificates available to current and future participants of the system


		Available to:

		Cluster Server

		Other Server

		Cluster Nodes

		Non-Cluster Nodes

		New Nodes



		Certificate

		X

		

		Optional

		

		Optional



		Counter-Certificate

		X

		X

		X

		X

		X



		Most recent CRL

		X

		X

		X

		X

		X





Within each cluster, a fixed number t of nodes are designated as repositories that store the certificates of the nodes within the cluster, the certificates of all servers, the counter-certificates of the network nodes, and the most recent version of the CRL.  The repositories might also become compromised and thus become unavailable (note that in case of compromised repositories nothing that was not already public is revealed). However, up to r repositories may be compromised within a cluster before a new node within a cluster is elected to serve as a repository.  This way, there will always be a minimum of t - r active repositories in each cluster. 


The use of clustering has two advantages. First, it reduces the storage requirements of individual nodes as each node needs to store at most the certificates of the other nodes in the same cluster rather than the entire network. Second, clustering reduces the communication overhead and increases the efficiency of certificate management as certificates are always available to each node at a local repository within a small number of hops.

A key feature is that the CRL maintained in the repositories is timestamped, signed by the DCA, and updated every day. The corruption of the repositories is acceptable, since (1) corrupted certificates or counter-certificates will be detected via signature verification, (2) corruption that involves deletion of certificates and/or counter-certificates, is also detected, as the most recent CRL can be checked. If the information provided is up-to-date, it is considered correct. If it is not, another repository is accessed. Hence, the existence of t - r active repositories in each cluster ensures that the cluster’s operation is never interrupted.

2.2   Threat Model and Resistance to Attacks 


Our focus is on the compromise of DCA servers and certificate repositories and the effects they will have on the integrity and availability of certificate management services. We consider the following attack model to characterize the resiliency of our schemes. We denote an attack type by a triple (c, s, r), where c is the number of clusters involved, and s and r represent the number of DCA servers and repository copies, respectively, that can be compromised by an attack.


The first attack we consider is the well-known theft of the secret key of the CA. This represents a single point of failure in a CA infrastructure and allows an attacker to forge certificates.  Our distributed implementation of the CA uses a threshold cryptography scheme to protect the secret key of the CA by distributing the secret (private key) among a number of servers (shares) and thus avoids the single point of failure vulnerability. This scheme can thus be used to deal with attacks of the form (n, k, r) where k is the maximum number of servers compromised out of a total number of n servers with n = 2k+1, and there is at most one DCA server per cluster. It can also deal with attacks of the form (p, k, r) where we have a total of n servers with n = 2k+1 and p < n. In this case, some clusters may have more than one server.


We next consider attacks that reduce the availability of certificate repositories. Our cluster-based distributed CA scheme can handle attacks ranging from (1, 0, r) to (1, s, r) by maintaining at least t replicas (where t > r) of the certificate repository within each cluster. The number b = t - r, is tunable so as to always guarantee b copies of the repository. In the case of (1, s, r), all s servers in a cluster are compromised and unavailable but as long as one replica of the repository is functioning we can provide all the necessary certificate services including the addition of a new member and the distribution of its certificate. 


Another source of vulnerability in a CA system has to do with the authentication and validation of requests to issue certificates.  In our scheme, this function is performed by a Registration Authority (RA). A common vulnerability is that the RA can be fooled into believing B when B impersonates A. We assume that the RA (1) does not belong to the MANET but is part of a wired network; (2) can communicate with the servers of the DCA securely; (3) does not know the private key of the DCA. The RA will verify the credentials of a node and if satisfied, contact at least k+1 servers and request issuance of a certificate. This model reflects the practical procedures and work scenarios present in many environments that use wireless networking. For example, before troops go out to the battlefield with their wireless devices, they will be required to report to and register at the RA.  Upon successful verification of credentials, a wireless device with a private key and an associated certificate with the public key may be issued to a soldier to enable further communications in the battlefield.


Passive attacks such as eavesdropping of wireless communications are not a concern for us as any information gathered from such activities is public knowledge. Finally, the integrity of certificates through active tampering can be verified through the use of digital signatures.


2.3   Elliptic Curve-based Distributed Certification Authority


We propose a distributed certification authority based on threshold cryptography and proactive secret sharing [15], [16]. The traditional public key cryptosystem employed in [15], [16] is impractical for MANETs, as it imposes high computational and communication overhead. Therefore, we propose the use of ECC [17] to reduce this overhead for the mobile devices. The DCA consists of n = 2k+1 servers that will share a secret value x, through a (k +1, n) threshold scheme [18]. Any (k + 1) servers are required to combine their shares in order to sign a message, while the adversary who wants to learn or destroy its secret signature key has to compromise more than k servers during a single time period. A broadcast communication channel is assumed. The goal is to prevent the adversary from learning or destroying the secret x. 


Time Periods and Update Phases. We assume that time is divided into time periods, during which the servers can perform the group signature operation. Each period is determined by a common global clock and its duration is specified as required (five days, two weeks, etc.). There are short update phases for the re-randomization of the original key. Previous shares become useless and should be erased, since combined information about two periods of the system could enable the adversary to break the system.


Each update phase consists of: 1) private key renewal, which renews the means of encryption and authentication among the servers; 2) lost share detection and recovery, which checks the current shares of the servers and reconstructs the corrupted shares, if any; and 3) share renewal, which re-randomizes the secret key x. The resolving accusation protocol [15] is implemented when two servers’ claims are contradictory at specific phases of the protocols. This protocol might be completed in 3 or 4 steps, depending on the state of the transactions.


Cryptographic Tools. We assume that the signature scheme used by the DCA is Elliptic Curve El Gamal signatures, which is discussed in more detail in section 4. We assume that Feldman’s verifiable secret sharing (VSS) scheme [19] is used for the sharing of the CA’s key among the n participating servers. Each server has two pairs of keys, one for encryption and one for signature that will provide both private and authenticated communication. Table 2 shows the keys and parameters of the CA that are known to different elements of the system.


3   Operational Aspects of the Proposed Architecture

The notation used in this section is shown in Table 3.

3.1   Network Initialization


The proactive secret sharing system that we adopt for our DCA assumes an initialization phase, during which (1) the secret key of the CA is generated and shared between the servers, (2) each server generates its pair of authentication and encryption keys and publishes their public values to the group of servers, (3) an initial set of nodes is deployed.  For simplicity we shall assume that the nodes form clusters, with one CA server per cluster.  After the initialization phase, nodes may migrate between clusters and new nodes may join or leave the network.

3.2   Activating a Node


In the proposed scheme when a new N node wants to join the mobile network, it must carry out the following steps.


Table 2. Parameters of the DCA available to current and new participants of the system

		Available to:

		Server i

		All Servers

		Current Nodes

		New Nodes



		System parameters

		X

		X

		X

		X



		Public key of DCA Y

		X

		X

		X

		X



		Partial verification keys

		X

		X

		

		



		Share xBiB of the secret x

		X

		

		

		



		Server own signature key

		X

		

		

		



		Server signature verification key

		X

		X

		X

		X



		Server encryption key

		X

		X

		X

		X



		Server decryption key

		X

		

		

		





A1. Node N obtains certificate cBNB

A1.1. N contacts RA


A1.2. RA verifies credentials of N and securely contacts k+1 CA servers


A1.3. (k+1) CA servers issue cBNB for N and send it to RA


A1.4. RA gives cBNB and cBDCAB to N 


A2. Node N joins cluster i 


A2.1. N sends cBNB to RBi_wB 


A2.2. N requests CBiB , CC, CRL from RBi_wB

A2.3. RBi_wB broadcasts cBNB

A2.4. RBiB store cBNB

A2.5. jBi Boptionally store cBNB

In step A1, the node that wants to enter the network contacts a fixed Registration Authority. The RA will verify the credentials and if satisfied, contact at least k+1 servers and request issuance of a certificate. Then, k+1 servers will perform the distributed signature operation protocol to issue a certificate for the new member. The issued certificate will be sent to the RA, the new member will obtain it and join the network. The new member can join any cluster of the network since its certificate’s signature can be verified by any server or node (the public key of the DCA is stored by all network participants).

Table 3. Notation used in this section


		DCA

		set of CA servers

		SBiB

		set of servers of KBiB



		K

		number of clusters

		CBiB

		set of certificates of nodes in KBiB



		R

		number of repositories 

		RBiB

		set of repositories in KBiB



		RA

		Registration Authority 

		cBi_wB

		certificate of jBi_wB 



		CC

		set of counter-certificates

		ccBi_wB

		counter-certificate of jBi_wB



		cBDCAB

		certificate of DCA

		SBi_wB

		server w of KBiB 



		J

		number of nodes

		RBi_wB

		repository w in KBiB



		jBiB

		number of nodes in KBiB

		jBi_wB

		node w in KBiB



		KBiB

		cluster i

		N

		a new node 





The introduction of a newly certified node in a cluster is described in step A2. The node has to contact one of the repositories of the cluster it wishes to join in order to publicize its certificate, which will be broadcast to the current nodes and repositories of the cluster. The node can obtain the certificate of any node in the cluster by contacting a local repository. Usually the certificates that are most likely to be used should be cached. The local storage of certificates makes communication within a cluster efficient, even when encryption is needed. Moreover, the repository will provide the new node with the most recent version of the certificate revocation list (CRL) containing serial numbers of revoked certificates from the entire network signed by the DCA and the counter-certificates issued since the last update of the CRL.


3.3   Deactivating a Node


The certificate revocation process takes place as described by the following protocol.


D1. if m nodes of KBiB want ccBi_wB to be issued


D1.1. m nodes of KBiB send signed accusations about jBi_wB to at least k+1 CA servers


D1.2. k+1 CA servers issue ccBi_wB and add the serial number of  ccBi_w Bto the CRL


D1.3. ccBi_wB is broadcast to the network


D1.4. SBi_wB, RBi_wB, jBi_wB store ccBi_wB 


D1.5. CRL is renewed and timestamped by the DCA periodically

D1.6. SBi_wB, RBi_wB, jBi_wB store CRL 


D2. if node jBi_wB  wants to request revocation of its own certificate 


D2.1. jBi_wB sends a signed request for the issuing of ccBi_wB  to at least k+1 CA servers 


D2.2. follow steps D1.2 to D1.6

Revoking a certificate for a given node can be initiated either by m users belonging to the same cluster, where m can vary depending on the application of the network, or by a node that wants to revoke its own certificate. When the revocation process is initiated by m users requesting revocation of node’s jBi_wB certificate, their request needs to be sent to at least k+1 servers. As a result, the DCA issues a counter-certificate and adds a serial number of the revoked certificate to the global CRL. The revocation certificates are broadcast to all nodes of the network, immediately after being issued. The storage of the counter-certificates is obligatory. All the servers and repositories keep the CRL that contains serial numbers of revoked certificates from the entire network. CRLs are renewed by the DCA every day or more often if necessary and are broadcast to all nodes in the network. 


The revocation process may also be initiated by a node that wishes to revoke its own certificate either because it wants to leave the mobile network, or because its private key has been compromised. In this case, the node sends a signed request to at least k+1 servers to enable the issuing of its revocation certificate.


3.4   Node Migrations across Clusters


A highly mobile node jBi_wB might leave source cluster KBsB and enter destination cluster KBdB. The following protocol describes the protocol to manage smooth node migrations across clusters. 

M1. Node jBi_wB leaves source cluster KBsB

M1.1 if the mobility management protocol indicates that the node jBi_w Bpermanently leaves the source cluster KBsB, jBi_w Bdeletes the certificates CBsB of the nodes in KBsB

M1.2 else, go to step M2. 

M2. Node jBi_wB joins destination cluster KBdB

M2.1. jBi_wB sends its certificate cBi_wB to repository w of KBdB (RBd_wB)


M2.2. jBi_wB requests the certificates CBdB of the nodes in cluster KBdB from RBd_wB

M2.3. RBd_wB broadcasts cBi_wB

M2.4. the repositories of KBdB (RBdB) store cBi_wB

M2.5. the nodes of KBdB (jBdB)B Boptionally store cBi_wB

When node jBi_wB leaves source cluster KBsB and enters destination cluster KBdB, it does not know the certificates of the nodes in cluster KBdB. Therefore, it contacts any of the cluster KBdB repositories (RBd_wB) in order to obtain them. At the same time, node jBi_wB is introduced to the cluster by sending its certificate to RBd_wB. Besides that, node jBi_wB can send its certificate to each node it corresponds with and the certificate can be authenticated using the public key of the DCA that each node in the network knows. The certificates of the nodes of the source cluster KBsB that are stored in node jBi_wB are deleted, unless the mobility management protocol predicts that the node is temporarily moved to a new cluster. In this case, the node can be programmed to delete the certificates of cluster KBsB when it has moved to a third cluster KBhB. Another option is to keep the stored certificates if enough storage space is available.


3.5   Intra-Cluster Communications

Communication inside a cluster is relatively fast, regardless of whether the communication is encrypted or authenticated. This is because each node caches (1) the most frequently used certificates of the nodes within the cluster, (2) the revoked certificates from the entire network and (3) the most recent version of the CRL. Consequently, the nodes infrequently request certificates or counter-certificates from the repositories, hence reducing the communication overhead. The cluster’s CA server periodically informs the cluster about the new network counter-certificates when they are issued and the updated CRL. Repositories broadcast the certificates of new nodes.

3.6   Inter-Cluster Communications 


The way inter-cluster communication takes place depends on whether it needs to be authenticated or encrypted. Since the public key of the DCA is known to all the participants of the system, the certificate of any node can be verified by any other node. Thus, the authentication has very low communication overhead. On the contrary, when an encrypted message needs to be sent, the sending node does not know the public key of the receiving node, because it has only cached certificates of the same cluster. Then, the required certificate has to be requested from one of the repositories of the cluster to which the receiving node belongs. The knowledge of the counter-certificates of the whole network and the most recent CRL is an advantage, since all the nodes are aware of all the revoked certificates and as a result a revoked certificate will never be requested. This reduces the communication overhead. The reply that is sent contains the requested certificate. However, it should be noted that node, whose certificate is requested, might reply to the request route and might send the certificate by itself. 


3.7   Cluster splitting and merging 


The network size and distribution of nodes may change dynamically, which affects the number of clusters as defined by the cluster management protocol [11], [12], [13], [14].  For the purposes of the proposed DCA-based PKI architecture, we shall assume the basic functions of a generic cluster management protocol, i.e., cluster splitting and merging operations.


If the network size increases and new clusters are formed, the number of network clusters may become larger than the number of DCA servers, since the number of DCA servers is fixed n = 2k+1. In this case, not all clusters will contain one CA server. Assume, for example, that cluster i splits into two clusters iB1B and iB2B. The CA server of cluster i will become part of a cluster of higher density, for instance iB1B. Hence, cluster iB2B will not contain a CA server, but its nodes will be mapped to the server of cluster iB1B. The key issue is that the CA servers are distributed into the network. However, the cluster iB2B will need to elect t repositories. Any of the cluster nodes that have never been accused of misbehavior can serve as a repository. 

If the network size decreases and some clusters are merged, the number of  network clusters may become smaller than the number of DCA servers. In this case, a cluster that results from the merger of two clusters will contain the CA servers and repositories of the original clusters. 


4   Performance Gains using ECC


Having presented the distributed CA-based PKI scheme, we now discuss the performance improvement of the scheme through the use Elliptic Curve cryptography. ECC is appropriate for mobile nodes with limited computational power because it requires smaller keys and involves operations on smaller integers than in standard systems.

4.1   Cryptographic Tools


A sufficiently large prime p, an Elliptic Curve E over GF(p) with a total number of points N and a generator of the group of points on the elliptic curve P are chosen. Let c be a certificate to be signed. The above settings are publicized. The private key can be any number x, where where 1
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#E (GF (p))-1. Here, #E (GF (p)) denotes the number of points on the curve. Its corresponding public key is a point Y = x*P.


The signature scheme used by the DCA is Elliptic Curve El Gamal signatures. For the elliptic curve-based system we choose to implement the Elliptic Curve Digital Signature Algorithm (ECDSA) signature scheme for signatures since it is a standard and the Elliptic Curve El Gamal encryption scheme for encryption. We have chosen a key size of 160 bits (i.e., p, q are 160 bits long for both the EC El Gamal and ECDSA), which is equivalent to a 1024 bit key in traditional public-key cryptosystems.  A 160 bit key size provides a sufficient level of security for most applications, while placing a reasonable computational burden on the nodes of a MANET. 


4.2 Computational and Time Requirements of the DCA


A detailed analysis of the computational and communication overhead for each protocol of the elliptic curve-based DCA scheme and the traditional public key system employed in [15], [16] is given in [20]. The overhead depends on the values of the variables k, 
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, m, where k = (n-1)/2 and n the number of servers, 
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 the number of servers of faulty shares that are recovered (during the recovery of lost shares protocol) and m the number of servers that misbehaved during the execution of the share renewal protocol. The formulas derived in [20] show that the number of computations (of modular multiplications) to be performed and the traffic generated is essentially proportional to kP2P.


To illustrate the practicality of the elliptic curve-based DCA scheme on a large network, we shall consider a network of 51 servers (k = 25).  We choose 
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 and m to be equal to 2.  We shall assume that each cluster contains approximately 100 nodes.  As a result, the network contains about 5100 nodes and 51 servers. 


To evaluate the elliptic curve-based system, it is crucial to compare it with the original, traditional public key system. Let EC-DCA denote our elliptic curve-based DCA scheme and T-DCA denote the original, traditional public key system. For the EC-DCA system, the results were derived as the number of modular multiplications with a modulus of 160 bits. For T-DCA, the results were derived in terms of the number of modular multiplications with a modulus 1024 bits. However, the time required to perform a modular multiplication with modulus of the size of z bits in software is proportional to the zP2P. Thus, modular multiplications with modulus of the size of 160 bits can be normalized to modular multiplications for a 1024 bit modulus, to simplify the comparison. 


Table 4 presents the comparison of the computations required by each server for each protocol of the scheme when n = 51. Here, the unit of computation is one modular multiplication, where the modulus is determined by the key size. The various types of computation involved in the cryptosystem are presented in terms of the number of equivalent modular multiplications required. We note that each server does not perform the same number of computations. Since not all of the servers contribute to the distributed signature operation, not all the servers need to recover their shares.  Also, some servers may not participate if they are accused of cheating. Thus, we shall consider the maximum number of computations that have to be performed per server. Even though not all the servers will need to perform the maximum number of computations, the time needed to finish running a given protocol is determined by the servers that perform the most computations. 


The number of computations that each device has to perform can be translated into the time that the device needs to perform those computations, taking into account the computational power of the present mobile devices. At present, smart cards can perform up to 3000 modular multiplications per second with the size of the modulus being 1024 [21]. Based on that, we can calculate how much time a server needs to perform the computations needed for each protocol. Table 4 presents a comparison of the maximum number of computations per server and the time required for the following protocols: (1) Distributed Signature Operation, (2) Private key renewal, (3) Lost share detection, (4) Recovery of lost shares, (5) Share renewal, (6) Resolving accusations - in 3 steps -, (7) Resolving accusations - in 4 steps -.


4.3 Communication and Storage Requirements


The communication overhead imposed by the proposed scheme is shown in Table 5. As the majority of involve messages that are broadcast, the number of messages sent differs from the number of messages received and thus processed within the DCA. The transmission requirements are manageable for 51 servers. The values of the variables involved are discussed in Section 4.2.


The key space is partitioned with the use of clusters and the use of small key sizes, since the system is elliptic curve-based. We calculate the key storage requirements for a network of 51 servers (k=25), 51 clusters and approximately 5100 nodes (about j=100 nodes per cluster). In particular, we compute the key space required for the storage of certificates, counter-certificates, CRL and DCA parameters per server, repository and node. Nodes choose to store as many certificates of the same cluster’s nodes  as  needed,  whereas  the repositories  have to store  the certificates of all nodes 

Table 4. Comparison of the max computations per server and the time required for each protocol (n = 51)


		Max computations (modular multiplications) per server



		Protocol

		1

		2

		3

		4

		5

		6

		7



		EC-DCA scheme

		13,314

		8,574

		17,578

		4,694

		16,915

		164

		2,221



		T-DCA scheme

		114,146

		36,240

		72,480

		88,563

		349,777

		3,072

		39,961



		Time (in seconds) 



		Protocol

		1

		2

		3

		4

		5

		6

		7



		EC-DCA scheme

		4.44

		2.86

		5.86

		1.56

		5.63

		0.05

		0.74



		T-DCA scheme

		38.04

		12.08

		24.52

		29.52

		116.59

		1.02

		13.32





Table 5. Traffic generated within the DCA for each protocol (n = 51)

		Protocol

		Messages sent

		Messages received



		Distributed Signature

		78

		3901



		Private key renewal

		51

		2550



		Lost share detection

		102

		5100



		Recovery of lost shares

		147

		4900



		Share renewal

		102

		5100



		Resolving accusation - 3 steps -

		2

		100



		Resolving accusation - 4 steps -

		2

		100





in the cluster. Therefore, the key space required per node varies. In case all 100 certificates of the cluster are stored, we can calculate the maximum key space required per node, which equals the key space required per repository. We also assume that no more than 20 counter-certificates are issued per cluster; thus 51*20 in all clusters. The size of the CRL, under the assumption that one serial number is 32 bits, is 4.08KB. It is computed that the maximum key space required for the storage of certificates, counter-certificates, CRL and DCA parameters per server, repository and node are 29.66KB, 28.6KB, and 28.6KB, respectively.  It is apparent that the key space required is very small. This is one of the major advantages of our system.  


5   Conclusions


The proposed distributed CA-based PKI architecture addresses several key challenges in securing MANETs: (1) The physical vulnerability of the nodes in a hostile environment is addressed by employing the distribution of the CA’s functionality across multiple nodes and using threshold cryptography with proactive recovery; (2) the insecurity of the wireless links is dealt with the use of keys so that the information exchanged is authenticated and encrypted; (3) the storage constraints are addressed with the use of ECC (the key size is reduced) and the use of clusters (the number of keys stored is reduced); (4) the energy constraints are addressed with the use of an ECC-based cryptosystem and clustering to reduce communication overhead. Finally, the use of clustering allows the proposed PKI scheme to scale to large networks. The proposed architecture could be implemented using current smartcard technology [21].
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The goal of securing ad hoc wireless networks has generated much interest in the 
research community in recent years.  Password-based schemes for key establishment 
[1], [2], [3], [4], [5] avoid the need for a CA by carrying out authentication on the 
basis of a shared secret or password established prior to the deployment of the 
network.  A security scheme similar to Pretty Good Privacy (PGP) has been proposed 
for MANETs [6], [7], whereby certificates are issued by users based on the 
establishment of chains of trust.  This approach is well-suited to the ad hoc 
networking environment, but provides only probabilistic security guarantees and 
relies on transitive trust relationships, which may not be sufficient for some 
applications.  Another approach to securing MANETs is based on a distributed 
certification authority (DCA) [8], [9] to avoid the problem of a single point of failure 
found in traditional PKI architectures.  This approach provides deterministic security 
guarantees, but raises critical issues of scalability in practical MANETs. The concept 
of a distributed certification authority has also been applied to wired networks in a 
security architecture called COCA [10], which also provides fault tolerance.  
However, COCA cannot be directly applied to ad hoc networking environments 
where the behavior of the nodes is complicated by dynamic changes in wireless 
connectivity. In general, PKI architectures designed with wired networks in mind 
cannot be carried over straightforwardly to ad hoc networks [8].  

We propose a comprehensive approach to providing a distributed CA-based PKI 
in MANETs, which potentially allows the network size to scale to hundreds or even 
thousands of nodes.  The key elements of our approach are:  (1) a scheme for 
dynamically partitioning the network into smaller clusters of nodes based on nodal 
mobility; (2) a distributed certification authority with multiple CA servers employing 
threshold-based cryptography with proactive share recovery, and replicated key 
repositories assigned to each cluster; (3) the use of elliptic curve cryptography (ECC).  
Distributing CA servers geographically over the coverage area of the MANET makes 
it more difficult for an adversary to compromise multiple CA servers simultaneously.  
Further, the use of threshold-based cryptography with proactive share recovery forces 
an adversary to simultaneously compromise more than half of the CA servers before 
the distributed CA itself is compromised.  The distribution of the key management 
architecture over clusters reduces the storage requirements of the nodes and the CA 
servers, as well as the computational and signaling overhead.  Finally, the use of 
elliptic curve cryptography dramatically reduces the computations involved in 
cryptographic operations, making the PKI-based scheme feasible even for nodes of 
modest computational power.   

The main contributions of the paper are a practical architecture for implementing a 
distributed CA over a MANET via dynamic clustering and a detailed study of the 
computational gains achievable by using elliptic curve cryptography in the MANET 
setting.  The proposed architecture provides a highly secure PKI with a flat trust 
management architecture and deterministic security guarantees.  We discuss the 
advantages of the proposed architecture compared to existing schemes and how the 
architecture can resist a wide range of security attacks. 

The remainder of the paper is organized as follows.  Section 2 discusses the 
elements of the proposed distributed CA-based PKI architecture.  Section 3 focuses 
on the operational aspects of the cluster-based key management protocols within the 
proposed PKI architecture.  Section 4 provides a detailed analysis of the performance 



 

gains achieved by using ECC in the MANET setting.  Finally, the paper is concluded 
in Section 5. 

2   Distributed CA-based PKI Architecture 

2.1   Overview 

Figure 1 gives a three-tiered logical view of how the DCA architecture is organized. 
At the lowest tier individual nodes are organized into clusters using standard 
clustering schemes [11], [12], [13], [14]. The next tier consists of one or more 
certificate repositories in each cluster. The top tier consists of DCA servers. Although 
the servers and repositories are represented at higher levels from the other nodes, the 
proposed scheme is in fact a flat PKI trust hierarchy.  We next discuss the details of 
how these logical tiers are organized.  

The number of DCA servers should be a function of the network size and the 
degree of resilience required against attacks. We utilize a threshold based scheme to 
govern this. The number of servers is defined by n = 2k+1, where k is the maximum 
number of servers that can be compromised in a predefined period of time. Each 
server participates in issuing certificates and revocation certificates (counter-
certificates) and in periodically signing the certificate revocation list (CRL) that 
contains the serial numbers of revoked certificates from the entire network. The 
servers are assumed to be physically more secure and computationally more powerful 
nodes. The initial distribution of the CA servers is described in section 3.1. If a server 
is compromised but undetected, it is because it functions properly; in this case no 
measures are necessary. Once a server is compromised and detected, it cannot 
perform service as part of the DCA, until its share is recovered or renewed. It does not 
influence or affect the functioning of the cluster or the system. 

 
Fig. 1. DCA architecture (n=7, t – r = 2) 
 



Table 1. Certificates available to current and future participants of the system 

Available 
to: 

Cluster 
Server 

Other 
Server 

Cluster 
Nodes 

Non-
Cluster 
Nodes 

New Nodes 

Certificate X  Optional  
 

Optional 

Counter-
Certificate 

X X X X X 

Most recent 
CRL 

X X X X X 

 
Within each cluster, a fixed number t of nodes are designated as repositories that 

store the certificates of the nodes within the cluster, the certificates of all servers, the 
counter-certificates of the network nodes, and the most recent version of the CRL.  
The repositories might also become compromised and thus become unavailable (note 
that in case of compromised repositories nothing that was not already public is 
revealed). However, up to r repositories may be compromised within a cluster before 
a new node within a cluster is elected to serve as a repository.  This way, there will 
always be a minimum of t - r active repositories in each cluster.  

The use of clustering has two advantages. First, it reduces the storage requirements 
of individual nodes as each node needs to store at most the certificates of the other 
nodes in the same cluster rather than the entire network. Second, clustering reduces 
the communication overhead and increases the efficiency of certificate management 
as certificates are always available to each node at a local repository within a small 
number of hops. 

A key feature is that the CRL maintained in the repositories is timestamped, signed 
by the DCA, and updated every day. The corruption of the repositories is acceptable, 
since (1) corrupted certificates or counter-certificates will be detected via signature 
verification, (2) corruption that involves deletion of certificates and/or counter-
certificates, is also detected, as the most recent CRL can be checked. If the 
information provided is up-to-date, it is considered correct. If it is not, another 
repository is accessed. Hence, the existence of t - r active repositories in each cluster 
ensures that the cluster’s operation is never interrupted. 

2.2   Threat Model and Resistance to Attacks  

Our focus is on the compromise of DCA servers and certificate repositories and the 
effects they will have on the integrity and availability of certificate management 
services. We consider the following attack model to characterize the resiliency of our 
schemes. We denote an attack type by a triple (c, s, r), where c is the number of 
clusters involved, and s and r represent the number of DCA servers and repository 
copies, respectively, that can be compromised by an attack. 

The first attack we consider is the well-known theft of the secret key of the CA. 
This represents a single point of failure in a CA infrastructure and allows an attacker 
to forge certificates.  Our distributed implementation of the CA uses a threshold 



 

cryptography scheme to protect the secret key of the CA by distributing the secret 
(private key) among a number of servers (shares) and thus avoids the single point of 
failure vulnerability. This scheme can thus be used to deal with attacks of the form (n, 
k, r) where k is the maximum number of servers compromised out of a total number 
of n servers with n = 2k+1, and there is at most one DCA server per cluster. It can 
also deal with attacks of the form (p, k, r) where we have a total of n servers with n = 
2k+1 and p < n. In this case, some clusters may have more than one server. 

We next consider attacks that reduce the availability of certificate repositories. Our 
cluster-based distributed CA scheme can handle attacks ranging from (1, 0, r) to (1, s, 
r) by maintaining at least t replicas (where t > r) of the certificate repository within 
each cluster. The number b = t - r, is tunable so as to always guarantee b copies of the 
repository. In the case of (1, s, r), all s servers in a cluster are compromised and 
unavailable but as long as one replica of the repository is functioning we can provide 
all the necessary certificate services including the addition of a new member and the 
distribution of its certificate.  

Another source of vulnerability in a CA system has to do with the authentication 
and validation of requests to issue certificates.  In our scheme, this function is 
performed by a Registration Authority (RA). A common vulnerability is that the RA 
can be fooled into believing B when B impersonates A. We assume that the RA (1) 
does not belong to the MANET but is part of a wired network; (2) can communicate 
with the servers of the DCA securely; (3) does not know the private key of the DCA. 
The RA will verify the credentials of a node and if satisfied, contact at least k+1 
servers and request issuance of a certificate. This model reflects the practical 
procedures and work scenarios present in many environments that use wireless 
networking. For example, before troops go out to the battlefield with their wireless 
devices, they will be required to report to and register at the RA.  Upon successful 
verification of credentials, a wireless device with a private key and an associated 
certificate with the public key may be issued to a soldier to enable further 
communications in the battlefield. 

Passive attacks such as eavesdropping of wireless communications are not a 
concern for us as any information gathered from such activities is public knowledge. 
Finally, the integrity of certificates through active tampering can be verified through 
the use of digital signatures. 

2.3   Elliptic Curve-based Distributed Certification Authority 

We propose a distributed certification authority based on threshold cryptography and 
proactive secret sharing [15], [16]. The traditional public key cryptosystem employed 
in [15], [16] is impractical for MANETs, as it imposes high computational and 
communication overhead. Therefore, we propose the use of ECC [17] to reduce this 
overhead for the mobile devices. The DCA consists of n = 2k+1 servers that will 
share a secret value x, through a (k +1, n) threshold scheme [18]. Any (k + 1) servers 
are required to combine their shares in order to sign a message, while the adversary 
who wants to learn or destroy its secret signature key has to compromise more than k 
servers during a single time period. A broadcast communication channel is assumed. 
The goal is to prevent the adversary from learning or destroying the secret x.  



Time Periods and Update Phases. We assume that time is divided into time periods, 
during which the servers can perform the group signature operation. Each period is 
determined by a common global clock and its duration is specified as required (five 
days, two weeks, etc.). There are short update phases for the re-randomization of the 
original key. Previous shares become useless and should be erased, since combined 
information about two periods of the system could enable the adversary to break the 
system. 

Each update phase consists of: 1) private key renewal, which renews the means of 
encryption and authentication among the servers; 2) lost share detection and recovery, 
which checks the current shares of the servers and reconstructs the corrupted shares, if 
any; and 3) share renewal, which re-randomizes the secret key x. The resolving 
accusation protocol [15] is implemented when two servers’ claims are contradictory at 
specific phases of the protocols. This protocol might be completed in 3 or 4 steps, 
depending on the state of the transactions. 

Cryptographic Tools. We assume that the signature scheme used by the DCA is 
Elliptic Curve El Gamal signatures, which is discussed in more detail in section 4. We 
assume that Feldman’s verifiable secret sharing (VSS) scheme [19] is used for the 
sharing of the CA’s key among the n participating servers. Each server has two pairs 
of keys, one for encryption and one for signature that will provide both private and 
authenticated communication. Table 2 shows the keys and parameters of the CA that 
are known to different elements of the system. 

3   Operational Aspects of the Proposed Architecture 

The notation used in this section is shown in Table 3. 

3.1   Network Initialization 

The proactive secret sharing system that we adopt for our DCA assumes an 
initialization phase, during which (1) the secret key of the CA is generated and shared 
between the servers, (2) each server generates its pair of authentication and encryption 
keys and publishes their public values to the group of servers, (3) an initial set of 
nodes is deployed.  For simplicity we shall assume that the nodes form clusters, with 
one CA server per cluster.  After the initialization phase, nodes may migrate between 
clusters and new nodes may join or leave the network. 

3.2   Activating a Node 

In the proposed scheme when a new N node wants to join the mobile network, it must 
carry out the following steps. 



 

Table 2. Parameters of the DCA available to current and new participants of the system 

Available to: Server i All 
Servers 

Current 
Nodes 

New 
Nodes 

System parameters X X X X 
Public key of DCA Y X X X X 
Partial verification keys X X   
Share xi of the secret x X    
Server own signature key X    
Server signature verification key X X X X 
Server encryption key X X X X 
Server decryption key X    

 

A1. Node N obtains certificate cN 
A1.1. N contacts RA 
A1.2. RA verifies credentials of N and securely contacts k+1 CA servers 
A1.3. (k+1) CA servers issue cN for N and send it to RA 
A1.4. RA gives cN and cDCA to N  

A2. Node N joins cluster i  
A2.1. N sends cN to Ri_w  
A2.2. N requests Ci , CC, CRL from Ri_w 
A2.3. Ri_w broadcasts cN 
A2.4. Ri store cN 
A2.5. ji optionally store cN 

 
In step A1, the node that wants to enter the network contacts a fixed Registration 

Authority. The RA will verify the credentials and if satisfied, contact at least k+1 
servers and request issuance of a certificate. Then, k+1 servers will perform the 
distributed signature operation protocol to issue a certificate for the new member. The 
issued certificate will be sent to the RA, the new member will obtain it and join the 
network. The new member can join any cluster of the network since its certificate’s 
signature can be verified by any server or node (the public key of the DCA is stored 
by all network participants). 

Table 3. Notation used in this section 

DCA set of CA servers Si set of servers of Ki
K number of clusters Ci set of certificates of nodes in Ki
R number of repositories  Ri set of repositories in Ki
RA Registration Authority  ci_w certificate of ji_w  
CC set of counter-certificates cci_w counter-certificate of ji_w
cDCA certificate of DCA Si_w server w of Ki  
J number of nodes Ri_w repository w in Ki
ji number of nodes in Ki ji_w node w in Ki
Ki cluster i N a new node  
 



The introduction of a newly certified node in a cluster is described in step A2. The 
node has to contact one of the repositories of the cluster it wishes to join in order to 
publicize its certificate, which will be broadcast to the current nodes and repositories 
of the cluster. The node can obtain the certificate of any node in the cluster by 
contacting a local repository. Usually the certificates that are most likely to be used 
should be cached. The local storage of certificates makes communication within a 
cluster efficient, even when encryption is needed. Moreover, the repository will 
provide the new node with the most recent version of the certificate revocation list 
(CRL) containing serial numbers of revoked certificates from the entire network 
signed by the DCA and the counter-certificates issued since the last update of the 
CRL. 

3.3   Deactivating a Node 

The certificate revocation process takes place as described by the following protocol. 
 
D1. if m nodes of Ki want cci_w to be issued 

D1.1. m nodes of Ki send signed accusations about ji_w to at least k+1 CA 
servers 

D1.2. k+1 CA servers issue cci_w and add the serial number of  cci_w to the 
CRL 

D1.3. cci_w is broadcast to the network 
D1.4. Si_w, Ri_w, ji_w store cci_w  
D1.5. CRL is renewed and timestamped by the DCA periodically 
D1.6. Si_w, Ri_w, ji_w store CRL  

D2. if node ji_w  wants to request revocation of its own certificate  
D2.1. ji_w sends a signed request for the issuing of cci_w  to at least k+1 CA 

servers  
D2.2. follow steps D1.2 to D1.6 

 
Revoking a certificate for a given node can be initiated either by m users 

belonging to the same cluster, where m can vary depending on the application of the 
network, or by a node that wants to revoke its own certificate. When the revocation 
process is initiated by m users requesting revocation of node’s ji_w certificate, their 
request needs to be sent to at least k+1 servers. As a result, the DCA issues a counter-
certificate and adds a serial number of the revoked certificate to the global CRL. The 
revocation certificates are broadcast to all nodes of the network, immediately after 
being issued. The storage of the counter-certificates is obligatory. All the servers and 
repositories keep the CRL that contains serial numbers of revoked certificates from 
the entire network. CRLs are renewed by the DCA every day or more often if 
necessary and are broadcast to all nodes in the network.  

The revocation process may also be initiated by a node that wishes to revoke its 
own certificate either because it wants to leave the mobile network, or because its 
private key has been compromised. In this case, the node sends a signed request to at 
least k+1 servers to enable the issuing of its revocation certificate. 



 

3.4   Node Migrations across Clusters 

A highly mobile node ji_w might leave source cluster Ks and enter destination cluster 
Kd. The following protocol describes the protocol to manage smooth node migrations 
across clusters.  

 
M1. Node ji_w leaves source cluster Ks 

M1.1 if the mobility management protocol indicates that the node ji_w 
permanently leaves the source cluster Ks, ji_w deletes the certificates 
Cs of the nodes in Ks 

M1.2 else, go to step M2.  
M2. Node ji_w joins destination cluster Kd 

M2.1. ji_w sends its certificate ci_w to repository w of Kd (Rd_w) 
M2.2. ji_w requests the certificates Cd of the nodes in cluster Kd from Rd_w 
M2.3. Rd_w broadcasts ci_w 
M2.4. the repositories of Kd (Rd) store ci_w 
M2.5. the nodes of Kd (jd) optionally store ci_w 

 
When node ji_w leaves source cluster Ks and enters destination cluster Kd, it does 

not know the certificates of the nodes in cluster Kd. Therefore, it contacts any of the 
cluster Kd repositories (Rd_w) in order to obtain them. At the same time, node ji_w is 
introduced to the cluster by sending its certificate to Rd_w. Besides that, node ji_w can 
send its certificate to each node it corresponds with and the certificate can be 
authenticated using the public key of the DCA that each node in the network knows. 
The certificates of the nodes of the source cluster Ks that are stored in node ji_w are 
deleted, unless the mobility management protocol predicts that the node is 
temporarily moved to a new cluster. In this case, the node can be programmed to 
delete the certificates of cluster Ks when it has moved to a third cluster Kh. Another 
option is to keep the stored certificates if enough storage space is available. 

3.5   Intra-Cluster Communications 

Communication inside a cluster is relatively fast, regardless of whether the 
communication is encrypted or authenticated. This is because each node caches (1) 
the most frequently used certificates of the nodes within the cluster, (2) the revoked 
certificates from the entire network and (3) the most recent version of the CRL. 
Consequently, the nodes infrequently request certificates or counter-certificates from 
the repositories, hence reducing the communication overhead. The cluster’s CA 
server periodically informs the cluster about the new network counter-certificates 
when they are issued and the updated CRL. Repositories broadcast the certificates of 
new nodes. 



3.6   Inter-Cluster Communications  

The way inter-cluster communication takes place depends on whether it needs to be 
authenticated or encrypted. Since the public key of the DCA is known to all the 
participants of the system, the certificate of any node can be verified by any other 
node. Thus, the authentication has very low communication overhead. On the 
contrary, when an encrypted message needs to be sent, the sending node does not 
know the public key of the receiving node, because it has only cached certificates of 
the same cluster. Then, the required certificate has to be requested from one of the 
repositories of the cluster to which the receiving node belongs. The knowledge of the 
counter-certificates of the whole network and the most recent CRL is an advantage, 
since all the nodes are aware of all the revoked certificates and as a result a revoked 
certificate will never be requested. This reduces the communication overhead. The 
reply that is sent contains the requested certificate. However, it should be noted that 
node, whose certificate is requested, might reply to the request route and might send 
the certificate by itself.  

3.7   Cluster splitting and merging  

The network size and distribution of nodes may change dynamically, which affects 
the number of clusters as defined by the cluster management protocol [11], [12], [13], 
[14].  For the purposes of the proposed DCA-based PKI architecture, we shall assume 
the basic functions of a generic cluster management protocol, i.e., cluster splitting and 
merging operations. 

If the network size increases and new clusters are formed, the number of network 
clusters may become larger than the number of DCA servers, since the number of 
DCA servers is fixed n = 2k+1. In this case, not all clusters will contain one CA 
server. Assume, for example, that cluster i splits into two clusters i1 and i2. The CA 
server of cluster i will become part of a cluster of higher density, for instance i1. 
Hence, cluster i2 will not contain a CA server, but its nodes will be mapped to the 
server of cluster i1. The key issue is that the CA servers are distributed into the 
network. However, the cluster i2 will need to elect t repositories. Any of the cluster 
nodes that have never been accused of misbehavior can serve as a repository.  

If the network size decreases and some clusters are merged, the number of  
network clusters may become smaller than the number of DCA servers. In this case, a 
cluster that results from the merger of two clusters will contain the CA servers and 
repositories of the original clusters.  

4   Performance Gains using ECC 

Having presented the distributed CA-based PKI scheme, we now discuss the 
performance improvement of the scheme through the use Elliptic Curve cryptography. 
ECC is appropriate for mobile nodes with limited computational power because it 
requires smaller keys and involves operations on smaller integers than in standard 
systems. 



 

4.1   Cryptographic Tools 

A sufficiently large prime p, an Elliptic Curve E over GF(p) with a total number of 
points N and a generator of the group of points on the elliptic curve P are chosen. Let 
c be a certificate to be signed. The above settings are publicized. The private key can 
be any number x, where where 1≤ x≤ #E (GF (p))-1. Here, #E (GF (p)) denotes the 
number of points on the curve. Its corresponding public key is a point Y = x*P. 

The signature scheme used by the DCA is Elliptic Curve El Gamal signatures. For 
the elliptic curve-based system we choose to implement the Elliptic Curve Digital 
Signature Algorithm (ECDSA) signature scheme for signatures since it is a standard 
and the Elliptic Curve El Gamal encryption scheme for encryption. We have chosen a 
key size of 160 bits (i.e., p, q are 160 bits long for both the EC El Gamal and 
ECDSA), which is equivalent to a 1024 bit key in traditional public-key 
cryptosystems.  A 160 bit key size provides a sufficient level of security for most 
applications, while placing a reasonable computational burden on the nodes of a 
MANET.  

4.2 Computational and Time Requirements of the DCA 

A detailed analysis of the computational and communication overhead for each 
protocol of the elliptic curve-based DCA scheme and the traditional public key 
system employed in [15], [16] is given in [20]. The overhead depends on the values of 
the variables k, β , m, where k = (n-1)/2 and n the number of servers, β  the number 
of servers of faulty shares that are recovered (during the recovery of lost shares 
protocol) and m the number of servers that misbehaved during the execution of the 
share renewal protocol. The formulas derived in [20] show that the number of 
computations (of modular multiplications) to be performed and the traffic generated is 
essentially proportional to k2. 

To illustrate the practicality of the elliptic curve-based DCA scheme on a large 
network, we shall consider a network of 51 servers (k = 25).  We choose β  and m to 
be equal to 2.  We shall assume that each cluster contains approximately 100 nodes.  
As a result, the network contains about 5100 nodes and 51 servers.  

To evaluate the elliptic curve-based system, it is crucial to compare it with the 
original, traditional public key system. Let EC-DCA denote our elliptic curve-based 
DCA scheme and T-DCA denote the original, traditional public key system. For the 
EC-DCA system, the results were derived as the number of modular multiplications 
with a modulus of 160 bits. For T-DCA, the results were derived in terms of the 
number of modular multiplications with a modulus 1024 bits. However, the time 
required to perform a modular multiplication with modulus of the size of z bits in 
software is proportional to the z2. Thus, modular multiplications with modulus of the 
size of 160 bits can be normalized to modular multiplications for a 1024 bit modulus, 
to simplify the comparison.  

Table 4 presents the comparison of the computations required by each server for 
each protocol of the scheme when n = 51. Here, the unit of computation is one 
modular multiplication, where the modulus is determined by the key size. The various 



types of computation involved in the cryptosystem are presented in terms of the 
number of equivalent modular multiplications required. We note that each server does 
not perform the same number of computations. Since not all of the servers contribute 
to the distributed signature operation, not all the servers need to recover their shares.  
Also, some servers may not participate if they are accused of cheating. Thus, we shall 
consider the maximum number of computations that have to be performed per server. 
Even though not all the servers will need to perform the maximum number of 
computations, the time needed to finish running a given protocol is determined by the 
servers that perform the most computations.  

The number of computations that each device has to perform can be translated into 
the time that the device needs to perform those computations, taking into account the 
computational power of the present mobile devices. At present, smart cards can 
perform up to 3000 modular multiplications per second with the size of the modulus 
being 1024 [21]. Based on that, we can calculate how much time a server needs to 
perform the computations needed for each protocol. Table 4 presents a comparison of 
the maximum number of computations per server and the time required for the 
following protocols: (1) Distributed Signature Operation, (2) Private key renewal, (3) 
Lost share detection, (4) Recovery of lost shares, (5) Share renewal, (6) Resolving 
accusations - in 3 steps -, (7) Resolving accusations - in 4 steps -. 

4.3 Communication and Storage Requirements 

The communication overhead imposed by the proposed scheme is shown in Table 5. 
As the majority of involve messages that are broadcast, the number of messages sent 
differs from the number of messages received and thus processed within the DCA. 
The transmission requirements are manageable for 51 servers. The values of the 
variables involved are discussed in Section 4.2. 

The key space is partitioned with the use of clusters and the use of small key sizes, 
since the system is elliptic curve-based. We calculate the key storage requirements for 
a network of 51 servers (k=25), 51 clusters and approximately 5100 nodes (about 
j=100 nodes per cluster). In particular, we compute the key space required for the 
storage of certificates, counter-certificates, CRL and DCA parameters per server, 
repository and node. Nodes choose to store as many certificates of the same cluster’s 
nodes  as  needed,  whereas  the repositories  have to store  the certificates of all nodes  

Table 4. Comparison of the max computations per server and the time required for each 
protocol (n = 51) 

Max computations (modular multiplications) per server 
Protocol 1 2 3 4 5 6 7 
EC-DCA scheme 13,314 8,574 17,578 4,694 16,915 164 2,221 
T-DCA scheme 114,146 36,240 72,480 88,563 349,777 3,072 39,961 

Time (in seconds)  
Protocol 1 2 3 4 5 6 7 
EC-DCA scheme 4.44 2.86 5.86 1.56 5.63 0.05 0.74 
T-DCA scheme 38.04 12.08 24.52 29.52 116.59 1.02 13.32 



 

Table 5. Traffic generated within the DCA for each protocol (n = 51) 

Protocol Messages sent Messages received 
Distributed Signature 78 3901 
Private key renewal 51 2550 
Lost share detection 102 5100 
Recovery of lost shares 147 4900 
Share renewal 102 5100 
Resolving accusation - 3 steps - 2 100 
Resolving accusation - 4 steps - 2 100 

 
in the cluster. Therefore, the key space required per node varies. In case all 100 
certificates of the cluster are stored, we can calculate the maximum key space 
required per node, which equals the key space required per repository. We also 
assume that no more than 20 counter-certificates are issued per cluster; thus 51*20 in 
all clusters. The size of the CRL, under the assumption that one serial number is 32 
bits, is 4.08KB. It is computed that the maximum key space required for the storage 
of certificates, counter-certificates, CRL and DCA parameters per server, repository 
and node are 29.66KB, 28.6KB, and 28.6KB, respectively.  It is apparent that the key 
space required is very small. This is one of the major advantages of our system.   

5   Conclusions 

The proposed distributed CA-based PKI architecture addresses several key challenges 
in securing MANETs: (1) The physical vulnerability of the nodes in a hostile 
environment is addressed by employing the distribution of the CA’s functionality 
across multiple nodes and using threshold cryptography with proactive recovery; (2) 
the insecurity of the wireless links is dealt with the use of keys so that the information 
exchanged is authenticated and encrypted; (3) the storage constraints are addressed 
with the use of ECC (the key size is reduced) and the use of clusters (the number of 
keys stored is reduced); (4) the energy constraints are addressed with the use of an 
ECC-based cryptosystem and clustering to reduce communication overhead. Finally, 
the use of clustering allows the proposed PKI scheme to scale to large networks. The 
proposed architecture could be implemented using current smartcard technology [21]. 
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