
Improving VPN Performance over
Multiple Access Links

Jack Brassil, Rick McGeer, Raj Rajagopalan, HP Laboratories,Andy Bavier, Princeton University
Larry Roberts, Anagran Inc.,Brian Mark, George Mason University,Stephen Schwab, Sparta Inc.

Abstract— To improve the performance of VPN con-
nections we investigate how the bandwidth of multiple
access links can be aggregated with inverse multiplexing
to create a single, higher capacity logical communication
link. But achieving the maximum possible aggregated
TCP throughput becomes extremely challenging if the
underlying links either use different technologies (e.g.,
DSL, cable modem) or suffer different or time-varying
communication characteristics (e.g., available bandwidth,
packet loss rate).

To maximize VPN throughput we have constructed a
system that combines two distinct innovations. First, we
continuously measure the communication characteristics
of the underlying component links in our aggregate and
dynamically assign packets to each link in proportion to
its available capacity. Second, we modify TCP conges-
tion control across the inverse-multiplexed access hop to
avoid rate decreases normally initiated by the delayed
acknowledgments often triggered when using legacy TCP
on multiple heterogeneous paths. We describe the system’s
implementation, the test environment we built onEmulab,
and show that when access links form the communi-
cation bottleneck in the end-to-end connection we can
significantly increase VPN performance over conventional
approaches.1

I. I NTRODUCTION

Many Small Office/Home Office (SOHO) workers are
required to use enterprise-wide Virtual Private Network
(VPN) software to access enterprise networks securely.
A common complaint heard from VPN users is that
remote access performance is often poor. More pre-
cisely, users complain about slow connection establish-
ment, relatively poor throughput when communicating
to enterprise systems (relative to access from within the
intranet), and reduced internet access throughput via the
VPN (relative to direct internet access).

One of the many reasons VPN-based systems suffer
low throughput performance is that access links con-
tinue to remain a bandwidth bottleneck in the end-to-

1This work was supported in part by DARPA Contract N66001-
05-9-8904.

end connection. VPN tunneling often restricts packets to
follow a single path, even in cases where multiple access
links are available. Yet with falling costs the prevalence
of multiple internet access links at a single site (or res-
idence) is growing; in some cases to maximize security
and minimize enterprise liability users are required to
maintain separate links; one for enterprise access and
one for internet access or personal use. In many such
cases one link remains idle even while the second link
serves as the choke point for the active VPN connection.
But for those cases where additional links may be used,
we have developed new techniques to permit users of
existing, unmodified VPN software to use multiple links
to improve their performance.

Our system uses inverse multiplexing at the IP layer
to aggregate access links. Inverse multiplexing is a
conventional technique for aggregating the bandwidth
of multiple communication links, and it can be per-
formed at any of several protocol layers (e.g., physical,
link, network). In conventional settings, the underlying
links used have been similar or identical (e.g., bonding
of multiple T1s). But the increasing prevalence and
lowered cost of diverse access network technologies
(e.g., DSL, cable, fiber) compel us to investigate the
performance of aggregating the bandwidth of links with
dramatically different communication characteristics to
boost VPN performance.

Towards this goal in an earlier paper we introduced
NATALIE [1], a Network-aware traffic equalizer. NA-
TALIE combines an arbitrary set of network inter-
faces and schedules IP packet transmissions over those
interfaces in a weighted round-robin (WRR) fashion.
To maximize throughput NATALIE measures the com-
munication characteristics of the underlying links and
dynamically adjusts its scheduler to assign packets to
each link in proportion to its available capacity.

VPN software can typically be configured to use ei-
ther TCP or UDP. To address a common and challenging
VPN performance problem we focus on the case of
a single TCP flow, and how that flow behaves when

split over multiple, heterogeneous links. Considerable
previous research [2], [3], [4] has shown that inverse
multiplexing a single TCP connection over heteroge-
neous links to obtain aggregated bandwidth is difficult;
one can naively attempt to combine the bandwidths
of 2 different links and realize even less bandwidth
than the bandwidth of the slower of the two links
[5]. Splitting TCP segments belonging to a flow can
and does result in out-of-order packet delivery that
can significantly decrease TCP throughput; sufficiently
misordered packets trigger timeouts and unnecessary
retransmission requests by the TCP receiver. In our
earlier paper we have showed that using NATALIE’s
WRR algorithm can substantially increase the diversity
of the underlying links where gains can be achieved.

Nonetheless, even with adaptive WRR scheduling
if we allow the component links to have sufficiently
different characteristics (e.g, propagation delay), legacy
TCP itself becomes the performance barrier. The TCP
sender congestion window limits how fast a sender
can inject packets into the network, and consequently
limits throughput. The window size is adjusted in re-
sponse to measured network conditions. When an out-
of-order packet arrives, the TCP receiver generates a
duplicate Ack with a sequence number that has been
acknowledged previously. If the number of duplicate
acks reaches a fixed threshold (e.g., 3 packets), a sender
usingFast Retransmitinfers that a packet was lost and
retransmits it. Therefore, transmitting packets from the
same TCP connection over paths with different delays
misleads the sender into shrinking the congestion win-
dow unnecessarily, reducing throughput dramatically.
TCP Selective Acknowledgment (SACK) allows more
detailed feedback of which out-of-order packets are re-
ceived and hence reduces unnecessary retransmissions.
However,SACK does not address the problem caused
by loss rate variation across different links.

Hence, as a result of the design of conventional
TCP congestion control mechanisms, VPN traffic is
often unable to take advantage of bandwidth otherwise
made accessible by multi-path networking [17]. In this
paper we present the design of a system that combines
both inverse multiplexing and a new TCP congestion
control mechanism –TCP-Explicit Rateor TCP-ER–
that is better suited for operation over multiple paths. We
focus on the challenging problem of splitting a single
TCP connection across multiple, heterogeneous links
– a common VPN configuration. We note that several
other research groups have shown that modifications
of TCP can help maintain performance in multipath

environments [24], and some of these approaches are
likely to be useful in the VPN setting we consider as
well.

The remainder of this document is organized as fol-
lows. Section II presents the design and implementation
of the traffic equalizer, the modified TCP congestion
control in TCP-ER, and the testbed used to develop
our software and test its performance. The next section
describes the empirical system performance when the
characteristics of the underlying communication links
are known. Section IV discusses observations based
on our performance results and identifies approaches
to measuring the parameters of links in our aggregate.
Section V examines related work, and the final section
summarizes our work.

II. BACKGROUND

A. NATALIE

NATALIE is based on a modified version of a Linux-
based traffic control kernel module called Traffic Equal-
izer (TEQL) included in modern Linux distributions.
TEQL assigns each incoming packet to one ofN
physical network interfaces using a deterministic round-
robin discipline. With NATALIE, the fraction of packets
assigned to the each link (i.e., weight) can be assigned
based on known parameters such as the underlying
link bandwidths. NATALIE permits dynamic, real-time
adjustment of link weights on the installed module by
user-level programs. The module reads weight param-
eters from the/sys/module/NATALIE/parameter/weights
directory, resets a packet counter for each link, and starts
distributing packets according to the new weights. In
this way, a user program, usually with root privileges,
can dynamically adjust weights as network conditions
change. Through this dynamic weighting NATALIE
maintains high throughput as the controlling application
measures the available bandwidth on each link, and
adjust weights in proportion to bandwidth adjustments.

B. Testbed

Emulab [8] was chosen to test the performance of
a TCP connection over multiple links with NATALIE.
Emulab is a publicly available time- and space- shared
network emulator, where arbitrary network topologies
can be constructed, and link loss, latency, bandwidth
can be easily user-defined and changed.

Figure 1 depicts our test topology where two end
systems are directly connected with multiple links. Link
emulation is performed by a node runningdummynet
that is transparent to the end systems. Each end system

Fig. 1. A simple Emulab test topology.

is an Intel 64-bit Xeon 3.0 Ghz machine running the
Redhat Linux Fedora Core 4 (2.6.11 kernel) operating
system. These machines provide sufficient computing
and I/O performance to ensure that our experiments are
unaffected by background traffic generators and network
measurement tools required for our experiments. We
set thetcp no metrics save option to ensure memoryless
TCP operation from experiment to experiment. Though
we are focused on access link settings where edge prop-
agation delays are typically small, even small delays
must be considered for performance optimization. We
anticipate considerably higher transmission speeds in
future access networks, and our aggregate transmission
speed in our experiments is up to 300 Mbs. Hence even
access networks with propagation delays as low as 5 ms.
require us to increase TCP memory size to ensure that
the sending window size was not limited by the system
bandwidth-delay product. In each of our experiments we
set the following capacities at both sender and receiver:

net.core.rmem default = 111616
net.core.rmem max = 1310710
net.core.wmem default = 111616
net.core.wmem max = 1310710
net.ipv4.tcp wmem = 4096 16384 1310720
net.ipv4.tcp rmem = 4096 87380 1747600

While setting per connection maximum window sizes
to approximately 1 MB does not guarantee that our
system will not be window bound, it does not appear to
have been a constraint in any of the results presented
here.

C. TCP-ER: Explicit Rate-Aware TCP

TCP-ER is a modified TCP stack that differs in two
significant ways from a conventional TCP stack. First,
the system implements an end-to-end QoS signalling

protocol to communicate rate information between end
systems (e.g., source and receiver) and network routers
(if present). Second, a modified TCP congestion control
algorithm allows a sender to exploit knowledge of
internal network behavior (as communicated via the
signalling protocol) to send at an instantaneous rate that
can be supported by the network.

TCP-ER was originally developed to operate in con-
junction with explicit rate capabilities of the Anagran
FR-1000 flow router [6]. In addition to operating as a
conventional IP best-effort router, the FR-1000 provides
a number of special services to enhance the quality
of service offered to clients equipped with TCP-ER
protocol stacks. The router natively identifies, classifies
and routes flows. It also supports a number of advanced
traffic management capabilities, including the ability
to offer transport types other than traditional best-
effort traffic, includingavailable rateandmaximum rate
service.

Anagran routers provideexplicit rate feedback to
clients. That is, a router continuously informs clients of
the instantaneous bandwidth available for them to use on
each active connection. A client equipped with TCP-ER
is capable of exploiting the availability of an end-to-end
rate information sent through a network of flow routers.
In contrast, a legacy TCP client dynamically uses TCP
state information to infer the bottleneck capacity of an
end-to-end path, and adjusts its transmission rates to that
available bandwidth.

TCP-ER uses an in-band signaling protocol known
as TIA-1039 to explicitly establish the end-to-end QoS
parameters required for each new flow. This protocol
has been standardized by the TIA Satellite QoS group
[7] as a preferred means to convey QoS parameters in
an IP setting. Figure 2 depicts the structure of the header
used in IPv6 to communicate rate information between
end systems and routers.

We have developed a version of TCP-ER for X86-
based PCs running the Fedora Core 4 operating system.
TCP-ER congestion control supports a “fast-start” op-
tion invoked by a Linux ioctl() system call. When “fast-
start” is invoked for a connection the TCP slow start
algorithm is disabled, and the sender window size is
instead determined by the rate specified by the received
explicit rate parameters. This permits, for example, the
sender’s transmission rate to immediately jump to the
bottleneck bandwidth speed in a network in the absence
of cross-traffic. Hence, very common short duration
flows realize far better TCP performance than would
be the case with a conventional system implementing

slow-start and congestion avoidance phases during rate
increases. TCP-ER also exhibits excellent performance
relative to legacy TCP in the presence of network
impairments.

In networks where packet losses are frequent (e.g.,
wireless LANs) the sender receiving rate feedback can
distinguish between loss due to congestion and loss due
to link impairments and consequently not reduce rates in
response to any loss event. Further, if rates are reduced
by congestion then the slow-start phase of the rate re-
covery period can again be avoided. Avoiding slow start
and congestion avoidance phases in the presence of high
propagation delay (e.g., satcom) is particularly valuable,
as it enables the sender to avoid idling during the long
round-trip waits for transmissions to be acknowledged.

As with other conventional TCP stacks, the TCP-ER
stack uses selective acknowledgment and retransmission
(SACK) for error recovery on QoS-enabled connections.
In the absence of ER information from a receiver (or
flow router) the sender’s TCP-ER stack simply operates
in a conventional TCP congestion control fashion (i.e.,
with slow start). In a end-to-end connection using TIA-
1039 signalling, both sender and receiver are required
to run TCP-ER; no flow routers are required in the
path. A more common configuration, however, is for
end systems to make use of nearbyproxies to provide
the TCP-ER functionality. In this way enhanced TCP
service can be incrementally added to a large number of
end systems (e.g., all systems on a subnet or LAN) using
any operating system and/or TCP stack without the need
for the end system operating systems to be modified.
In this paper, all test results we report are taken from
tests where either source and destination TCP-ER based
systems are connected with no intervening flow routers,
or source and destination are each connected to a
local proxy, and both proxies are connected without
intervening flow routers.

We next describe how we envision combining the
multipath routing of NATALIE with TCP-ER in a typi-
cal access setting. Let’s consider the case of a single
provider for access links. A multihomed router (or
comparable customer premise edge device) is connected
to 2 or more access links. The links are terminated in a
single device at the provider’s point-of-presence. Hence,
the implementation is similar to a common configuration
of hardware bonding technology. Since our system is
single hop, a sender has visibility to all traffic on the
hop. Hence, the sender can initiate a flow at any rate up
to the total capacity of the aggregate links. We note that
many other configurations are possible. For example,

Fig. 2. IPv4 QoS signaling header extension.

in an asymmetric system where downstream bandwidth
greatly exceeds upstream bandwidth, some applications
(e.g., peer-to-peer file sharing) might desire to aggregate
the upstream links but not aggregate the downstream. In
such a configuration no provider equipment is required
to terminate an aggregated connection. Indeed, all IP
packets traversing different links are reassembled into
a single TCP flow at the receiver in all cases. Hence,
for the case where different access network providers
are used, no provider equipment is required to support
upstream aggregation.

III. PERFORMANCEEVALUATION

In this section we present throughput results for a
single TCP connection using NATALIE to aggregate the
bandwidth of three links on the topology of Figure 1.
In particular we present a comparison of the perfor-
mance of the system usingTCP-ERversusTCP-BIC,
the default TCP congestion control algorithm in our
FC4 systems. In each experiment communication link
parameters (i.e., link transmission speeds, propagation
delay, packet loss) are fixed, and no background traffic is
present. All throughput measurements we present were
obtained using Iperf v2.02 [11] for memory-to-memory
transfer durations of at least 20 seconds. We have
studied the operation of our system with the widely used
OpenVPN [14] open-source VPN solution for Linux
systems. In these tests we have consistently found that
OpenVPN’s reduction in file transfer throughput is quite
negligible. Hence we have chosen to exclude its use
in the set of experiments reported here. We are keenly

aware, however, that poorly written or misconfigured
VPN software, as well as overloaded VPN servers are
the basis of a significant amount of the performance
problems reported by users. We will leave the study
of VPN software and operational systems for future
research work.

In the remainder of this section we seek to answer
questions such as the following: How much higher
throughput performance can we expect using TCP-
ER rather than legacy TCP in a multi-link access
setting? How should link weights be set to maximize
performance across links? How much more diversity
in component link parameters and characteristics (e.g.,
transmission speed, packet loss) can be tolerated while
still achieving aggregation gains in TCP-ER?

Let’s begin with the simplest case, where each of
the 3 component links have identical communication
parameters. Let the link weights bewi, i = 1, 2, 3,
and the fraction of packets assigned to theith link
be wiP3

i=1 wi
. Also, let T (w1, w2, w3) be the steady-state

TCP throughput achieved by the system with weights
w1, w2, w3.

Table I shows the throughput performance of a legacy
TCP connection split using NATALIE over 3 100 Mbs
links, each with no packet loss and negligible propaga-
tion delay. We consider weights in the setwi ∈ {2, 3, 4}.
Note that if the 3-tuple of weights is< 2, 3, 4 > the
fraction of packets assigned to each of the links are
2
9 , 1

3 , 4
9 , but if the 3-tuple of weights is< 2, 4, 4 >

the fraction of packets assigned to each of the links
are 1

5 , 2
5 , 2

5 . Each link is independently capable of
achieving a throughput of approximately94 Mbs, so
we can estimate that the aggregate of three links would
have a maximum possible throughput of approximately
3∗94 Mbs = 282 Mbs. As expected, this result is very
nearly achieved byT (2, 2, 2), where links are equally
weighted.

Note how throughput performance is sensitive to link
weights; for example, T(2,2,4) is about one-third of
T(2,2,2), indicating that improperly weighting even a
single link by a factor of 2 can considerably reduce
aggregate throughput. As we will see this sensitivity
only increases when links suffer impairments such as
delay and loss.

Now let’s consider an aggregate of three links with
bandwidths of 100, 75 and 50 Mbs. Suppose we add a
small unidirectional packet loss rate (0.005) and a small
propagation delay (5 ms.) to each link; though these
transmission rates are high for access links the loss and
delay might roughly correspond to what would be found

w1 w2 w3 Throughput (Mbs)
2 2 2 280
2 2 3 220
2 2 4 188
2 3 2 220
2 3 3 251
2 3 4 211
2 4 4 235
3 3 4 235
3 4 3 234
3 4 4 258

TABLE I

THROUGHPUT FOR3 AGGREGATED100 MBS LINKS AS LINK

WEIGHTS CHANGE.

if access links were of similar technology (e.g., DSL)
and offered by a single access provider. We will assume
that the packet losses are independent from packet to
packet and link to link, and take this to be the case
throughout the remainder of our work.

 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60

 40
 50

 60
 70

 80
 90

 100
 110

 60 70 80 90 100 110 120 130 140
 0

 10

 20

 30

 40

 50

 60

Throughput (Mbs)

w_2

w_3

Throughput (Mbs)

Fig. 3. The throughput of 3 aggregated links with speeds 50, 75,
100 Mbs using legacy TCP with fixed weightw1 = 50 and variable
weightsw2 andw3.

Figs. 3 and 4 depicts the throughput performance of
our aggregated links when using legacy TCP and TCP-
ER with a fixed weightw1 = 50 while varying weights
w2 and w3. The first and most striking observation
is how dramatically TCP-ER’s aggressive congestion
control permits considerably higher throughput than
legacy TCP for nearly all values of weights. Since each
link shares a common set of impairments, as expected
we find the throughput under TCP-ER is maximized
near values ofw2 = 70, w3 = 90, corresponding
roughly to the transmission link speeds. Approximately

 40

 60

 80

 100

 120

 140

 160

 40
 50

 60
 70

 80
 90

 100
 110

 60 70 80 90 100 110 120 130 140
 0

 20

 40

 60

 80

 100

 120

 140

 160

Throughput (Mbs)

w_2

w_3

Throughput (Mbs)

Fig. 4. The throughput of 3 aggregated links with speeds 50, 75,
100 Mbs using TCP-ER with fixed weightw1 = 50 and variable
weightsw2 andw3.

146 Mbs throughput is realized at these weights, despite
the presence of a 0.1% round trip packet loss rate. The
second notable observation is that TCP-ER throughput
varies significantly as link weights change; indeed, in an
extreme case throughput under TCP-ER can fall below
throughput under legacy TCP.

Note that since the throughput surface for legacy TCP
appears ’flatter’ than for TCP-ER, one might be tempted
to conclude that legacy TCP is less sensitive to varying
weights that TCP-ER. This in fact does appear to be
the case in most circumstances, and we speculate that
is a consequence of the aggressiveness of the sender.
But in the case of Fig. 3 the loss rate (0.1% round
trip) is already high enough that TCP is able to achieve
only a very limited degree of aggregated bandwidth,
regardless of weights. Said another way, if we were to
further increase the loss rate Fig. 4 would also appear
to flatten. Of course, this flatter surface would rest at a
much lower absolute throughput than shown here.

Fig. 5 presents a different view of a similar test case
where we reduced the loss rate to 0.001. Here we focus a
sliding window on throughput measured as we sweep all
three link weights across a wide range of values. Again,
we see the maximum throughput occurring near where
the weights are in proportion to the link bandwidths
(i.e., < 450, 675, 900 >). As we sweep across the link
weights, we cross settings where the weights diverge
considerably from these proportions, and these poorly
selected weight settings correspond to the local minima
on the chart. For example, the lowest throughput is
achieved at< 450, 825, 750 >. But in ordinary cir-

0

50

100

150

200

250

45
0,5

25
,75

0

45
0,5

25
,85

0

45
0,5

25
,95

0

45
0,5

25
,10

50

45
0,5

75
,80

0

45
0,5

75
,90

0

45
0,5

75
,10

00

45
0,6

25
,75

0

45
0,6

25
,85

0

45
0,6

25
,95

0

45
0,6

25
,10

50

45
0,6

75
,80

0

45
0,6

75
,90

0

45
0,6

75
,10

00

45
0,7

25
,75

0

45
0,7

25
,85

0

45
0,7

25
,95

0

45
0,7

25
,10

50

45
0,7

75
,80

0

45
0,7

75
,90

0

45
0,7

75
,10

00

45
0,8

25
,75

0

45
0,8

25
,85

0

45
0,8

25
,95

0

45
0,8

25
,10

50

w1, w2, w3

Th
ro

ug
hp

ut
 (M

bs
)

Fig. 5. The throughput of 3 aggregated links with speeds 50, 75,
100 Mbs using TCP-ER (upper) and TCP-BIC (lower) with varying
weights. Each link has a unidirectional packet loss rate of .001 and
propagation delay of 5 ms.

cumstances we would not consider overweighting the
75 Mbs link while relatively underweighting the 100
Mbs link. In summary, for completeness Fig. 5 depicts a
number of weightings we wouldn’t normally permit, and
this gives the appearance of sensitivity that we would
not see in a well managed, operational system.

We next consider system throughput when aggregat-
ing heterogeneous links; that is, links with differing
transmission speeds, loss rates, and propagation delays.
The 3 links we studied are as follows: a 7 Mbs link
with packet loss rate of .0050 and delay of 5 ms., a 6
Mbs link with packet loss rate of .0045 and delay of 8
ms., and a 5 Mbs link with packet loss rate of .0020 and
delay of 7 ms. In this experiment the links speed and
delays were sufficiently low that we maintained the TCP
memory space at default system values without concern
for being window-bound.

Given a mix of transmission speeds, delays and
packet loss rates, it is often not immediately appar-
ent which links offer the highest potential available
bandwidth. When using either TCP or TCP-ER on
each link independentlythe measured throughputs are
approximately 6.7, 5.6, and 4.7 Mbs; their sum, 17.0,
represents an upper bound on the aggregate throughput
that could be achieved by aggregating all three links.
Fig. 6 shows the resulting throughput for TCP-ER and
legacy TCP. Again, TCP-ER outperforms at the expense
of increased sensitivity to link weights.

IV. OBSERVATIONS

Proper selection of link weights is key to maximizing
throughput over aggregated links. Further, we have

0

2

4

6

8

10

12

14

16

20
,20

,20

20
,40

,20

20
,60

,20

20
,80

,20

20
,10

0,2
0

40
,20

,20

40
,40

,20

40
,60

,20

40
,80

,20

40
,10

0,2
0

60
,20

,20

60
,40

,20

60
,60

,20

60
,80

,20

60
,10

0,2
0

80
,20

,20

80
,40

,20

80
,60

,20

80
,80

,20

80
,10

0,2
0

10
0,2

0,2
0

10
0,4

0,2
0

10
0,6

0,2
0

10
0,8

0,2
0

10
0,1

00
,20

w1, w2, w3

Th
ro

ug
hp

ut
 (M

bs
)

Fig. 6. The throughput of 3 aggregated heterogeneous links using
TCP-ER (upper) and TCP-BIC (lower) with varying link weights.

shown that the sensitivity of throughput to this weight-
ing can be higher in aggressive transports schemes
such as TCP-ER relative to legacy TCP. It should be
stated that, in general, we have not found this increased
sensitivity to be a problem whatsoever in operating a
number of system installations. Rather, the throughput
increases made possible by TCP-ER are of consider-
able value. The appearance of high sensitivity in the
experiments reported here is in part an experimental
artifact; traffic variability that is normally found in
actual operating environments due to background traffic,
variable delays, etc, tend to result in throughputs that are
closer to the average of those that can be achieved in the
neighborhood of weight values near the actual setting.

In principle, identifying a preferred set of link weights
is straightforward in static or quasi-static network
environments; the available bandwidth of component
links can be directly measured, and each link’s weight
can be set in proportion to its measured bandwidth.
Measurements can be performed actively or passively.
Active measurements typically rely on software tools
to perform measurements, while passive measurements
require observation of transport performance on each
component link.

In dynamic settings, establishing time varying link
weights can be quite challenging. This measurement
challenge is well outside the scope of this paper.
Nonetheless, if measurements are available, link weights
can be changed at a rate that is limited primarily by the
speed at which the file system can support a read/write
operation.

An aggregation system using TCP-ER and its as-
sociated signalling protocol permits us one significant
additional advantage that is not available in most en-

vironments. TCP-ER receives Explicit Rate notification
from ER-capable routers in the path via the TIA-1039
signalling protocol. Hence, in a properly configured
network topology, a sender can signal routers to obtain
current available bandwidth on each of the component
paths, and use this information to set link weights
precisely. That is, having a router such as the Anagran
FR-1000 in the upstream path of each link continuously
conveying up-to-date Available Rate information for
each path is far preferable to relying on end system
based software available bandwidth measurement tools.

V. RELATED WORK

Bandwidth aggregation has been attempted at every
possible protocol layer. These approaches differ greatly
in the system components that must be modified to
achieve aggregation, the assumptions about the similar-
ity of the underlying communication links, and whether
the approach spans a single hop or an entire end-to-end
connection. For example, at the link layerbondinghas
frequently relied on introducing hardware to combine
multiple identical physical links. Such an approach
has the advantage of not requiring changes to host
protocols, while suffering from added component costs
and establishing a relatively rigid configuration. One
example of this approach is the hardware basedethernet
over copperbonding product from Actelis Networks
[13] that achieves symmetric access up to 70 Mbs over
multiple DSL wire pairs using ITU Recommendation
G.998 (G.Bond) [12].

A popular software-based technique used to logically
combine serial data links by splitting, recombining and
sequencing datagrams isMultilink PPP (MLPPP) as
described in RFC 1990. Though not requiring new
hardware, this approach is also intended to be used on
multiple similar serial data links directly connecting two
MLPPP-enabled routers or hosts.

In general, standards have not addressed the problem
of aggregating dissimilar links, as we have studied in
this paper. But the growing deployment of wireless
networks – where in some cases even links relying on
similar technology suffer dramatically different commu-
nication impairments – has stimulated investigations by
a variety of researchers [16], [18].

Handling diverse links has focused attention on ap-
proaches to modifying TCP to support transmission over
multiple channels [24], [21], [25]. These efforts attempt
to address the inherent TCP assumption that packet mis-
ordering on a single path will be relatively infrequent,
an assumption made invalid when using different links

for a single connection. The principle disadvantage of
all such approaches is the requirement to modify the end
system TCP stacks for all participating end systems, or
– more commonly – to insert enhanced TCP proxies in
the network path and route traffic from unmodified end
systems through the proxies.

VI. CONCLUSION

As end systems have increased access to diverse and
inexpensive access networks, we are faced with the
challenge of using these communication links effec-
tively in conjunction with existing VPN software. In
this paper we have studied the problem of combining
multiple heterogeneous links into a single logical link to
increase the throughput of individual TCP connections
carried on a VPN. Our approach has been to marry two
distinct contributions. First, we have used NATALIE, a
traffic distributer that schedules packets to links dynam-
ically. Link weights can be adjusted in real time via a
companion application that measures changing network
characteristics. We have also chosen to use a modified
TCP congestion control algorithm to enhance the range
of impaired links that can be successfully aggregated.

Proper selection of link weights is key to maximiz-
ing throughput over aggregated links. Indeed, we have
shown that the sensitivity of throughput to link weights
can be higher in aggressive transports schemes such as
TCP-ER than in legacy TCP. But when chosen well,
TCP-ER can significantly outperform legacy TCP, and
its use can enable us to achieve aggregate gains on links
that are sufficiently diverse that aggregation would yield
no benefit with legacy TCP.

REFERENCES

[1] Y. He, J. Brassil, ”NATALIE: A Network-Aware Traffic Equal-
izer”, Proceedings of IEEE ICC, June 2007.

[2] A. C. Snoeren, “Adaptive Inverse Multiplexing for Wide Area
Wireless Networks,”IEEE GLOBECOM’99, Rio de Janeiro,
Brazil, December 1999, pp. 1665–1672.

[3] C. B. S. Traw, and J. M. Smith, “Striping Within the Network
Subsystem,”IEEE Network, vol. 9, no. 4, July/August 1995,
pp. 22-32.

[4] H. Adiseshu, G. Parulkar, and G. Varghese, ”A Reliable
and Scalable Striping Protocol,” Proceedings of ACM SIG-
COMM’96, Stanford, CA, August 1996, pp. 131-141.

[5] J. Crowcroft, I. Phillips, TCP/IP and Linux Protocol Imple-
mentation, Wiley, New York, 2002.

[6] A. Bavier, et al, ”Increasing TCP Throughput with an En-
hanced Internet Control Plane,”Proceedings of Milcom’06,
Washington DC, 2006.

[7] Telecommunications Industry Association, ”QoS Signalling for
IP-QoS Support,”TIA-1039, 2006.

[8] Emulab, http://www.emulab.net.

[9] I. Rhee, ”BIC-TCP,” http://www.csc.ncsu.edu/faculty/rhee
/export/bitcp/.

[10] J. Li, J. Brassil, ”On the Performance of Traffic Equaliz-
ers on Heterogeneous Communication Links,” Proceedings of
QShine’06, Waterloo CA, 2006.

[11] Iperf version 2.02, http://dast.nlanr.net/Projects/Iperf/.
[12] ITU Recommendation G.998 (G.BOND),

http://www.itu.int/ITU-T/studygroups/com15/index.asp.
[13] Actelis Networks,http://www.actelis.com/.
[14] OpenVPN,http://openvpn.net/.
[15] H. Hsieh, R. Sivakumar, “Parallel Transport: A New Transport

Layer Paradigm for Enabling Internet Quality of Service,”
IEEE Communications Magazine, vol. 43, no. 4, pp. 114-121,
2005.

[16] H. Hsieh, R. Sivakumar, “A Transport Layer Approach Achiev-
ing Aggregate Bandwidths on Multi-home Mobile Hosts,”
ACM/Kluwer Mobile Networks and Applications Journal, vol.
11, no. 1, pp. 99-114, 2005.

[17] D. S. Phatak and T. Goff, “A Novel Mechanism for Data
Streaming Across Multiple IP Links for Improving Throughput
and Reliability in Mobile Environments,”IEEE INFOCOM
2002, New York, NY, June 2002.

[18] P. Sharma, SJ Lee, J. Brassil, K. Shin, ”Distributed Channel
Monitoring for Wireless Bandwidth Aggregation”,Proceedings
of Networking 2004, May 2004.

[19] J. C. R. Bennett, C. Partridge, and N. Shectman, “Packet
Reordering is Not Pathological Network Behavior,”IEEE/ACM
Transactions on Networking, vol. 7, no. 6, December 1999, pp.
789-798.

[20] F. M. Chiussi, D. A. Khotimsky, and S. Krishnan, “Generalized
Inverse Multiplexing for Switched ATM Connections,”Pro-
ceedings of IEEE GLOBECOM’98, Sydney, Australia, Novem-
ber 1998, pp. 3134-3140.

[21] E. Blanton and M. Allman, “On Making TCP More Robust to
Packet Reordering,”ACM SIGCOMM Computer Communica-
tion Review, vol. 32, no. 1, January 2002, pp. 20-30.

[22] J. Duncanson, “Inverse Multiplexing,”IEEE Communications
Magazine, vol. 32, no. 4, April 1994, pp. 32-41.

[23] T. Jessup, “Emerging Technology: Balancing Act: Designing
Multi-Link WAN Services,” IEEE Network Magazine, June
2000.

[24] H. Hsieh, R. Sivakumar, “pTCP: An End-to-End Transport
Layer Protocol for Striped Connections,”ICNP 2002, pp. 24-
33.

[25] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, R. Wang, ”A
Transport Layer Approach for Improving End-to-End Perfor-
mance and Robustness Using Redundant Paths”,Proceedings
of USENIX’04, June 2004.

[26] ATM Forum, ”Inverse Multiplexing for ATM specification,
Version 1.0”, 1997.

[27] P. H. Fredette, ”The Past, Present, and Future of Inverse
Multiplexing”, IEEE M COM, vol. 32, no. 4, pp. 42-46, 1994.

