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Abstract—In dynamic or opportunistic spectrum access, the
primary user (PU) alternates between an idle and an active state,
and a secondary user (SU) may access the channel during the
idle periods. In multiband spectrum sensing, an SU tracks the
PU state on a given set of channels to determine spectrum access
opportunities. In this context, we address the following problem:
Given M channels, determine the best subset of N < M channels
with respect to spectrum access opportunities and, at the same
time, estimate the parameter of the PU state process for each
channel within the selected subset. Specifically, we model the
PU state on the given set of channels by )M independent, two-
state continuous-time Markov chains. Over a given interval of
time, our goal is to determine, with high probability, the N
channels with the largest mean idle periods and, at the same
time, to accurately estimate the parameter of each channel in
the selected subset. We adapt the optimal computing budget
allocation (OCBA) methodology from the field of simulation
optimization to allocate the total time budget for sensing the
N channels in order to perform the channel subset selection
and parameter estimation. Simulation results are presented to
demonstrate the performance of the proposed algorithm.'

Index Terms—Cognitive radio, spectrum sensing, parameter
estimation, optimal computing budget allocation

I. INTRODUCTION

Due to rapidly increasing demand for wireless bandwidth,
opportunistic spectrum access systems have been proposed
to increase utilization of licensed bands. In such systems,
the primary user (PU) operates in a licensed band, while
unlicensed secondary users (SUs) are permitted to leverage
spectrum vacancies left unused by the PU. On a given channel,
the PU can be in either an idle state, in which it does
not transmit, or an active state, in which it transmits on
the channel. To increase spectrum utilization while reducing
potentially harmful interference to the PU, SUs can employ
a realistic statistical model to estimate and predict the state
of the PU, see, e.g., [1], [2]. The parameter of the PU model
could be estimated offline [2] or online [3].

In multiband spectrum sensing, the SU tracks states of PUs
operating on a given set of channels to determine spectrum
access opportunities. We extend the work in [4], where the
active/idle state process of each PU is modeled as a two-state
homogeneous continuous-time Markov chain, and the Markov
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chains corresponding to different PUs are assumed statistically
independent. We assume M channels, each having the same
bandwidth. The parameter of each Markov chain is not known
in advance and hence is estimated from observations of the
state processes. We assume, as in [4], that the PU state
processes are observed directly, and thus we ignore channel
impairments. Our analysis is suitable for channels with very
high signal-to-noise ratio. Subsequent work should address the
adverse affects of the channels.

In the proposed approach, given a sensing interval of length
T seconds, the SU senses each channel ¢ for 7; seconds such
that Zi‘il T, = T. We address the problem of allocating the
sensing times 7; among the M channels such that a subset
of N < M channels with the largest mean idle times can
be selected. As an additional objective, the total parameter
estimation error for channels in the selected set should be
minimized. In practice, N < M, i.e., the number of channels
for spectrum sensing is much smaller than the total number of
channels in a given spectrum band. When N = 1, the problem
reduces to allocating the sensing time budget to determine, the
channel with the largest mean idle time, and minimizing the
estimation error for the associated parameter. When N = M,
our approach defaults to the framework used in [4], where
minimum mean squared error (MMSE) parameter estimation
is performed over all M channels. In practice, a small value of
N would be chosen to facilitate efficient multiband spectrum
sensing.

To address the multichannel estimation problem described
above, we adapt the optimal computing budget allocation
(OCBA) methodology [5] from the field of simulation opti-
mization. The OCBA framework was developed as a means
of testing multiple designs through simulation by allocating
simulation time to the designs with the objective of maximiz-
ing the probability that the best design is selected according
to a given cost function [6]. The technique was subsequently
extended to determine the best N > 1 designs among a given
set of M designs [7]. In the context of multichannel parameter
estimation, instead of allocating simulation time we allocate
sensing times, and instead of simulating multiple designs, we
perform parameter estimation of multiple channels.

The OCBA approach is generally applied iteratively to a
sequence of simulation time intervals. Likewise, our proposed



algorithm for multichannel parameter estimation iterates over
a sequence of sensing intervals. In a departure from the tradi-
tional OCBA, we have as an additional objective, minimizing
the estimation error for the parameters of the channels in the
selected subset. During each iteration of the algorithm, we
employ the Bhattarcharyya distance metric [8] to eliminate
from consideration channels that are unlikely to belong to the
selected subset. This approach allows the sensing resources to
be concentrated, in subsequent iterations, on estimation of the
channels that are more likely to belong to the selected subset.

The work in [4] allocates the sensing times {7;} by mini-
mizing the Cramér-Rao bound on the minimum mean squared
error in estimating the parameters of all M channels. Our
proposed approach focuses the estimation effort on a much
smaller subset of the N most promising channels with respect
to mean idle time. In [4], an asymptotic expression for large
observation time of the inverse Fisher information matrix
(FIM) is used. We refine this result to apply to any finite
time interval. By using the asymptotic expression, closed-
form formulas for the MMSE sensing time allocations were
obtained in [4], as shown in (8). In this paper, we use an exact
expression for the FIM, but resort to a numerical optimization
approach to solve for the sensing time allocations.

A number of articles on multiband spectrum sensing have
approached the problem as a type of multi-armed bandit
problem [9]-[12] or the related partially observable Markov
decision process (POMDP) [13]. Several assume knowledge
of the parameters of the underlying Markov chains, but do
not address the important issue of parameter estimation [11]-
[13]. Our proposed multichannel parameter estimation algo-
rithm obtains estimates of this parameter, and thus could,
in principle, be used in conjunction with these approaches.
Moreover, knowledge of the parameter can be used to improve
spectrum detection performance and allows the prediction of
future PU state, which provides clear advantages for spectrum
sensing [2], [12]. In [2], for example, a likelihood ratio
detector for PU state on a given channel is proposed based
on an estimate of the associated parameter.

The rest of the paper is organized as follows. In Sec-
tion II, we present the system model assumed in the paper.
In Section III, we summarize the multichannel estimation
algorithm in [4], which is based on minimizing the mean
squared error over all channels. In Section IV, we develop
the proposed algorithm for multichannel estimation based on
OCBA and the Bhattaacharyya distance measure. In Section V,
we present simulation results that demonstrate the performance
of the algorithm. The paper is concluded in Section VI with
additional comments.

II. SYSTEM MODEL

Consider a multiband spectrum sensing scenario consisting
of M channels, which an SU may leverage for opportunistic
spectrum access. In each band, an independent PU is oper-
ating. Each PU is modelled by a two-state continuous-time
Markov chain as depicted in Fig. 1, where state 0 represents
an idle PU and state 1 represents a busy PU. An SU may

only use the band when the PU is in the idle state. For a
given PU, let { Xy, ¢ > 0} denote the Markov chain associated
with the state process. The transition rate from state 0 to 1
is denoted Ao, and the transition rate from state 1 to O is
denoted A;. The parameter of the Markov chain is given by
6 = (Ao, A1). For simplicity, we assume, as in [4], that the
SU directly observes the PU state process {X;,t > 0}. The
model could be extended to incorporate channel impairments,
as was done in [2], for example.

Ao

A1
Fig. 1. Continuous-time Markov chain model for PU state of a single channel.

Let N¢(j,k) denote the number of jumps of the PU state
from state j to state k over the time interval [0,¢), and denote
its expected value by N (3, k), where j, k € {0,1}. We assume
that the Markov chain {X,} has initial state probabilities
{mo,m}, where m7; = P(Xy, = j), j = 0,1. The Fisher
information matrix (FIM) for {X;} can be derived as follows:
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The derivation follows directly from the definition of the FIM
and an expression for the likelihood function of a continuous-
time Markov chain given in [14, Sec. 4]. Let A = Ay + A;.
The expected number of jumps from state j to state k can
be expressed as follows (see Appendix A for a sketch of the
derivation):

Ni(j, k) = )\J;\kt—&- (w - Ak) A (1

v ) (- e M. (@
An expression for the inverse FIM in the nonstationary case,
where {7, 71} are assumed to be constants, follows from (1)
and (2). The stationary case does not lead to a simple closed-
form expression. An asymptotic expression for the FIM of
a stationary two-state Markov chain, valid in the regime of
large ¢, was derived in [4, Theorem 1]. The asymptotic FIM
leads to a closed-form solution for the sensing time allocations,
see [4, Eq. (17)], but incurs non-negligible approximation error
for smaller values of t.

We use a subscript ¢ to denote the ith channel, e.g.,
we denote the PU Markov process for the ith channel as
{X,+,t > 0} and its associated parameter by 6; = (A; 0, Ai.1).
Let 02(t) denote the sum of the variances in estimating the
two components of #; by an unbiased estimator over a sensing
interval of length ¢ seconds. Let I;(t) denote the FIM for the
ith channel over the same sensing interval. The Cramér-Rao
bound (CRB) for a single channel ¢ over time ¢ is given by [4]

o?(t) > trace[I 1 (1)]. (3)



The asymptotic form of the CRB used in [4] follows from the
asymptotic approximation for the inverse FIM [4, Eq. (6)] for
the two-state Markov chain. The asymptotic CRB was derived
earlier by Albert [14] for a general finite-state Markov chain.
Applying (1), the CRB is given by
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The sensing interval of length ¢ is partitioned into subin-
tervals of length ¢;, ¢ = 1,..., M, where ¢; is the time
spent estimating channel ¢, with ¢ = Zfil t;. The SU
observes {X; .} for an interval of length ¢; in the sequence
i=1,..., M. The CRB for estimation of all M channels over
a sensing interval of length ¢ is given by
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III. MMSE MULTICHANNEL ESTIMATION [4]

In this section, we summarize the multichannel parameter
estimation algorithm in [4], which iteratively determines the
sensing intervals and parameter estimation using (5). We as-
sume that time is divided into a sequence of sensing intervals,
{T,}22,. Each sensing interval is in turn subdivided into M
sensing subintervals, one for each of the M channels. Let T},
denote the duration of the nth sensing interval, and let T; ,
denote the duration of the nth sensing interval that is devoted
to channel 7, such that T,, = Zf\il T; . To perform the initial
iteration of multiband sensing, all M channels are sensed for
exactly the same amount of time, i.e., we set

Th
Tio= -2,
Vi

During each sensing interval, each channel is sensed in se-
quence.

For channel ¢, the number of sojourns in each state is
counted, and the counts recorded up to and including time ¢
are denoted n9™(t) and n¢®(t) for the off and on states,
respectively. The jth recorded sojourn times for channel 7 are
denoted by szjf and 277, respectively. The estimator for the
transition rates proposed in [4], referred to in that paper as the
“moment estimator,” is given by:

i=1,..., M. 6)
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respectively. The parameter estimate 6; obtained at the end
of the nth sensing interval is given by (7), and is used to
calculate the sensing time allocations for the next sensing
interval. This estimator is the well-known maximum likelihood
estimator (MLE), with consistency and asymptotic normality
proved by Albert [14, Theorem 6.10]. Asymptotic efficiency
of this estimator was also proved by Albert [14, Section 7].
Efficiency of the moment estimator was demonstrated in [4]
through simulations.

Multichannel parameter estimation should be designed in
such a way that the sensing intervals are used most effec-
tively. In [4], sensing time allocations were derived such that
the right-hand side of the multichannel CRB in Eq. (5) is
minimized. In this derivation, an asymptotic approximation for
inverse FIM was used, which led to closed-form expressions
for the proportion «; of the sensing interval 7, that should be
allocated to channel ¢, given as follows [4, Eq. (17)]:
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where the moment estimates, 5\071- and ;\171-, are computed by
applying (7) and T} ,, = o1, ¢ = 1,..., M. The allocation
strategy based on (8) was shown in [4] to approach, as T;, —
oo, the CRB for the joint estimation of all M independent
channels.

IV. OCBA MULTICHANNEL PARAMETER ESTIMATION

In this section, we focus on an approach for selecting a
smaller subset of the most promising channels for oppor-
tunistic spectrum access, while estimating their associated
parameters. We adapt OCBA to determine the appropriate
sensing time allocations to achieve this objective.

A. OCBA Sensing Allocations

Our goal is to determine the N channels with largest
mean dwell time in the idle state, where ideally N < M.
Equivalently, we seek the N channels with minimum cost,
where the cost function for channel ¢ is defined by

J; = Ao ©)

We assume that the initial sensing interval Tj is allocated
according to (6). At the end of the nth sensing interval of
length T;,, the PU parameter is re-estimated using Eq. (7)
and we apply OCBA [5] to determine the channels with the
lowest cost functions. In the context of simulation optimiza-
tion, given a fixed total computing budget and M alternative
designs, OCBA determines the computing budget allocation
for simulating the M designs that maximizes the probability
of selecting the subset of IV designs out of M with minimum
cost. The OCBA methodology requires knowledge of the
standard deviation of the cost function, which we denote by
s; for channel 7. A lower bound on the standard deviation of
the cost function (9) follows from the CRB for estimating \g,
which can be derived from the FIM in Eq. (1):

si(t) > ,/J\i.
N(0,1)

To find the subset of the N best channels, we first sort
the estimated values of the cost function J in (9), denoted
by J; = /\071'(75), such that J; < Jp < ... < Jy_-1 < Ju.

(10)



We then compute a reference constant ¢, which in [7] is the

midpoint between the highest cost value of the selected subset

and the next highest cost value among the M channels, i.e.,
c = M (11)

2

We denote the total sensing time on channel ¢ up to and

including iteration n as ¥Xr;,. Applying OCBA, we must

next find sensing intervals such that [7]

T oo ST (1)
(81 /(- c)) (3M /(s — c))
and
M
Z (Erin — 21in—1) = Tn. (13)

i=1
The resulting sensing time allocations are then given by [7]

Tinm = XTin — 2Tin—1- (14)

The standard deviations s; in (12) can be approximated
by computing the right-hand side of (10) using the current
estimates Ag ;(t).

B. Channel Elimination

Once a desired level of certainty that a channel is not a
member of the selected subset has been reached, our algorithm
ceases allocating sensing time to that channel for the current
and future iterations. This results in a smaller parameter
estimation error for the channels in the eventual selected subset
compared to the standard OCBA. To determine whether a
channel 7 is unlikely to be part of the eventually selected sub-
set, we compare it to the member of the current selected subset
with the highest cost, J . We make use of the Bhattacharyya
distance for this purpose. The Bhattacharyya distance between
a pair of normal random variables U ~ N (u,,02) and
V ~ N(y,02) is given by [15, p. 777]

v

w— v2 1 1 2 2
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(15)
Channel 7 is eliminated if
Dp(Jn,Ji) >, Ji > Jn, (16)

where v is a threshold chosen by the system designer. A
larger value of ~ will allow for increased certainty of correct
decision at the expense of longer time required to obtain the
final selected subset of N channels.

When we are left with the selected subset of N channels,
subsequent estimation effort can be applied to these channels.
In the case of IV = 1, the optimal sensing strategy is simply
to allocate all sensing time to the selected channel. More
generally, MMSE allocations are applied to the /N selected
channels, and the other M — N channels receive no sensing
time allocation. Thus, parameter estimation proceeds along
the lines of [4] for the selected set of IV channels, except
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Fig. 2. MSE for all channels using MMSE and OCBA allocations

that we use the closed-form expression (2) to calculate the
FIM. Consequently, we resort to sequential quadratic program-
ming [16] to numerically solve for the sensing time allocations.
Nevertheless, the closed-form sensing time allocations given
by (8) may serve as good initial values for the algorithm.

V. NUMERICAL EXAMPLES

To test the proposed algorithm, we present numerical results
of two example scenarios based on examples that were consid-
ered in [4]. Results were obtained using the Python packages
SciPy, NumPy, and Matplotlib.

A. Example 1

In the first example, four channels were defined with pa-
rameter values given as follows:

{Xo.i} = {10, 60, 20, 50},
{\1.;} = {70, 10, 80, 90}.

We used an initial allocation of T = 10 seconds, increased
sensing time by 7,, = 27,,_; for each sensing iteration, and
performed 15 sensing iterations. As a baseline, we performed
the MMSE allocations as proposed in [4], and we compared
to OCBA allocations as proposed in this paper. For the fist
simulation, we searched for a selected subset of size N =1,
i.e., we only searched for a single best channel. We recorded
the MSE for the known best channel as well as the system
MSE for all 4 channels. A total of 200 simulations were
performed, and a minimum Bhattacharyya distance of v = 18
was used.

The results of this example are plotted in Figs. 2 and 3.
Fig. 2 shows the total MSE in estimating the parameters of
all channels compared to the associated CRB. After the best
channel is determined, i.e., channel ¢ = 1 with A\g; = 0.1, the
MSE for all channels in the case of OCBA allocation diverges
from the CRB. This is because all of the sensing time is
devoted to estimation of the parameter of the selected channel,
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Fig. 3. MSE for best channel using MMSE and OCBA allocations

while the MSE for the other channels remains constant. Fig. 3
shows the MSE for only the best channel in terms of the
longest mean dwell time in the idle state. The MSE resulting
from both allocation strategies is compared to the CRB under
the assumption that all sensing time is given to the best
channel.

B. Example 2

Here, 10 channels were defined with the following param-
eter values:

{Xo.i} = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
{A1:} = {20, 70, 10, 10, 40, 80, 40, 90, 10, 40} .

We used an initial allocation of T, = 25 seconds, increased
sensing time by T,, = 27,,_1 for each sensing iteration, and
performed 15 sensing iterations. Again, the resulting MSE
in estimating the parameters of the channels from MMSE
allocations was compared to that obtained from the OCBA
allocations. For the OCBA allocations, we set N = 3. We
recorded the MSE for the set consisting of the best three
channels, i.e., {1,2,3}, as well as the system MSE for all
10 channels. In total, 200 simulation runs were performed,
and a minimum Bhattacharyya distance of v = 18 was used.

The results for Example 2 are plotted in Figs. 4 and 5.
Fig. 4 shows the total MSE for estimation of all channels,
compared to the CRB for all channels. As in Fig. 2, the MSE
for the OCBA allocation in Fig. 4, diverges from the CRB
after the best subset is selected. Fig. 5 shows the MSE for only
the selected subset. The MSE resulting from both allocation
strategies is compared to the CRB under the assumption that
all sensing time is given to the selected subset.

C. Discussion

The numerical examples demonstrate that when total sys-
tem MSE is to be minimized for all channels, the MMSE
approach proposed in [4] achieves the CRB. However, when
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the performance of a smaller subset of channels is more
important, the proposed algorithm based on OCBA may be
used to quickly determine the selected subset and to focus
subsequently on the most promising channels. This is an
important feature of our approach, as the total number of chan-
nels M may be significantly larger than the eventual number
of channels of interest, i.e., M > N. In such a scenario,
diluting the spectrum sensing effort among M channels is
heavily resource-intensive, and ultimately is likely to result
in degraded opportunistic spectrum access. Thus, focusing the
parameter estimation on a much smaller set of N candidate
channels is more efficient both computationally and in terms of
exploiting the spectrum access opportunities available among
the original set of M channels. Given accurate parameter
estimates for the chosen set of N channels, detection and/or
prediction of the PU states on these channels can proceed
using a variety of approaches based on Markovian models,



see, e.g., [2], [11]-[13].

VI. CONCLUSION

We proposed a parameter estimation algorithm for multi-
band spectrum sensing based on a Markovian model and
compared it with an earlier algorithm of [4] that relies on
an MMSE approach. Over a sequence of sensing intervals,
the proposed algorithm iteratively allocates a partition of each
interval among M channels in such a manner as to determine
a smaller set of N < M channels that are “best” with respect
to a certain cost function while obtaining estimates of the cor-
responding channel parameters. The algorithm allocates initial
sensing times to each of the M channels and then updates the
allocations after each subsequent sensing interval. The OCBA
methodology from [7] is applied to adjust the allocations with
the goal of determining the best N channels at each iteration.
To further reduce estimation error, the Bhattacharyya distance
is used to eliminate certain channels from further consideration
in subsequent iterations. The algorithm was verified through
simulation and shown to approach the CRB on the variance
of the parameter estimator for channels in the selected set.

In this paper, we have assumed that the PU state is directly
observable. The Markov chain model could be extended to
take into account channel impairments and to accommodate
non-exponential PU state sojourn time distributions, as was
done in [2]. We have also assumed a simple cost function
for the channels based on the mean idle time of the PU.
Alternative cost functions may be considered depending on
the spectrum access needs of the SU. For example, in addition
to the mean idle time, the variance of the idle time and the
channel bandwidth could, in principle, be incorporated into
the cost function.

APPENDIX
A. Expected Number of Jumps Between States

Let X, denote the state of the PU on a given channel at
time ¢. Consider a sample function of the process such that
X; = 1. Then the PU state alternates from O to 1, and the
cycle of a sojourn in state O followed by a sojourn in state 1
repeats. Alternatively, if Xy = 1, a cycle consists of a sojourn
in state 1 followed by a sojourn in state 0. For our purposes,
the sequence of states within a cycle is immaterial. Let us
call the completion of each cycle a renewal event. Let A(t)
denote the number of renewal events in (0, t]. The number of
transitions from state 0 to 1 in (0, ¢] can be related to A(t) as
follows:

N:(0,1) = A(¥) + Tx=0,x,=1}> (17)

where 14 is the indicator function of event A. This additional
term is necessary to account for the event of an additional
transition from state O to state 1 without the completion of an
entire renewal, i.e., a transition back to state 0.

Letting R(t) = E [A(t)], the expected number of transitions
from 0 to 1 can be written as

Nt(o,l) :R(t) +7T1P01(t). (18)

where Py (t) =P [X; = 1| Xo = 0]. The transition probabil-
ity Pp1(t) is given by [17, Ch. 3, Egs. (28)-(29) 1:
Ao
-0 (1= —(Aoﬂl)t).
Mo+ A1 (1-e

An expression for R(t) can be obtained using some results
from renewal theory, see, e.g., [18], [19], as follows:

Ao Aot —(AotAr)t

R(t) = t— 1— oTAUE) (20
= +n ()\()+)\1)2< ‘ ) 0)

Applying (20) and (19) in (18), we obtain (2) when j = 0 and

k =1. The case j = 1 and k = 0 is derived similarly.

Poi(t) (19)
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