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Abstract—In wideband spectrum sensing, an unlicensed user
determines which portions of a given band have been left idle by
the licensed users. A historical deficiency of wideband spectrum

sensing, the inability to detect signals with low duty cycle, was
addressed in a recent paper, where wideband temporal spectrum
sensing was introduced. We propose an algorithm for reliable
detection of low duty cycle signals in noisy environments. We
leverage this recent advance in wideband spectrum sensing,
and apply a well-known edge detection algorithm to determine
channel boundaries. Numerical results are presented which show
performance improvements over the original wideband temporal
spectrum sensing algorithm, particularly in low signal-to-noise
ratio scenarios.1

Index Terms—Cognitive radio, spectrum sensing, hidden
Markov model

I. INTRODUCTION

Due to the rapidly increasing demand for capacity in

wireless networks, radio frequency (RF) spectrum access is

becoming more precious every day. However, it has been

shown that fixed frequency allocations have left large portions

of the RF spectrum underutilized [1]. Cognitive radio tech-

nologies aim to increase utilization of those bands without

causing harmful disruption to the licensed or primary users

(PUs) [2] by allowing unlicensed or secondary users (SUs)

to opportunistically access such spectrum holes. In order to

maximize capacity and minimize service disruptions to the

PUs, a cognitive radio-enabled SU can employ sophisticated

sensing techniques to characterize the spectrum holes within

a given band.

The spectrum sensing task of an SU for a given band can

classified as follows [3], [4]:

1) Narrowband: A single channel is clearly defined.

2) Multiband: A set of independent narrowband channels

is given.

3) Wideband: The spectrum band is wide, and may contain

multiple narrowband channels with unknown channel

boundaries.

Of the three, narrowband sensing has been studied most

extensively. Well-known detection algorithms for narrowband

sensing include energy detection, cyclostationary feature de-

tection, and matched filter detection [5]. Hidden Markov mod-

els (HMMs) and related models have been used to characterize
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the temporal behavior of the PU [6], [7]. In [8], multiband

sensing is formulated as a problem of allocating spectrum

sensing effort among a set of narrowband channels.

In the wideband spectrum sensing scenario, an SU must

sense an entire band and determine channel boundaries. The

bandwidth that must be sensed can vary from the order

of 1 MHz to 1 GHz. This is required if the SU can not

leverage any external information about channel allocation. A

SU need only perform wideband sensing during initialization

and may then revert to multiband or narrowband sensing

during normal operation. In general, PU signals may be

heterogeneous in frequency, bandwidth, and power, so robust

wideband sensing algorithms must be developed to detect

all PU activity within the spectrum band. Most state-of-the-

art approaches for wideband sensing are based on wideband

energy detection [9] or frequency-domain edge detection [10].

Edge detectors can offer an improvement over energy detectors

in terms of signal-to-noise ratio (SNR) threshold, but they can

also perform relatively poorly on signals with gradual rolloffs

in their band edges. Neither technique takes into account

the temporal dynamics of PU signals, and consequently both

can perform rather poorly when PU signals have low duty

cycles. Many advanced wideband spectrum sensing methods

have been proposed which offer various improvements over

standard wideband energy or edge detection but all model the

PU state as either on or off, not changing over time [11]–[16].

In [4], a sensing framework for reliable wideband detection

of PUs with low duty cycle was developed. The approach,

referred to as wideband temporal sensing, involves partitioning

the given spectrum band into smaller subchannels. The energy

in each subchannel is measured and an HMM-based spectrum

sensing approach is applied to each subchannel. A recursive

tree search is performed to aggregate correlated subchannels

into a set of independent narrowband channels, which effec-

tively reduces the sensing task to the multiband case. The

wideband temporal sensing approach developed in [4] allows

PU signals with low duty cycle to be detected accurately at

high to moderate SNR.

The main contribution of this paper is to apply an edge

detection algorithm to wideband temporal sensing, which

allows for more reliable detection at low SNR compared

to the wideband temporal energy detector of [4]. Moreover,

the use of edge detection avoids the need for the recursive

tree search used in the wideband temporal energy detector,



resulting in a computationally more efficient spectrum sensing

scheme. Our approach incorporates the wavelet-based edge

detection algorithm of [10] into the wideband temporal sensing

framework proposed in [4]. We present experimental results

obtained through simulation.

The remainder of the paper is organized as follows. In

Section II, we define the system model for wideband spectrum

sensing. In Section III, we discuss and evaluate the perfor-

mance of two existing wideband spectrum sensing techniques.

In Section IV, we develop the proposed edge detection ap-

proach to wideband temporal spectrum sensing. In Section V,

we describe the simulation that was used to compare the pro-

posed algorithm to existing algorithms and present numerical

results. Concluding remarks are given in Section VI.

II. SYSTEM MODEL

A. Wideband Channel Model

Over a given wideband spectrum band, we assume that an

unknown number of independent PUs are operating. Each PU

has an unknown center frequency and bandwidth. It is assumed

that PU channels do not overlap in frequency. The channel

over which a given PU is observed is assumed to be flat

Rayleigh fading with parameter σf combined with additive

white Gaussian noise (AWGN), defined by the circularly

symmetric complex normal distribution C
(

0, σ2
n

)

. The mean

SNR of the received signal on the PU channel, given that the

PU is transmitting, is given by

SNR =
σ2
f

σ2
n

. (1)

B. PU Traffic Model

A given PU may be transmitting or idle at any given time.

The state of the PU is denoted by a discrete-time random

process X = {Xk}∞k=1, where Xk = 1 if the PU is idle

or Xk = 2 if the PU is active at time k. We shall assume

that the PU state process X is characterized by an ergodic

time-homogeneous discrete-time Markov chain with transition

matrix G = [gab : a, b ∈ {1, 2}], where

gab = P (X2 = b | X1 = a) , (2)

and initial distribution ν = [νa : a = 1, 2], where

ν1 = P (X1 = 1) , v2 = P (X1 = 2) . (3)

The equilibrium state distribution, denoted by π = [π1, π2],
satisfies the following equations:

π = πG, π1 + π2 = 1. (4)

The value π2 corresponds to the duty cycle of the PU in steady-

state.

C. Cognitive Receiver Model

1) Received Wideband Signal: In the active state, a trans-

mitting PU will generate a bandpass signal S = {S̃k}∞k=1,

where S̃k denotes the Inphase-Quadrature (IQ) sample at

time k. The transmitted signal for the PU at time k is given

by

Sk = S̃k · 1{Xk=2}, (5)

where 1A is the indicator function on the event A. The

PU signal is multiplied at time k by a fading signal f =

fk ∼ C
(

0, σ2
f

)

. All M PU signals are received simultane-

ously and added to the noise signal N = {Nk}∞k=1, where

Nk ∼ C
(

0, σ2
n

)

. The received wideband signal is represented

by Zwb = {Zwb
k }, where Zwb

k is the kth I-Q sample from the

wideband channel.

2) Channelized Received Signal: The SU will partition

the wideband received signal into J narrowband subchannels.

Initially this division must be done arbitrarily, but after wide-

band sensing, the set of subchannels should describe all PU

statistics as well as the statistics of the spectrum holes between

PU signals. The signal corresponding to the jth subband is

denoted by Z(j).

3) Energy Detected Signal: For spectrum sensing, the chan-

nelized narrowband signals are processed with an averaging

energy detector, which estimates the power of each sample and

averages K samples together. The resulting received energy

signal in subchannel j is denoted by Y (j) = {Y (j)
k }, where

Y
(j)
k =

1

K

K
∑

l=1

|Z(j)
(k−1)K+l|2. (6)

A SU will need to detect slow changes in PU state to properly

leverage spectrum holes, and because of this, we assume that

the probability of a state change occurring during the energy

estimation of a single sample to be minimal. Therefore, we

assume that during an energy detection window the samples

of Y (j) are independent, identically distributed. For relatively

large K , Y
(j)
k will approach a normal random variable due to

the Central Limit Theorem.

If Y (j) represents the energy estimates of subchannel j of

a PU characterized by state process X , the kth sample from

the received narrowband signal will be given by

Z
(j)
k ∼

{

C
(

0, σ2
n

)

, Xk = 1,

C
(

0, σ2
f + σ2

n

)

, Xk = 2.
(7)

The resulting energy estimates, Y
(j)
k , will be scaled chi-

squared random variables with 2N degrees of freedom. We

will denote a chi-squared distribution with D degrees of

freedom by X 2 (D). The output of the energy detector is given

by

Y
(j)
k ∼











σ2
n

N
X 2 (2N) , Xk = 1,

σ2
f + σ2

n

N
X 2 (2N) , Xk = 2.

(8)



The mean and variance of a chi-squared distribution with D

degrees of freedom are D and 2D respectively. Assuming that

N is sufficiently large, Y
(j)
k will be conditionally normal:

Y
(j)
k ∼



























N
(

2σ2
n,

4σ4
n

N

)

, Xk = 1,

N






2σ2

f + 2σ2
n,

4
(

σ2
f + σ2

n

)2

N






, Xk = 2.

(9)

III. COMPARISON OF WIDEBAND SPECTRUM SENSING

TECHNIQUES

It was shown in [4] that standard wideband detection

methods are inadequate for PUs with low duty cycle. The edge

detection algorithm from [10] was performed on a wideband

signal with four orthogonal frequency division multiplexing

(OFDM) carriers of varying duty cycle. It was demonstrated

that as the duty cycle was reduced, the detector sensitivity

was also reduced. Performance of the standard edge detector

is shown in Fig. 1 for OFDM signals with SNR of 10 dB and

varying duty cycles, where the shaded areas indicate detected

spectrum holes. Clearly, the edge detector fails to correctly

detect the two rightmost OFDM signals.

Fig. 1. Results of a wideband edge detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles [4].

Wideband temporal spectrum sensing was introduced in [4]

to more reliably detect a PU with low duty cycles, where the

proposed algorithm performed comparably to energy detection

for duty cycles of 1.0 and did not degrade substantially for

lower duty cycles. Because we are extending the wideband

temporal spectrum sensing algorithm from [4], we shall refer

to the incumbent algorithm as wideband temporal energy de-

tection. Performance of the wideband temporal energy detector

is shown in Fig. 2 for OFDM signals with SNR of 10 dB and

varying duty cycles.

Although wideband temporal energy detection has been

shown to reliably detect PU signals at 10 dB SNR for a

Fig. 2. Results of a wideband temporal energy detector for OFDM signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles [4].

variety of duty cycles, spectrum sensing applications may

demand accurate PU detection at substantially lower SNR. It

can be seen in Fig. 3 that at higher noise levels, the wideband

temporal energy detection algorithm proposed in [4] begins

to experience detection errors. Note that the wideband tem-

poral energy detector incorrectly characterizes the rightmost

spectrum hole. The edge detection algorithm proposed in [10]

allows for accurate detection of high duty cycle signals in high

noise levels, which motivates the development of an algorithm

that extends wideband temporal spectrum sensing with edge

detection.

Fig. 3. Results of wideband temporal energy detector for OFDM signals with
5 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles [4].

IV. PROPOSED ALGORITHM

In this section, we extend the wideband temporal sensing

algorithm from [4]. Since the proposed algorithm uses edge



detection to determine channel boundaries, the recursive tree

search used in [4] for channel aggregation is not necessary.

A. Channelization of Received Wideband Signal

First, the received wideband signal is divided into J nar-

rowband signals of equal bandwidth. The narrowband signals

are spaced such that they are non-overlapping and cover the

entire band. Selection of J depends on the desired sensing

resolution, Wr. Signals narrower than Wr may not be reliably

detected, and detected channel boundary locations may have

a frequency error as large as Wr

2 . The number of subchannels

required to achieve sensing resolution Wr is given by

J =

⌈

W0

Wr

⌉

, (10)

where W0 is the width of the entire band. Channelization

may be accomplished in a conceptually simple fashion using

a bank of digital downconverters or more efficiently using a

frequency-domain channelizer, as described in [4, Sec. III-b].

If a frequency-domain channelizer is used, J from Eq. (10)

should be rounded up to the next power of 2 for efficient FFT

computation. The resulting set of all J narrowband received

signals is denoted by Z =
{

Z(1), . . . , Z(J)
}

.

B. Sensing of Narrowband Subchannels

The observation of PU traffic through a noisy channel can

be accurately modelled using a hidden Markov model (HMM),

denoted by (Y,X), where X is an underlying discrete-time

Markov chain and Y is a random sequence of observations,

conditionally dependent on X . The transition matrix and initial

distribution of the HMM are given in (2) and (3), respectively.

The noisy samples are modeled by normal distributions. The

parameter of the HMM for a PU is given by φ = (ν,G, µ,Σ),
where µ = [µ1, µ2] and Σ =

[

σ2
1 , σ

2
2

]

are, respectively,

the sets of conditional means and conditional variances for

subchannel j given by (9).

For a set of J subchannels that partition a spectrum band

evenly, the conditional means

µa =
{

µ(1)
a , . . . , µ(J)

a

}

, a = 1, 2, (11)

determine the conditional power spectral density of the re-

ceived signals on the subchannels. If the J uniformly dis-

tributed channels which cover the band have frequencies

{f1, . . . , fJ}, the conditional power spectral densities are

defined as

µa(f) =

J
∑

j=1

µ
(j)
a

∆f
rect

(

f − fj

∆f

)

, a = 1, 2, (12)

where rect(·) denotes the unit rectangular function and ∆f

is the frequency spacing between subchannels. Here, µ1(f) is

the power spectral density of the received signal given that all

PUs are idle, and µ2(f) is the power spectral density of the

received signal given that all PUs are transmitting.

For each of the J narrowband subchannels, energy detection

and HMM parameter estimation is performed. The set of

observed energy sequences is denoted Y =
{

Y (1), . . . , Y (J)
}

and is given by Eq. (6). Subchannel j is characterized by

an HMM parameter, φ(j) =
(

ν(j), G(j), µ(j),Σ(j)
)

, which

is estimated using the Baum-Welch algorithm [17]. In the

wideband temporal energy detector proposed in [4], the set

of HMM parameters for the entire band is used directly.

Our performance baseline will be the wideband temporal

energy detector from [4], which directly computes µ2(f) from

the conditional power spectral density, defined in Eq. (12),

with a threshold λ to determine which subchannels contain an

active PU. The adjacent active subchannels which are deter-

mined to be correlated are combined into a single channel.

C. Edge Detection

In our proposed algorithm, we apply the wideband edge

detection algorithm from [10] to the conditional power spec-

tral density of the received signal. We first decompose the

conditional power spectral density into a set of resolutions

using the continuous wavelet transform (CWT). The CWT of

µ2(f) for a resolution γ is given as

Wγ {µ2(f)} = µ2(f) ∗ ψγ (f) , (13)

where ∗ denotes convolution and ψγ(f) is a wavelet of scale

γ, given by

ψγ (f) =
1

γ
ψ

(

f

γ

)

. (14)

The mother wavelet, ψ (t), is the Ricker wavelet, defined

in [18, Eq. (4.34)] as

ψ (t) =
2

π1/4
√
3σ

(

t2

σ2
− 1

)

exp

(−t2
2σ2

)

. (15)

The Ricker wavelet is the second derivative of a Gaussian

function, and a standard Ricker wavelet, where σ = 1, is

particularly useful for edge detection [18]. The rth resolution

of the conditional power spectral density has scale γ where

γ = 2r and r ∈ {1, 2, . . . , R}, where R is the number of

CWT resolutions.

Once the conditional power spectral density is decomposed

into component resolutions using the CWT, edge detection is

performed by taking the first derivative of each component

resolution:

W ′
γ {µ2(f)} = γ

d

df
(µ2(f) ∗ ψγ (f)) . (16)

We then compute the multiscale wavelet product from the

resulting gradient estimates:

UR {µ2(f)} =

R
∏

r=1

W ′
γ {µ2(f)}

∣

∣

∣

γ=2r
. (17)

By multiplying the component resolutions together, the signal

is amplified, while the noise is not, resulting in noise suppres-

sion [19]. The resulting peaks in UR {µ2(f)} are determined

to be channel boundaries.



V. SIMULATION AND RESULTS

A. Simulation Setup

We tested the proposed wideband temporal edge detector

against the wideband temporal energy detector from [4].

Wideband signals with OFDM carriers were tested. A duty

cycle of π2 = 0.1 was used, and SNR values of 0, 5, and 10 dB

were tested. A total bandwidth of 10 MHz with four randomly

placed PU signals was tested. The bandwidth and center

frequency of each non-overlapping PU carrier were randomly

generated each iteration, and the PU signal bandwidths were

drawn randomly within the range 0.5 to 2.0 MHz. The full set

of simulation parameters is enumerated in Table I. Note that

the number of CWT resolutions (R) applies only to the edge

detector.

Simulation Parameter Value

Modulation OFDM

Total bandwidth (W ) 10 MHz

Duty cycle (π2) 0.1

SNR {0, 5, 10} dB

Number of PU carriers 4

Number of narrowband subchannels (J) 1024

Energy detector average length (N ) 10

Number of CWT resolutions (R) 4

Sensing duration per iteration 0.01 s

Number of simulation iterations 10000

TABLE I
SIMULATION PARAMETERS.

B. Qualitative Results

Fig. 4. Results of the proposed wideband temporal edge detector for OFDM
signals with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles [4].

The visual output of the proposed wideband temporal edge

detector is shown in Fig. 4, where the proposed detector was

tested against a wideband signal with PUs of varying duty

cycle with 5 dB SNR. This performance may be contrasted

with the wideband temporal energy detector proposed in [4]

in 5 dB SNR plotted in Fig. 3. Visually, it can be seen

that the proposed wideband temporal edge detector performs

accurately in relatively low SNR.

C. Numerical Results

Fig. 5. Results of wideband temporal detectors for OFDM signals with 10 dB
SNR.

Fig. 6. Results of wideband temporal detectors for OFDM signals with 5 dB
SNR.

Next, we present numerical results demonstrating the per-

formance improvement achieved by wideband temporal edge

detection for a variety of medium to low SNR signals. In each

simulation iteration, every narrowband channel was recorded

as either a true detect, a true positive, a false detect, or a false

positive, depending on the known PU signal locations and the

detector results. A variety of thresholds were tested so that the

relationship between detection rates can be observed. Aver-

aged detection characteristics are plotted as receiver operating

characteristic (ROC) curves. The resulting plots are shown in

Fig. 5, 6, and 7 for SNRs of 10, 5, and 0 dB, respectively.

From these results, it is apparent that the wideband temporal

edge detector performs favorably compared to the wideband



Fig. 7. Results of wideband temporal detectors for OFDM signals with 0 dB
SNR.

temporal energy detector from [4] for all simulated SNR

values. The performance benefit of edge detection is especially

pronounced at the low SNR of 0 dB. The simulated duty cycle

of π2 = 0.1 was lower than any duty cycle simulated in [4],

and the wideband temporal energy detector produced similar

results to those in [4] at 10 dB SNR.

VI. CONCLUSION

We have proposed a wideband spectrum sensing algorithm

that is capable of detecting PU signals at low duty cycles

and relatively low SNR. We leveraged the wideband temporal

sensing framework introduced in [4], which had been shown to

perform well for low duty cycle PU signals at moderate SNR.

We enhanced the wideband temporal sensing framework with

the edge detection algorithm from [10]. This enhancement was

shown to perform substantially better at lower SNR, making

the proposed algorithm more suitable for cognitive radio tasks

that require highly reliable detection at low to moderate SNR.

Several extensions to the proposed algorithm are being

investigated in our ongoing work. One such extension is failure

detection, where the SU would detect that no signal edges are

present and default to wideband temporal energy detection,

which would allow for sensing of PU signals without sharp

band edges, as discussed in [4]. Another extension to the

proposed sensing algorithm involves smoothing of the condi-

tional power spectral density in Eq. (12) using the maximum

a posteriori (MAP) decisions produced by the Baum-Welch

algorithm to more reliably estimate average received signal

power.
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