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Abstract—In a wireless network with dynamic spectrum shar-
ing, tracking temporal spectrum holes across a wide spectrum
band is a challenging task. We consider a scenario in which
the spectrum is divided into a large number of bands or
channels, each of which has the potential to provide dynamic
spectrum access opportunities. The occupancy times of each band
by primary users are generally non-exponentially distributed.
We develop an approach to determine and parameterize a
small selected subset of the bands with good spectrum access
opportunities, using limited computational resources under noisy
measurements. We model the noisy measurements of the received
signal in each band as a bivariate Markov modulated Gaussian
process, which can be viewed as a continuous-time bivariate
Markov chain observed through Gaussian noise. The underlying
bivariate Markov process allows for the characterization of
non-exponentially distributed state sojourn times. The proposed
scheme combines an online expectation-maximization algorithm
for parameter estimation with a computing budget allocation
algorithm. Observation time is allocated across the bands to
determine the subset of G∗ out of G frequency bands with
the largest mean idle times for dynamic spectrum access and
at the same time to obtain accurate parameter estimates for this
subset of bands. Our simulation results show that when channel
holding times are non-exponential, the proposed scheme achieves
a substantial improvement in the probability of correct selection
of the best subset of bands compared to an approach based on
a (univariate) Markov modulated Gaussian process model.

Index Terms—Dynamic spectrum access, cognitive radio, spec-
trum sensing, expectation-maximization, computing budget allo-
cation, hidden Markov model, machine learning.

I. INTRODUCTION

Various spectrum sensing algorithms have been developed to
improve the accuracy and effectiveness of identifying spectrum
holes in dynamic spectrum access networks. Spectrum sensing
approaches such as energy detection, matched filter detection
and cyclostationary feature detection are quite mature and
have been widely investigated for narrowband and wideband
spectrum sensing [1]. A wideband edge detector provides an
efficient way to identify the idle spectral bands over a wide
spectrum by detecting discontinuities in the power spectral
density [2]. For a very wide spectrum band, various compres-
sive sensing schemes have been proposed to recover and sense
the spectrum from the sub-Nyquist sampled signal [3].
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Temporal spectrum sensing of a narrowband channel based
on a hidden Markov model (HMM) of primary user (PU) trans-
mission activity was proposed in [4]. The proposed scheme
involves estimation of the parameter of an HMM from energy
measurements via the Baum algorithm. Given the parameter
estimate, decisions on spectrum occupancy of the channel are
made using the maximum-a-posteriori (MAP) decision rule. In
the HMM, the sojourn times in the active and idle states are
implicitly geometrically distributed. To relax this assumption,
the scheme was extended in [5] using a hidden bivariate
Markov model (HBMM), in which the state sojourn times have
discrete phase-type distributions. In [6], an online parameter
estimation scheme for HBMM-based spectrum sensing was
developed to bypass offline training of the model and to adapt
to changes in the PU transmission pattern.

In the wideband regime, HMM models were used in [7],
[8] to transform wideband sensing into a multiband sensing
problem. Narrowband temporal sensing techniques can then be
applied to each of the identified primary user (PU) spectrum
bands1. This approach has the advantage of avoiding the
degradation in spectrum sensing accuracy that can arise in
wideband sensing schemes that do not take into account
temporal dynamics, due to the presence of low duty cycles
in PU transmissions. On the other hand, if the number of
identified PU bands is large, the application of narrowband
sensing can be costly in terms of computational resources and
sensing time.

To address these issues, we proposed a multiband sensing
scheme [9] that combines parameter estimation and a com-
puting budget allocation scheme to allocate observation time
among the different bands with the aim of determining the
best sensed subset of bands subject to a computing budget.
A continuous-time Markov process was used to model the
underlying temporal dynamics of the PU transmission. To
take into account noisy measurements, the received signal
from a PU is modeled by a Markov Modulated Gaussian
Process (MMGP) [10]. A key advantage of the continuous-
time model relative to the discrete-time HMM is that the
temporal dynamics of the process are decoupled from the
sampling rate of the observed signal. Similar to the HMM,
however, in an MMGP, the underlying state sojourn times are
exponentially distributed.

1We use the terms band and channel interchangeably.



In this paper, we extend the multiband parameter estimation
scheme introduced in [9] to accommodate non-exponential
occupancy and idle times by modeling PU transmission on a
given band as a bivariate Markov Markov Modulate Gaussian
Process (BMMGP). The underlying state sojourn times of the
BMMGP are phase-type distributed, which allows for a more
accurate characterization of the PU transmission process on a
given band compared to the MMGP used in [9].

To estimate the parameter of a BMMGP, we extend the
expectation-maximization (EM) algorithm for the MMGP
in [10]. In [9], the optimal computing budget allocation
(OCBA) scheme of Chen [11] is used to determine the obser-
vation time allocations for estimating the MMGP parameters
of a set of frequency bands. Due to the higher complexity
of the BMMGP model, a different approach is needed to
apply OCBA to the observation time allocation problem. Our
simulation results show that more accurate multiband spectrum
sensing can be achieved using the BMMGP model compared
to the MMGP model when the channel occupancy times
are non-exponential. The BMMGP-based multiband parameter
estimation scheme achieves a significantly higher probability
of correct selection of the best subset G∗ of G bands, where
typically G∗ � G.

The remainder of the paper is organized as follows. In Sec-
tion II, we present the BMMGP model for PU transmissions
on a noisy channel and develop the EM algorithm for the BM-
MGP. In Section III, we adapt the OCBA scheme to perform
observation time budget allocation under the BMMGP model.
Simulation results are presented in Section IV. Concluding
remarks are provided in Section V.

II. BMMGP MODEL AND PARAMETER ESTIMATION

In this section, we discuss the BMMGP and formulate an
EM algorithm to estimate its parameter.

A. Bivariate Markov Modulated Gaussian Process

Assume the state process of a PU channel is a continuous-
time process X = {Xt : t ≥ 0} with finite state space
X := {1, . . . , d}, where d is the number of states of X . For
the spectrum sensing application d = 2 and we let states 1
and 2 represent the idle and active states, respectively of the
PU channel. We define a joint process Z = (X,S) as a
homogeneous continuous-time bivariate Markov chain [12].
The auxiliary process S = {St : t ≥ 0} has finite state
space S := {1, . . . , r}, where r corresponds to the number
of phases in the state sojourn time distribution of X , which
belongs to the class of phase-type distributions. The state
space of Z is given by Z = X × S with dr states. By
introducing the auxiliary process S, the state sojourn time of
X becomes phase-type rather than exponential. Let Y = {Yk :
k = 0, 1, . . .} represent the discrete-time energy measurement
process sampled uniformly with sampling interval h at the
receiver of a SU. The time epoch corresponding to Yk is given
by tk = kh. The process Y is conditionally Gaussian and
independent of S given X . The trivariate process (Y,X, S) is
referred to as a bivariate Markov modulated Gaussian process.

Let P denote the underlying probability measure and let
p(·) denote an associated probability density function. The
parameter of a BMMGP is given by

φ = (Q, {µa : a ∈ X}, {σ2
a : a ∈ X}), (1)

where Q = {qab(ij) : a, b ∈ X , i, j ∈ S} denotes the
generator matrix of the bivariate Markov chain, {µa : a ∈ X}
and {σ2

a : a ∈ X} are the mean and variance of the
conditional Gaussian density pYk

(y | Xtk = a) for all k and
a ∈ X . Assume the bivariate states {(a, i) ∈ Z} are ordered
lexicographically. The generator matrix Q is a dr× dr matrix
with off-diagonal elements {qab(ij) : (a, i) 6= (b, j)}, where
qab(ij) is the transition rate from state (a, i) to (b, j), and with
diagonal elements given by

qaa(ii) = −
∑

(b,j)6=(a,i)

qab(ij), i = 1, . . . , r. (2)

Let the generator matrix Q be partitioned into some submatri-
ces such that Q = {Qab : a, b ∈ X}, where Qab = {qab(ij) :
i, j ∈ S}. Assume that the submatrix Qaa is irreducible, such
that Qaa is nonsingular and all elements of the matrices −Q−1aa
and eQaat are positive for all t > 0.

Let F (y) = {F abij (y) : a, b ∈ X , i, j ∈ S} denote the
transition probability matrix of the BMMGP, where

F abij (y) = P
(
Yk ≤ y, Ztk = (b, j) | Ztk−1

= (a, i)
)

= P
(
Yk ≤ y | Ztk = (b, j), Ztk−1

= (a, i)
)
·

P
(
Ztk = (b, j) | Ztk−1

= (a, i)
)

= P (Yk ≤ y | Xtk = b) ·
P
(
Ztk = (b, j) | Ztk−1

= (a, i)
)
. (3)

Note that the density of Yk given state Xtk is independent of
S. The transition probability from Ztk−1

to Ztk is given by

P
(
Ztk = (b, j) | Ztk−1

= (a, i)
)

=
[
eQh

]ab
ij
, (4)

where [·]abij denotes the (i, j) element in the (a, b) submatrix.
Taking the derivative of F abij (y) with respect to y, the elements
of the transition density matrix f(y) are given by

fabij (y) = pYk
(y | Xtk = b)

[
eQh

]ab
ij
. (5)

Let fab(y) denote the (a, b) submatrix such that f(y) =
{fab(y) : a, b ∈ X}. Define an dr× dr block diagonal matrix
Bk with diagonal blocks given by {pYk

(y | Xtk = a) I : a ∈
X}, where I is an r × r identity matrix. Then, the transition
density matrix can be expressed as

f(y) = eQhBk. (6)

Supposed that the underlying continuous-time bivariate
Markov chain Z is sampled at its jump points to obtain
a sampled bivariate Markov chain Z̃. Denote the transition
matrix of Z̃ by D = {Dab : a, b ∈ X}, where Dab is a r × r
submatrix. The submatrix Dab can be expressed as [13], [14]

Dab =

{
−Q−1aaQab, a 6= b,

0, otherwise.
(7)



Let a dr row vector ν denote the stationary distribution of
Z̃, expressed as ν = {νa : a ∈ X} where νa is a size r
row vector of the conditional stationary distribution of state S
given X = a. It satisfies

νD = ν, ν1 = 1. (8)

With the stationary distribution of the sampled bivariate
Markov chain, we are able to obtain the distribution of the
state sojourn time X , which is discussed in Section III.

B. Forward-Backward Recursion

The forward-backward recursions for a BMMGP are similar
to those given in [10] for an MMGP. Given a sequence {yk},
we use the notations ynk := {yk, yk+1, . . . , yn} when k < n
and yn := yn0 = {y0, . . . , yn}. Let π = row{πa : a ∈ X}, be
a dr row vector of the initial state probabilities of the bivariate
Markov chain Z, where πa = {πa,i = P(Z0 = (a, i)) : i ∈
S}. For k = 0, 1, . . . , n, let L(k) denote a dr row vector of
the forward densities, i.e., L(k) = {La(k) : a ∈ X}, where
La(k) = {Lai (k) = p(Y k, Ztk = (a, i)) : i ∈ S}. The forward
recursion is given by

L(0) = πB0,

L(k) = L(k − 1)f(Yk), k = 1, . . . , n. (9)

Let R(k) denote a dr column vector of the backward den-
sities, i.e., R(k) = col{Ra(k) : a ∈ X}, where Ra(k) =
col{Rai (k) = p(Y nk+1 | Ztk = (a, i)) : i ∈ S}. The backward
recursion is given by

R(n) = 1,

R(k) = f(Yk)R(k + 1), k = n− 1, . . . , 0, (10)

where 1 denotes a column vector of all ones. The likelihood
of the observation sequence is given by

P(Y n) = L(n)1 = πB0

n∏
k=1

f(Yk)1. (11)

To guarantee the numerical stability of the forward and
backward recursions, we need to scale the densities appro-
priately. The scaled forward recursion is given by

L̄(0) =
πB0

c0
,

L̄(k) =
L̄(k − 1)f(Yk)

ck
, k = 1, . . . , n, (12)

where

c0 = p(Y0) = πB01,

ck = p(Yk | Y k−1) = L̄(k − 1)f(Yk)1, k = 1, . . . , n. (13)

The scaled backward recursion is given by

R̄(n) = 1,

R̄(k) =
f(Yk)R̄(k + 1)

ck
, k = n− 1, · · · , 0. (14)

The scaled and unscaled vectors are related by

L̄(k) =
L(k)∏k
i=0 ci

, R̄(k) =
R(k)∏n
i=k ci

, (15)

respectively. The scaled forward density can be expressed as

L̄(k) = p(Ztk | Y k), (16)

for k = 0, . . . , n. The likelihood in (11) can be expressed in
terms of ck as follows:

P(Y n) = L(n)1 =

(
n∏
k=0

ck

)
L̄(n)1 =

n∏
k=0

ck. (17)

C. EM algorithm

Let Mab
ij (T ) denote, for (a, i) 6= (b, j), the number of jumps

of Z from state (a, i) to state (b, j) in [0, T ]. Let Da
i (T ) denote

the total sojourn time of the bivariate Markov chain Z in state
(a, i) in the interval [0, T ]. Define ξk(a) := 1{Xtk

=a}, such
that ξk(a) = 1 when the state X of the bivariate Markov chain
is in state a at time tk and ξk(a) = 0 otherwise. Let Na(T )
denote the number of observations occurred in state a in the
interval [0, T ]. Let n = bT/hc denote the index of the largest
time epoch tk in [0, T ]. The new parameter estimate after an
EM iteration is given by

q̂abij =
M̂ab
ij

D̂a
i

, (a, i) 6= (b, j), (18)

µ̂a =
1

N̂a

n∑
k=0

ξ̂k(a)Yk, (19)

σ̂2
a =

1

N̂a

n∑
k=0

ξ̂k(a)(Yk − µ̂a)2, (20)

where M̂ab
ij , D̂a

i , N̂i and ξ̂k(a) are, respectively, conditional
mean estimates of Mab

ij (T ), Da
i (T ), Na(T ) and ξk(a) given

Y n and φ. These expressions constitute the M-step of the EM
algorithm.

The new estimate of Mab
ij (T ) in the mth EM iteration can

be expressed as

M̂ab
ij (T ) = E

[
Mab
ij (T ) | Y n;φm

]
=

∑
t∈[0,T ]

P (Zt−=(a, i), Zt=(b, j) | Y n;φm) .

In [13], X was observable and the estimation was divided into
two cases: (a = b, i 6= j) and (a 6= b). This is feasible for
the parameter estimation of a continuous-time Markov chain,
but not for a BMMGP, since the Markov chain is not directly
observable. Instead, we use a similar approach to that in [10].
Define a 2dr × 2dr block matrix

C =

Q ∑n
k=1

1

ck
BkR̄(k)L̄(k − 1)

0 Q

 , (21)

where 0 is a dr × dr zero matrix. Define a dr × dr matrix

I =
[
eCh

]
12
, (22)



which is the upper right block matrix of the matrix exponential
eCh. Then, the estimate M̂ab

ij is given by

M̂ab
ij = [Q� I ′]abij , (23)

where ′ denotes matrix transpose and � denotes element-wise
matrix multiplication.

Next, the new estimate D̂a
i (T ) in the mth EM iteration is

given by

D̂a
i (T )=E [Da

i (T ) | Y n;φm]=

∫ T

0

P (Zt=(a, i) | Y n) dt.

Similar to the derivation of M̂ab
ij , we obtain the estimate

D̂a
i (T ) = M̂aa

ii /q
aa
ii . Based on [10, Eq. (35)], the estimate

of ξk(a) is given by

ξ̂k(a) =
∑
i∈S

P (Ztk = (a, i) | Y n) =
∑
i∈S

L̄ai (k)R̄ai (k).

Then, the estimate of Na is given by N̂a =
∑n
k=0 ξ̂k(a).

Obtaining the estimates M̂ab
ij , D̂a

i , N̂i and ξ̂k(a) constitutes
the E-step of the EM algorithm.

D. Parameter Estimation with Block Smoothing
Since the multiband parameter estimation is performed

over a sequence of observation intervals, improved estimation
accuracy can be obtained by applying a block smoothing
approach to the EM estimate at the end of each observation
interval as in [9]. Consider a given PU channel modeled by
a BMMGP. Assuming that the BMMGP is stationary, the
smoothed estimate φ̃(m + 1) for the gth PU band in the
(m+ 1)th observation interval is given by

φ̃(m+ 1) =

∑m
k=1 T

(k)∑m+1
k=1 T

(k)
φ̃(m) +

T (m+1)∑m+1
k=1 T

(k)
φ̂(m+ 1),

where T (k) denotes the observation subinterval duration allo-
cated to the PU channel during the kth observation period,
and φ̂(m + 1) denotes the EM estimate in the (m + 1)th
observation period. Thus, the final parameter estimate for the
current observation period is an average of the EM estimates
from the beginning to the current observation period. The
performance of block smoothing applied to the EM algorithm
was studied in [15].

III. MULTIBAND TIME BUDGET ALLOCATION

In this section, we present the multiband time budget
allocation scheme for the PU channels modeled by BMMGPs
with d = 2 using the OCBA methodology. In this context, the
goal of OCBA is to determine the G∗ out of G PU bands
with the largest mean sojourn times in the idle state. Let
G = {1, . . . , G} denote the set of all PU channels. Let da(g)
denote the mean sojourn time of the gth band given X = a.
Since OCBA seeks the optimal subset with minimum cost, the
objective function for the PU band g ∈ G is defined by the
negative mean idle time,

Jg = −d1(g). (24)

The objective functions, {Jg : g ∈ G}, are assumed to be
independent and normally distributed.

A. OCBA-based Observation Time Allocation

The general OCBA algorithm is described in [11]. Its
application to multiband parameter estimation for spectrum
sensing was first proposed in [16] and [9]. We extend the
multiband parameter estimation approach by employing a
BMGPP model for each spectrum band. Time is divided
into observation intervals of duration T . At the beginning of
an observation interval, we start with a BMGPP parameter
estimate for each spectrum band and an allocation {Tg}Gg=1

of the observation interval to subintervals associated with
each band such that

∑G
g=1 Tg = T . During subinterval i,

observation samples are collected from spectrum band i, which
are used to compute a new BMGPP parameter estimate for
the band. The OCBA scheme is applied to allocate an optimal
budget of subinterval durations {Tg}Gg=1, which are used to
partition the next observation interval of duration T into
G subintervals. In the multiband spectrum sensing scenario,
optimality is with respect to determining the G∗ < G bands
with the largest mean idle times. At end of the observation
interval, G new BMGPP parameter estimates are obtained, as
well as the subset of G∗ best bands. The procedure is then
repeated during the next observation interval of duration T .

We extend the basic OCBA scheme by stopping the pro-
cedure when the approximate probability of correct selection
(APCS) exceeds a threshold. Thereafter, parameter estimation
is performed only for the G∗ best bands and the observation
subintervals for these bands are assigned equal durations of
length T/G∗. We refer to this multiband parameter estimation
scheme as OCBA+EQUAL and summarize it as follows [9]:

1) Initialization: Set the value of G∗ < G, a threshold
probability p∗ and the observation interval index k = 1.
Equally allocate the observation subinterval durations,
i.e., T (1)

1 = · · · = T
(1)
G = T/G. Let Σ

(k)
i denote the

total time allocated to band i up to and including the kth
observation interval. Hence, Σ

(1)
1 = · · · = Σ

(1)
G = T/G.

2) Estimate the mean Ĵg and standard deviation ŝg(J) of
the cost function J .

3) Sort {Ĵ1, Ĵ2, . . . , ĴG} such that Ĵi1 ≤ Ĵi2 ≤ · · · ≤ ĴiG .
Then, the subset G∗ := {i1, i2, . . . , iG∗} is the optimal
subset with the minimum cost.

4) Compute APCS as follows:

APCS :=
∏
g∈G∗

P{Ĵg ≤ c} ·
∏
g 6∈G∗

P{Ĵg ≥ c}, (25)

where

c :=
ŝiG∗+1

(J)ĴiG + ŝiG∗ (J)ĴiG∗+1

ŝiG∗ (J) + ŝiG∗+1
(J)

. (26)

5) If APCS > p∗, stop OCBA and continue parameter
estimation for set G∗ of selected channels with equal
observation subinterval allocation over the G∗ bands in
G∗; otherwise, continue with Step 6.



6) Compute Σk+1
i , i ∈ G, by solving the equations:

Σ
(k+1)
1(

ŝ1(J)/(Ĵ1 − c)
)2 = . . . =

Σ
(k+1)
G(

ŝG(J)/(ĴG − c)
)2 ,

(27)
G∑
g=1

(
Σ(k+1)
g − Σ(k)

g

)
= T. (28)

7) Compute the next subinterval time allocation:

T (k+1)
g = max

{
Σ(k+1)
g − Σ(k)

g , 0
}
, g = 1, . . . , G.

(29)

8) Increment k by 1. Go to step 2.

B. Estimation of the mean and standard deviation of J

A critical step of OCBA is to estimate the mean and
standard deviation of the objective function J . For simplicity,
we drop the subscript g and focus on one PU channel. Recall
that the sojourn time of state X of a BMMGP or a bivariate
continuous-time Markov chain is phase-type distributed, and
that νa denotes the stationary distribution of the sampled bi-
variate Markov chain associated to the BMMGP given X = a.
The probability density function of the sojourn time τ given
the state X is obtained as follows (cf. [14]):

pτ (t | X = a) = −ν̃aeQaatQaa1, (30)

where ν̃a =
νa
νa1

. The mean and variance of the sojourn time

τ given X = a are given, respectively, by

E[τ | X = a] = da = −ν̃aQ−1aa 1, (31)

σ2(τ | X = a) = 2ν̃aQ
−2
aa 1− (ν̃aQ

−1
aa 1)2. (32)

In practice, the true conditional mean and variance are un-
known. Instead, we use a finite sequence of observations {Yk}
to compute the sample mean and variance of the sojourn time.
Given the estimated parameter φ̂ obtained by the EM algorithm
in Section II-C, the sample mean and sample variance of the
idle time are given, respectively, by

d̄1 = −ˆ̃ν1Q̂
−1
11 1, (33)

s2(τ | X = 1) = 2ˆ̃ν1Q̂
−2
11 1− (ˆ̃ν1Q̂

−1
11 1)2. (34)

The mean of J is given by

Ĵ = E[−d̄1] = −d̄1 = ˆ̃ν1Q̂
−1
11 1, (35)

and the standard deviation of J is given by

ŝ(J) = s(−d̄1) =
s(τ | X = 1)√

Np1
, (36)

where Np1 denotes the number of idle periods during the
observation interval. For a large number of observations, the
value of Np1 can be approximated by the number of jumps of
state X from 2 to 1, which is given by the sum of all elements
of the lower left submatrix M̂21 in M̂ , obtained using (23).

IV. NUMERICAL RESULTS

We present some numerical results to demonstrate the
performance of the OCBA+EQUAL scheme for multiband pa-
rameter estimation of BMMGPs. This scheme applies OCBA
initially and then, after a stopping criterion is met, allocates
observation time equally to each of the bands.

To generate an observation sequence as ground truth in our
simulation experiments, the generator matrix Q of a BMMGP
was obtained by estimating the parameter of an observation
sequence that was collected on the paging band centered at
931.888 MHz by the Shared Spectrum Company [17]. This
experimental data was also used in the numerical study in [5].
Parameter estimation was carried out assuming that r = 10.
The sojourn time distribution of the signal on this band is
non-exponentially distributed (see [5, Fig. 5]), which allows
us to assess the benefit of using the BMMGP model for
parameter estimation. We set the signal-to-noise ratio (SNR)
of the received signal to 10 dB and average over 5 energy
samples for each observation in all experiments. The sample
rate was specified as 26 Hz such that h = 0.0385 s. From (31),
the true mean sojourn time of idle state can be computed as
0.063 s by the original Q.

A. Mean Idle Time Estimation

We conducted a simulation experiment to evaluate the
performance of sojourn time estimation for idle state of a
BMMGP with different values of r. For each value of r, we ran
100 simulation trials. The mean idle times from the simulation
trials are averaged to obtain the final mean idle time estimate.
For each simulation trial, we generated 2000 observations
based on the original generator matrix Q with r = 10. Figure 1
shows the mean idle time estimate for r = 1, 2, . . . , 10. The
red horizontal line shows the true value of mean idle time
computed from the original generator matrix, while the blue
curve with circle marks shows the estimated mean idle times
obtained with different value of r. From the figure, we see
that the mean idle time estimates approach the true value as
the value of r increases. When r ≥ 5, the mean idle time
estimate is very close to the true value. These results show
that modeling the PU channel using a BMMGP can improve
the accuracy of parameter estimation significantly compared
to that using the simpler MMGP (r = 1) when the sojourn
time is not exponentially distributed.

B. Probability of Correct Selection

Our next experiment evaluates the probability of correct
selection (PCS) for mutiband parameter estimation using dif-
ferent observation time allocation schemes and various values
of r. We set up G = 10 PU channels with different generator
matrices. We selected a random number uniformly distributed
in the interval [a, b], and added this number to the largest
element in the 10×10 upper right submatrix Q12 in the original
generator matrix Q. Generally, the value of the modified
element should not be negative. In this experiment, we set
a = −75 and b = 75. We then adjusted the associated diagonal
element in the upper left submatrix Q11 according to (2).



0 2 4 6 8 10
0.03
0.035
0.04
0.045
0.05
0.055
0.06
0.065

r

E(
d 1
)

Estimate
True
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Following this procedure, we were able to vary the true mean
idle time for each PU channel in the interval [0.06, 0.074].
We performed 500 independent simulation runs and averaged
the results to obtain smooth curves. Each run contained
20 observation iterations and each observation interval was
T = 500 s such that the initial allocation to each PU channel
was 50 s. For OCBA, we selected the G∗ = 3 best channels
and set the APCS threshold to p∗ = 0.98.

Figure 2 compares the PCS among the cases of r = 1, 2, 3
for the OCBA+EQUAL scheme. The PCS in the case of r = 2
shows a substantial improvement relative to the case r = 1,
which shows that using the BMMGP model can achieve better
performance in terms of selecting the best subset of channels
compared to the MMGP. However, the case r = 3 shows little
gain relative to the case r = 2. Thus, most of the performance
gain in OCBA due to more accurate modeling of the sojourn
times can be achieved with a small value of r.

V. CONCLUSION

We proposed a multiband parameter estimation for spectrum
sensing based on a bivariate Markov modulated Gaussian
process model of PU transmission on a given band. The pro-
posed scheme extends an earlier multiband sensing scheme [9],
which combined parameter estimation and computing budget
allocation, using an MMGP model of PU transmissions. A
drawback of the MMGP-based scheme is that the underlying
model implicitly assumes exponentially distributed state so-
journ time distributions of the PU transmission process, which
is not generally the case in practice.

We developed an EM algorithm for estimating the parameter
of a BMMGP. To select the subset of PU channels with the
largest mean idle times, we applied OCBA with mean idle
time as the objective function. As the mean idle time of
a BMMGP is phase-type distributed, non-exponential state
sojourn times can be modeled more accurately using the
BMMGP compared to the MMGP. Our numerical results
confirmed that significantly better accuracy can be achieved
via the BMMGP model compared to using the MMGP model.
This in turn leads to higher probability of correct selection
(PCS) when determining the best subset of G∗ bands out of
a total of G� G∗ bands across a wide spectrum. To achieve
this gain in PCS, only a small number of additional states in
the BMMGP model relative to the MMGP model were needed,
which suggests that the extra computational overhead can be
kept small in practical scenarios.
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