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Abstract—Cognitive radios hold tremendous promise for in-
creasing spectral efficiency in wireless systems. In cognitive
radio networks, secondary users equipped with frequency-agile
cognitive radios communicate with one another via spectrum that
is not being used by the primary, licensed users of the spectrum.
We consider a multichannel cognitive radio network scenario in
which a secondary transmitter can switch to different channels
for opportunistic communications. Multichannel diversity can
be achieved by dynamically switching to different channels
during transmission. Our numerical results show that even a
simple randomized channel switching scheme can significantly
reduce the average symbol error probability. We also propose a
scheduling algorithm based on maximizing signal-to-noise ratio
to further improve the performance of cognitive transmission.

Index Terms—Cognitive radio, multichannel diversity

I. I NTRODUCTION

As wireless devices and applications continue to grow,
more and more spectrum resources will be needed. In the
current spectrum regulatory framework, spectrum or frequency
is allocated to licensed users over a geographic area. Within
these constraints, spectrum is considered a scarce resource due
to static spectrum allocation. Recent empirical studies ofradio
spectrum usage have shown that licensed spectrum is typically
highly underutilized [1], [2]. To recapture the so-called “spec-
trum holes,” various schemes for allowing unlicensed or sec-
ondary users to opportunistically access unused spectrum have
been proposed. Opportunistic or dynamic spectrum access is
achieved by cognitive radios that are capable of sensing the
radio environment for spectrum holes and dynamically tuning
to different frequency channels to access them. Such radios
are often calledfrequency-agile or spectrum-agile.

On a given frequency channel, a spectrum hole can be char-
acterized as spatial or temporal. Aspatial spectrum hole can
be specified in terms of the maximum transmission power that
a secondary user can employ without causing harmful inter-
ference to primary users that are receiving transmissions from
another primary user that is transmitting on the given channel.
Spatial spectrum sensing is investigated in [3], wherein the
maximum interference-free transmit power (MIFTP) of a given
secondary user is estimated based on signal strengths received
by a group of secondary nodes. To calculate the MIFTP for
a secondary node, estimates of both the location and transmit
power of the primary transmitter are estimated collaboratively
by a group of secondary nodes. Using these estimates, each

secondary node determines its approximate MIFTP, which
bounds the size of its spatial spectrum hole.

A temporal spectrum hole is a period of time for which
the primary transmitter is idle. During such idle periods, a
secondary user may opportunistically transmit on the given
channel without causing harmful interference. The problemof
detecting when the primary is ON or OFF is calledtemporal
spectrum sensing. Cooperative temporal sensing has been
studied in [4], [5]. The decision on the ON/OFF status of the
primary transmitter can be made either at individual secondary
nodes or collaboratively by a group of secondary nodes. In [6],
a temporal spectrum sensing strategy that exploits multiuser
diversity among secondary nodes is proposed.

In an earlier paper [7], a joint spatial-temporal sensing
was proposed whereby a secondary node performs spatial
sensing to determine its MIFTP when the primary transmitter
is ON and uses localization information obtained in the process
of spatial sensing to improve the performance of temporal
sensing, which estimates the ON/OFF state of the primary
transmitter. In [8], a combined joint spatial-temporal sensing
and amplify-and-forward cooperative relaying scheme was
proposed to improve the performance of cognitive trans-
mission. A decode-and-forward cooperative communication
scheme was investigated in [9].

In this paper, we consider a multichannel cognitive radio
network in whichN primary transmitters (PTs) operate onN
different channels with frequenciesfi, i = 1, . . . , N . Multi-
channel cognitive radio networks have been studied in [10]–
[13]. In [11], [12], a dynamic programming approach was
proposed to search for an optimal sensing order among the
channels. In [10], achannel-aware switching algorithm was
developed to decidewhere and when to switch among the
candidate channels. Sequential temporal sensing algorithms
were developed for OFDM-based hierarchical cognitive radio
systems in [13]. In all of the aforementioned works, only pure
temporal spectrum sensing was considered.

In this paper, we investigate channel switching in multichan-
nel cognitive radio networks employing joint spatial-temporal
sensing. In our scheme, secondary users can switch to a new
channel even when the primary user on that channel is ON
and continue to transmit using MIFTP. We show that even for
a simple randomized channel switching scheme, our scheme
outperforms the conventional scheme in which secondary users
stay on the same channel during transmission. We also pro-



Fig. 1. 2-state Markov chain model for PT ON/OFF process.

pose a “maximized signal-to-noise ratio” scheduling scheme
that can further improve the performance of secondary user
transmissions.

The remainder of the paper is organized as follows. Sec-
tion II describes the system model. Section III discusses the
randomized channel switching algorithm and its performance.
The maximizing SNR scheduling algorithm is proposed in
Section IV. Section V presents simulation results. Finally, the
paper is concluded in Section VI.

II. SYSTEM MODEL

A. Transmission frames and PT behavior

We assume that the licensed wireless spectrum consists
of N non-overlapping channels with frequenciesfi, i =
1, 2, . . . , N . There is one PT on each channel. Secondary users
are equipped with a single half-duplex transceiver capableof
switching to different channels. Time on the wireless channel
is divided into frames consisting ofNs symbols. Each PT
alternates between ON and OFF states on a per-frame basis
according to the on-off Markov model of Fig. 1. The ON/OFF
states of different PTs are statistically independent. TheON
and OFF durations of PTi are modeled by geometric random
variables with parametersqi andpi, respectively (cf. [14]). The
steady-state probabilities that PTi is ON and OFF are given
by pon

i = qi/(pi + qi) andpoff
i = pi/(pi + qi), respectively.

B. Channel modeling

When a PT is ON, a secondary transmitter (ST) is limited
in the amount of power it can use in order to avoid causing
harmful interference to the primary users who receive the
transmissions from the PT. The maximum power that can be
used by a given secondary node while avoiding harmful inter-
ference to primary users is called themaximum interference-
free transmit power (MIFTP) (cf. [3], [15]). A method for
a secondary node to estimate its MIFTP is developed in [3]
for the case of a single primary transmitter; the multiple
transmitter case is addressed in [16].

In [7], joint spatial-temporal sensing is proposed for one
PT with a single channel at frequencyf . The joint spatial-
temporal sensing in [7] can easily be extended to multichannel
scenario. In particular, at the beginning of each transmission
frame, a set of secondary nodes collaboratively estimates the
ON/OFF state of PTi by switching to channelfi using
temporal sensing algorithms proposed in [7]. Spatial spectrum
holes on channeli in terms of MIFTP can be estimated by
a group of secondary users switching to frequencyfi. We

assume that the MIFTP of a secondary user on channelfi

remains unchanged until the location of PTi changes.
Both spatial sensing and temporal sensing overN cognitive

channels can be performed concurrently by usingN sets of
temporal or spatial sensing nodes or sequentially by one set
of temporal or spatial sensing nodes that sequentially switch
among theN channels. In practice, the time scale over which
the PT changes its location is much larger than the time
scale of its ON/OFF durations. Under this assumption, the
extra overhead of joint spatial-temporal sensing comparedto
temporal sensing is not significant.

For a given PTi with frequencyfi, the wireless channel
is modeled by Rayleigh fading with time correlation [17]. We
assume that the channel remains constant for a duration of
Ns/2 symbols. For the first half of the transmission frame, the
received signal of a simple wireless channel model with flat
(frequency non-selective) fading without shadowing is given
by [18]

y1 =
√

P (d, ǫ)his1 + n1, (1)

where

P (d, ǫ) , δ2
(

d0

d

)α

ǫ

denotes the equivalent transmitted power after taking into
account the effect of path loss. Here,δ2 is the free space
signal power attenuation factor between the source and a
reference distanced0, d is the distance between the source
and destination,α is the propagation exponent,h ∼ CN (0, 1)
is a complex Gaussian random variable with variance1,
n1 ∼ CN (0, N0), ands1 is the transmitted signal.

For the second half of the frame, we have

y2 =
√

P (d, ǫ)gis2 + n2, (2)

where

gi = ρihi +
√

1− ρ2
iαi (3)

whereαi ∼ CN (0, 1), n1 ∼ CN (0, N0), andρi = J0(2πDiτ)
is the channel autocorrelation [17], whereDi is the Doppler
shift of channeli andτ is the time to transmitNs/2 symbols.

Let ǫi and ǫ̃i denote the MIFTP of a given ST when PTi
is ON and the maximum transmission power that can be used
when PTi is OFF, respectively. We also define

Pi = P (d, ǫi), P̃i = P (d, ǫ̃i),

as the equivalent transmitted powers when PTi is ON from
ST to a given secondary receiver (SR) when PTi is ON and
OFF, respectively. To combat the low SNR at the SR due to
limited transmit power at the ST, a repetition code is used at
the ST. Note that the repetition code is close to optimal in the
low SNR regime [19]. By using the repetition code, the ST
transmits the same signal in both halves of the transmission
frame, i.e.,s1 = s2 = s. We also assume that the channel
coefficientshi and gi can be estimated at the SR, i.e., via
training sequences, and maximal ratio combining (MRC) is



used to combine the received signal at the SR. Hence, the
final received signal at SR is

y =
√
P (|hi|2 + |gi|2)s+ h∗in1 + g∗i n2 (4)

whereP = Pi when PTi is ON andP = P̃i when PTi is
OFF.

III. E XPLOITING MULTICHANNEL DIVERSITY

A. Randomized channel switching

Consider a simple scenario in which we have two communi-
cation pairs (ST1, SR1) and (ST2, SR2) over two cognitive
radio channels with frequenciesf1 andf2, respectively. When
there is no channel switching, i.e., STi uses the same channel
fi to communicate with SRi, the received signal at SR (cf.
(4)) cannot achieve a diversity order of two becausehi and
gi are correlated. To exploit multichannel diversity during the
first half of the frame, ST1 uses channelf1 to communicate
with SR 1 and switches to channelf2 during the second half
of the frame. Thus, the received signal at SR1 is

y = (
√
µ1|h1|2 +

√
µ2|g2|2)s+ h∗1n1 + g∗2n2 (5)

whereµ1 = P1 or µ1 = P̃1 if PT 1 is ON or OFF, respectively.
µ2 = P2 or µ2 = P̃2 if PT 2 is ON or OFF, respectively.
Sinceh1 andg2 are independent, the received signal at SR1
has diversity order two. Similarly, the received signal at SR 2
also has diversity order two.

We expect that the average symbol error probability (SEP)
will decrease compared to the case when there is no channel
switching. In the general scenario, we may haveN channels
with frequenciesfi andN pairs (STi, SRi), i = 1, 2, . . . , N .
In this case, pair (STi, SR i) can switch to channelj 6= i
during the second half of the transmission frame as long as
there is no transmission on channelj. We assume that there is
a centralized scheduler or a medium access control protocol
to oversee the process of channel switching.

B. Performance Analysis

1) Randomized channel switching: Next, we analyze the
performance of our scheme in term of average symbol error
probability (SEP). Letpon

i and poff
i , respectively, denote the

ON and OFF probabilities of PTi, i = 1, 2. We shall assume
that M-PSK modulation is used. Using the moment generating
function (MGF) approach in [20], [21], the SEP of M-PSK
signals with MRC ofL independent fading paths can be
expressed as

1

π

∫

(M−1)π

M

0

L
∏

k=1

Mγk

(

− gPSK

sin2 φ

)

dφ (6)

wheregPSK = sin2(π/M) andMγl
(u) = (1 − uγ̄l)

−1 is the
moment generating function of Rayleigh fading with average
SNR γl.

Let Γ = (γ1, γ2, . . . , γL) denote a vector ofL average SNR
values corresponding toL independent fading paths. Then the

SEP can be expressed as

ψ(Γ) =
1

π

∫

(M−1)π

M

0

L
∏

k=1

(

1 +
gPSK

sin2 φ
γk

)

−1

dφ. (7)

The received signal in (5) is the maximal ratio combining
of two independent Rayleigh fading channel. Using the MGF
approach, the SEPs for the four possible joint of PT1 and2
are given by

SEPon,on = ψ(γ1, γ2),

SEPon,off = ψ(γ1, γ̃2),

SEPoff,on = ψ(γ̃1, γ2),

SEPoff,off = ψ(γ̃1, γ̃2).

The average SEP of the randomized switching scheme over
all ON and OFF states of PT1 and PT2 is given by

SEPrand = pon
1 pon

2 SEPon,on + pon
1 poff

2 SEPon,off (8)

+ poff
1 pon

2 SEPoff,on + poff
1 poff

2 SEPoff,off .

In the case of pure spatial sensing, ST1 and2 always transmit
with at their MIFTPs, so the average SEP in this case is simply
SEPon,on.

2) No channel switching: When there is no channel switch-
ing, the received signal at the SR is given by (4). As
hi ∼ CN (0, 1), we can denotehi = ai + jbi whereai, bi ∼
N (0, 0.5). In (3), letαi = ci + jdi whereci, di ∼ N (0, 0.5).
The term|hi|2 + |gi|2 in (4) can be rewritten as

|hi|2 + |gi|2 = (1 + ρ2)(a2
i + b2i ) + (1− ρ2)(c2i + d2

i )

+ 2ρ
√

1− ρ2(aici + bidi).

We have E[(aici + bidi)] = 0 where E[·] denotes the
expectation operator. Hence, we can approximate

|hi|2+|gi|2≈(1+ρ2−δ)(a2
i +b2i ) + (1− ρ2)(c2i +d2

i ), (9)

where the constantδ accounts for the fact that when the term
aici+bidi is negative, the received SNR is effectively reduced,
resulting in erroneous symbol detection. An appropriate value
of δ can be determined by computer simulation. We find

δ =

{

ρ2(1− ρ), if ρ < 0.7,
ρ(1− ρ), if ρ ≥ 0.7.

(10)

Combining (9) and (4), we have

ya ≈
√
P

[

(1 + ρ2 − δ)|hi|2 + (1− ρ2)|αi|2]s+ z, (11)

wherez = h∗in1 + g∗i n2. The received signalya in (11) can
be approximated by the maximal ratio combination of two
independent channels with Rayleigh fading coefficientshi and
αi and average SNRsγ1 = P (1+ρ2−δ)/N0 andγ2 = P (1−
ρ2)/N0. Finally, the average SEP at the secondary receiver
when there is no channel switching is

SEPconv = ψ(γ1, γ2). (12)

Our analysis is confirmed by simulation results presented in
Section V.



IV. M AXIMIZED SNR SCHEDULING ALGORITHM

In this section, we propose a scheduling algorithm that
exploits multichannel diversity in cognitive radio networks.
Our scheduling algorithm maximizes the SNR of the received
signal at the SR. We assume thatN cognitive channels
with frequenciesfi, i = 1, 2, . . . , N allow simultaneously
transmission of up toN pairs of (ST, SR). LetK ≤ N
be the number of concurrent secondary transmission. We also
assume that the scheduler knows the ON/OFF state of PTi.
The scheduler maintains a state vectorp whoseith component
p(i) = 1 when PTi is OFF andp(i) = 0 when PTi is ON.

Through spatial sensing, scheduler can obtain an estimate of
the distance between STi and SRi and therefore an estimate
of the equivalent transmitted powersPi andP̃i. The scheduler
also has the knowledge of the channel state information (CSI)
matrix H at the beginning of each transmission frame. The
CSI matrix G is also available at the second half of the
transmission frame. These CSI matrices can be estimated at
the SR via training and then forwarded to the scheduler. The
elements of the channel matrixH, H(i, j) = hij , where
1 ≤ i ≤ N and 1 ≤ j ≤ K and hij is the channel gain
between STj and SRj on channeli for the first half of the
transmission frame. The(i, j) element of the channel matrix
G, G(i, j) = gij , is the channel gain between STj and SR
j on channeli for the second half of the transmission frame.
We have

gij = ρijhij +
√

1− ρ2
ijαij

whereρij is the channel autocorrelation between STj and SR
j on channeli andαij ∼ CN (0, 1).

The scheduler also maintains an idle/reserved channel status
matrix S of dimensionN × 2, where S(i, 1) = 0 if the
first half of transmission frame of channeli is idle, otherwise
S(i, 1) = 1, i.e., the first half of transmission frame of channel
i is reserved for transmission. We also haveS(i, 2) = 0 if
the second half of transmission frame of channeli is idle;
otherwiseS(i, 2) = 1, i.e., the second half of transmission
frame of channeli is reserved for transmission.

At the beginning of the transmission frame, Algorithm 1
starts with user1. It finds the channelk in the list ofN avail-
able channels such that the received SNRγk is maximized,
whereγk = Pk|hk1|2/N0 if PT is ON andγk = P̃k|hk1|2/N0

if PT is OFF. After channelk is reserved for user1, it is
removed from the list of available channels. The algorithm
then proceeds to user2 and repeats with the list ofN − 1
remaining channels. The algorithm continues until all of the
users have been scheduled.

Thus, the number of idle channels for userK is N −K+1
becauseK − 1 channels have been reserved forK − 1
previous users. Because of the multichannel fading diversity,
the larger the number of idle channels, the largerγk can
be obtained. Clearly, in this algorithm, the first user has the
most advantage. Therefore, to ensure fairness among users,in
the next transmission frame, Algorithm 1 starts with user2
and ends with user1. After completing the scheduling task,
i.e., S1 is identified, STk uses channelS1(k) to transmit

Algorithm 1 Maximized SNR scheduling algorithm
1: Input: ON/OFF state vectorp, CSI matricesH and G,

idle/reserved matrixS
2: for j = 1 to K do
3: t← 0
4: while t < K do
5: k ← j + t mod K
6: S← 0

7: if (First half of transmission frame)then
8: S1(k) ← arg maxi,S(i,1)=0{(γi + p(i)(γ̃i −

γi))|hij |2}
9: S(S1(k), 1)← 1

10: else if (Second half of transmission frame)then
11: S2(k) ← arg maxi,S(i,2)=0{(γi + p(i)(γ̃i −

γi))|hij |2}
12: S(S2(k), 2)← 1
13: end if
14: t← t+ 1
15: end while
16: end for

to SR k. The same algorithm is used for the second half of
the transmission frame. The performance of the maximized
SNR scheme is expected to outperform that of the simple
randomized channel switching scheme in Section III. This is
confirmed by numerical results given in Section V.

V. NUMERICAL RESULTS

In this section, we compare the SEP performance of the
different schemes. For all simulations, we use BPSK modula-
tion and a frame length ofNs = 640 symbols. All channels
have the samePi and P̃i. The average SNRγi = Pi/N0

and γ̃i = P̃i/N0. We assume that̃γi = γi + 10 dB and in all
figuresSNR = γi. Except for Fig. 4, the ON/OFF probabilities
of a PT are assumed to be the same across all channels, i.e.,
pon

i = poff
i = 0.5.

In Fig. 2, we compare the performance of our randomized
channel switching scheme with a conventional scheme with
no channel switching. We assume all channels have the same
correlation ρ = 0.8. As seen in Fig. 2, the randomized
channel switching scheme effectively reduces the average
SEP. For spatial sensing, the randomized channel switching
scheme is about 3 dB better in the SEP range of interest, i.e.,
SEP ≤ 10−3, than the conventional scheme. For joint spatial-
temporal sensing, the random switching scheme is about 4 dB
better than the conventional scheme. For joint spatial-temporal
sensing, randomized channel switching exploits both fading
diversity and the diversity of the ON/OFF state of the PT.
Clearly, joint spatial-temporal sensing always outperforms
spatial sensing for a given switching scheme. In Fig. 2, the
simulation and analytical results derived in Section III-Bare
closely matched.

In Fig. 3, we compare the SEP of the conventional scheme
with randomized channel switching over different values of
the channel correlationρ1 = ρ2 = ρ. We useγi = 12 dB and



γ̃i = 22 dB with i = 1, 2. As in Fig. 3, the performance of
randomized channel switching is not affected by the channel
correlation because the ST switches to a new channel with
independent channel fading. The SEP of the conventional
scheme increases asρ increases. Atρ = 0, i.e., no correlation,
under pure spatial sensing, the SEP of the conventional scheme
equals that of the randomized channel switching scheme.
However, atρ = 0, the randomized channel switching still out-
performs the conventional scheme when joint spatial-temporal
sensing is used. The reason is that even whenρ = 0, random
switching can exploit multichannel diversity in terms of the
ON/OFF diversity of the PT. In particular, low received SNR
normally occurs when both PTs are ON for joint spatial-
temporal sensing, i.e., with probabilitypon

1 pon
2 , and when PT1

or PT2 is ON, i.e., with probabilitiespon
1 or pon

2 , respectively.
Next, we investigate scenarios in which two channels have

differentpoff probabilities in Fig. 4:poff
1 = 0.8 andpoff

2 = 0.4,
respectively. Clearly, if user1 always uses channel1 and user2
always uses channel2, the performance experienced by user1
will always be better than that by user2. As poff increases,
the probability that the ST can transmit with maximum power
increases, and thus the performance improves. This may
create fairness issues in multichannel cognitive radio networks.
However, by employing randomized switching, both users will
have the same performance. Also, in the SEP range of interest,
i.e., SEP ≤ 10−3, the performance of randomized channel
switching is equal or even better compared to the performance
of user 1 when there is no channel switching. Randomized
channel switching not only improves performance but also
guarantees fairness among the secondary users.

In Fig. 5, we compare the performance of the randomized
channel switching scheme in conjunction with the maximized
SNR scheduling scheme of Algorithm 1. In maximized SNR
scheduling, the total ofN = 4 channel is used. When
SEP =10−5, Algorithm 1 with K = 4 concurrent (ST,SR)
transmissions performs about 10 dB better than randomized
channel switching. As the number of concurrent transmissions,
K, decreases, the average SEP decreases. WhenK = 1, the
maximizing SNR scheduling scheme is about 13 dB better
than randomized channel switching and about 3 dB better than
maximized SNR scheduling withK = 4.

In Fig. 6, we investigate the performance of maximized SNR
scheduling as the number of channelsN increases. We assume
K = 1 and all channels haveρ = 0.8. We also assume that
γi = 4 dB and γ̃i = 14 dB. The simulation results show
that the SEP of our proposed scheduling scheme decreases
significantly as the total number of usersN increases. When
more channels are available, the maximized SNR of all chan-
nels increases and hence, the performance of maximized SNR
scheduling improves.

VI. CONCLUSION

We considered a multichannel cognitive radio network with
joint spatial-temporal spectrum sensing. In a multichannel cog-
nitive radio network, fading diversity exists among different
channels at a given time. We showed that simple randomized
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switching among different channels during transmission sig-
nificantly improves the performance of cognitive transmission.
When the channel fading coefficients and the ON/OFF states of
all primary transmitters are available, the proposed maximized
SNR algorithm further improves transmission performance.In
this paper, our performance analysis was based on average
symbol error probability. In ongoing work, we are investigat-
ing the achievable capacity of our proposed schemes.
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