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Abstract—A bivariate Markov chain comprises a pair of finite-
alphabet continuous-time random processes, which are jointly,
but not necessarily individually, Markov. Forward recursive con-
ditional mean estimators are developed for the state, the number
of jumps from one state to another, and the total sojourn time of
the process in each state. The recursions are implemented using
Clark’s transformation and tested in estimating the parameter of
the bivariate Markov chain using the expectation-maximization
(EM) algorithm. 1

Index Terms—Markov chain, recursive estimation, Zakai equa-
tion

I. INTRODUCTION

A bivariate Markov chain comprises a pair of random
processes which are jointly Markov. Each of the two pro-
cesses alone need not be Markov. Each process is assumed
continuous-time with finite-alphabet. One of the two processes
is assumed observable, possibly through a noisy channel, while
the other plays the role of an underlying process. Simultaneous
jumps of the two processes are permissible. Examples of finite-
state bivariate Markov chains include the Markov modulated
Poisson process (MMPP), see, e.g., [10], the Markov modu-
lated Markov process (MMMP), see, e.g., [8], and the batch
Markovian arrival process (BMAP), see, e.g., [12]. In all of
these examples, the underlying processes are Markov chains.
Furthermore, in the MMPP and the MMMP, the observable
and underlying processes do not jump simultaneously.

Bivariate Markov chains differ from univariate Markov
chains primarily in the distribution of the dwell time of the
observable process in each of its states. This distribution
was shown to be phase-type in [13]. The set of phase-type
distributions is dense in the set of distributions of non-negative
random variables [14]. Multivariate Markov chains have been
used in modeling ion channel currents, see, e.g., [3], and in
modeling DNA sequences in molecular phylogenetics, see,
e.g., [4].

In this paper we are interested in forward recursive estima-
tion of certain statistics of the bivariate Markov chain such
as the number of jumps from one state to another and the
total sojourn time of the chain in each state. These recursions
could be embedded in the expectation-maximization (EM)
algorithm for maximum likelihood (ML) estimation of the
parameter of the bivariate Markov chain [6]. Explicit forward
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recursions for estimating similar statistics of the MMMP were
developed in [9]. Recently [13], forward-backward recursions
were developed for ML estimation of the parameter of the
bivariate Markov chain using the EM approach. Forward
recursions are often preferable since they eliminate the need
to store a large amount of training data, and the estimators are
updated as the data becomes available.

Forward recursions are usually developed by using the
transformation of measure approach in conjunction with the
generalized Bayes’ rule [16, pp. 259-260]. This approach
requires a reference probability measure which dominates the
true probability measure of the process of interest. Here this
process is the bivariate Markov chain. Under the dominating
measure, the two processes comprising the bivariate Markov
chain are required to be independent, and hence cannot have
simultaneous jumps. Since the bivariate Markov chain could
have simultaneous jumps, its probability measure cannot be
dominated by any such reference measure. The transformation
of measure approach was applicable for MMMPs [9], since,
by definition, the two processes of an MMMP cannot jump
simultaneously.

This difficulty may be circumvented by assuming that the bi-
variate Markov chain is observed through a noisy channel, and
allowing for sufficiently high signal to noise ratio. We adopt
this approach in this paper and develop forward recursions
for the conditional mean estimates of the state of the bivariate
Markov chain, the number of jumps from each state to another,
and the total sojourn time of the chain in each state. The price
we have to pay for introducing noise to the observable process
is that the resulting recursions involve stochastic integrals
which can only be evaluated numerically. This is done here by
using Clark’s transformation [5] which converts the stochastic
differential equations into time-varying ordinary differential
equations. The latter are solved numerically. We demonstrate
the performance of the forward recursive estimators in an EM
parameter estimation setup. We compare the results with those
obtained using forward-backward recursions in [13].

The plan for the remainder of this paper is as follows. In
Section II we define the bivariate Markov chain, and present
some preliminary material such as the Girsanov Theorem for
this problem. In Section III we present the recursive estimators
for the statistics of the bivariate Markov chain. In Section IV
we describe the implementation of the forward recursions. In
Section V we provide a numerical example. Comments are



given in Section VI.

II. PRELIMINARIES

Let (Ω,A,G, P1) be a complete filtered probability space.
On this space, let Z = {Zt : Zt = (Xt, St), t ≥ 0} denote
the bivariate Markov chain, and let W = {Wt, t ≥ 0} denote
a standard Brownian motion. In the absence of noise, X =
{Xt, t ≥ 0} is the observable process of the bivariate Markov
chain, and S = {St, t ≥ 0} is its underlying process. The
bivariate Markov chain Z is assumed separable, homogeneous,
and irreducible. With probability one, all sample paths of Z
are right-continuous step functions with a finite number of
jumps in each finite interval, see [1, Thm 2.1]. Let

Yt =
1

α

∫ t

0

(1, 0)

(
Xτ

Sτ

)
dτ +Wt, t ≥ 0 (1)

denote the observed noisy signal where the constant α controls
the signal to noise ratio. Let Zt = {Zτ , 0 ≤ τ ≤ t}, and define
Y t in a similar manner. Let Zt = σ(Zt) and Ft = σ(Y t)
denote, respectively, the smallest σ-field induced by Zt and
Y t. Both filtrations are assumed to satisfy the usual condition,
i.e., each is right-continuous, [11, p. 47]. Let Gt = Zt

∨
Ft.

This is the smallest σ-field which contains Zt

∪
Ft.

Let S = {a1, a2, . . . , ar} denote the state space of S
where the order r is assumed known. Similarly, let X =
{b1, b2, . . . , bd} denote the state space of X with assumed
known order d. The state space of Z is given by Z = X×S. To
simplify notation, we may refer to ai as i for i = 1, . . . , r and
to bl as l for l = 1, . . . , d. Neither X nor S need be Markov.
The generator of the bivariate Markov chain is denoted by
H = {hln(ij), l, n = 1, . . . d; i, j = 1, . . . r} where for
(l, i) ̸= (n, j),

hln(ij) = lim
ϵ→0

1

ϵ
P (Zt+ϵ = (n, j) | Zt = (l, i)). (2)

We do not restrict the form of H and hence the two processes
S and X may have simultaneous jumps.

By specializing the generator matrix H , several impor-
tant special bivariate Markov chains can be obtained. To
demonstrate this aspect, we order the state pairs {(l, i)}
lexicographically, and express the generator as a block matrix
H = {Hln, l, n = 1, . . . , d} where Hln = {hln(ij), i, j =
1, . . . , r} is an r×r matrix. Consider, for example, the MMMP.
For MMMPs, the underlying process S is a Markov chain
with generator of say Q, and S and the observable process X
cannot jump simultaneously. Hence, the generator H for an
MMMP has the following structure. The off-diagonal elements
of Q form the off-diagonal elements of each Hll, and all
{Hln, l ̸= n} are diagonal matrices. The underlying process S
is Markov if and only if Q =

∑d
n=1 Hln for all l = 1, . . . , d

[2]. In another example, the MMPP can also be seen as
a particular bivariate Markov chain since it is a particular
MMMP with d = r = 2 when counts are taken modulo-2
[9].

In this paper, we capitalize on the now standard transfor-
mation of measure approach, see, e.g., [19], [16, Chap. 7], to

derive forward recursions for conditional mean estimates of
certain statistics of the bivariate Markov chain. The approach
was recently applied to MMMPs [9]. Let P0(Z, Y ) denote a
reference probability measure which dominates the probability
measure P1(Z, Y ) of the process. Under P0, Y = W , and
Z and Y are statistically independent. The Radon-Nikodym
derivative is given by the Girsanov theorem [16] as follows:

Λt = Λ(Zt, Y t) =
dP1

dP0
(Zt, Y t)

= exp

{∫ t

0

1

α
XτdYτ − 1

2

∫ t

0

1

α2
X2

τ dτ

}
= 1 +

∫ t

0

Λτ−
1

α
Xτ−dYτ (3)

and we assume that Novikov’s condition is satisfied [11, Thm
8.17]. This condition implies that Λt is a Gt-martingale under
P0, and that

∫
ΛtdP0 = 1.

In this paper we develop forward recursions for estimating
the state Zt, the number of jumps M ln

ij (t) from state (l, i) to
state (n, j) in [0, t], and the total sojourn time Dl

i(t) in state
(l, i) in [0, t], of the bivariate Markov chain, from a sample
path Y t of the noisy signal. The state recursion is similar to
that developed in [17] and in [18] for the univariate Markov
chain. The recursions for estimating M ln

ij (t) and Dl
i(t) could

be used in an EM approach for estimating the parameter ϕ of
the bivariate Markov chain which is given by the off-diagonal
elements of its generator H . When Z is observable in [0, t],
then the ML estimate of ϕ is given by [1]

ĥln(ij) =
M ln

ij (t)

Dl
i(t)

, for (l, i) ̸= (n, j). (4)

When the bivariate Markov chain Z is partially observable,
i.e., when estimation is performed from Y rather than from Z,
then estimation of the parameter can be performed iteratively
using the EM approach. In each iteration, M ln

ij (t) and Dl
i(t) in

(4) are replaced by their conditional mean estimates which are
calculated using the current parameter estimate. A numerical
example for this EM application is given in Section V.

III. RECURSIVE ESTIMATORS

In this section we derive recursions for the state Zt, the
number of jumps M ln

ij (t), and the total sojourn time of the
bivariate Markov chain Dl

i given Y t. We discuss their numeric
implementation using Clark’s transformation in Section IV.

A. State Recursion
Define the indicator function for Zt = (Xt, St) as follows:

φnj(t) =

{
1 Xt = bn, St = aj
0 otherwise. (5)

Since Zt is finite-state, conditional mean estimation of Zt can
be obtained from conditional mean estimation of φnj(t). Using
[11, Thm 9.15], the semimartingale representation of φnj(t)
is given by

φnj(t) = φnj(0) +
∑
νξ

hνn(ξj)

∫ t

0

φνξ(τ)dτ + Vnj(t) (6)



where {Vnj(t)} is a Zt-martingale. Using the generalized
Bayes’ rule

φ̂nj(t) = E1{φnj(t) | Ft} =
E0{φnj(t)Λt | Ft}

E0{Λt|Ft}
:=

πt(φnj)

πt(1)
.

(7)
The estimate of Zt is obtained from

Ẑt = E1

{(
Xt

St

)
| Ft

}
=

∑
nj

(
bn
aj

)
φ̂nj(t). (8)

Proposition 1. The state recursion is given by

πt(φnj) = π0(φnj) +
bn
α

∫ t

0

πτ−(φnj)dYτ

+
∑
li

hln(ij)

∫ t

0

πτ (φli)dτ. (9)

Proof: From the product rule for semimartingales [11, p.
220],

φnj(t)Λt = φnj(0)Λ0 +

∫ t

0

φnj(τ−)dΛτ

+

∫ t

0

Λτ−dφnj(τ) + [φnj ,Λ](t) (10)

where [φnj ,Λ](t) denotes the quadratic covariation between
φnj(t) and Λt. Since φnj(t) is of finite variation and Λt is con-
tinuous P0-a.s., we have from [11, p. 219] that [φnj ,Λ](t) = 0.
Substituting (3) in the first integral of (10), and (6) in its
second integral, we obtain under P0

φnj(t)Λt = φnj(0)Λ0 +
1

α

∫ t

0

φnj(τ−)Xτ−Λτ−dYτ

+
∑
li

hln(ij)

∫ t

0

Λτ− φli(τ−)dτ +

∫ t

0

Λτ− dVnj(τ).(11)

The conditional mean of (11) under P0 is obtained as follows.
First, consider the last integral in (11). Note that Vnj is a Zt-
martingale, and hence also a Gt-martingale, since Z and Y are
independent under P0. Thus, this integral is a Gt-martingale
and its conditional mean given Ft under P0 equals zero. Next,
using Fubini’s theorem, and independence of Z and Y under
P0, the conditional mean of each of the remaining integrals in
(11) can be applied directly to the integrands and conditioning
can be reduced from Ft to Fτ−. In addition, φnj(τ−)Xτ− =
φnj(τ−)bn. These observations provide the desired recursion
in (9).

When r = 1 the state estimation problem reduces to that
of estimating a univariate Markov chain observed in white
Gaussian noise, see [17], [18]. The approach used here adheres
to that of [18, Eq. 8].

B. Number of Jumps Recursion
The recursion for estimating the number of jumps M ln

ij (t)
from state (l, i) to state (n, j) in [0, t] is, in general, an infinite-
dimensional estimation problem. It can be turned into a finite-
dimensional estimation problem when

ηγk(t) = M ln
ij (t)φγk(t),

γ = 1, . . . , d
k = 1, . . . , r

(12)

is first estimated, and then summed up over all {γ, k} to
provide the estimate of M ln

ij (t) [20], [7]. Let πt(ηγk) =
E0{M ln

ij (t)φγk(t)Λt | Ft}. We have,

M̂ ln
ij (t) = E1{M ln

ij (t) | Ft} =
E0{M ln

ij (t)Λt | Ft}
E0{Λt | Ft}

=

∑
γk πt(ηγk)

πt(1)
. (13)

The normalizing factor πt(1) is common to all recursions
developed here, and can be obtained from the recursion for
πt(φnj) in Section III-A.

Proposition 2.

πt(ηγk) = π0(ηγk) +
bγ
α

∫ t

0

πτ−(ηγk)dYτ

+
∑
νξ

hνγ(ξk)

∫ t

0

πτ (ηνξ)dτ

+ δjkδγnhln(ij)

∫ t

0

πτ (φli)dτ. (14)

Proof: The proof is developed along the same lines as
the proof of the state recursion in Section III-A. It is similar
to the proof given in [9] for the number of jumps of the
underlying process of an MMMP. The recursion for ηγk(t) is
derived by applying the product rule twice, once for evaluating
M ln

ij (t)Λt, and then for evaluating (M ln
ij (t)Λt)φγk(t). For the

first application we have

M ln
ij (t)Λt = M ln

ij (0)Λ0 +

∫ t

0

M ln
ij (τ−)dΛτ

+

∫ t

0

Λτ−dM
ln
ij (τ) + [M ln

ij ,Λ](t), (15)

and we note, using an argument similar to that invoked in (10),
that [M ln

ij ,Λ](t) = 0. The differential of Λτ is given in (3).
The semimartingale representation of Mij(t) is obtained as in
[9, Eq. 24] and is given by

M ln
ij (t) = hln(ij)

∫ t

0

φli(τ−)dτ +

∫ t

0

φli(τ−)dVnj(τ).

(16)
On substituting (3) in the first integral of (15), and (16) in its
second integral, we obtain

M ln
ij (t)Λt = M ln

ij (0)Λ0 +
1

α

∫ t

0

M ln
ij (τ−)Λτ−Xτ−dYτ

+ hln(ij)

∫ t

0

Λτ− φli(τ−)dτ

+

∫ t

0

Λτ−φli(τ−) dVnj(τ). (17)

Next, the product rule is similarly applied to
(M ln

ij (t)Λt)φγk(t). Here, however, [M ln
ij Λ, φγk](t) differs

from zero, and it can be derived similarly to [9, Eq. 27]. We



have

[M ln
ij Λ, φγk](t)

= (δnγδjk − δlγδik)hln(ij)

∫ t

0

Λτ−φli(τ−)dτ

+(δnγδjk − δlγδik)

∫ t

0

Λτ−φli(τ−)dVnj(τ) (18)

where δjk denotes the Kronecker delta function. Applying
the conditional mean E0{· | Ft} to the expression of
(M ln

ij (t)Λt)φγk(t), and taking into account that the condi-
tional mean of the martingale integrals involved equal zero,
we arrive at (14).

C. Total Sojourn Time Recursion

The total sojourn time of the bivariate Markov chain in state
(l, i) is given by

Dl
i(t) =

∫ t

0

φli(τ)dτ. (19)

The estimator of Dl
i(t) is given by

D̂l
i(t) = E1{Dl

i(t) | Ft} =
E0{Dl

i(t)Λt | Ft}
E0{Λt|Ft}

:=
πt(D

l
i)

πt(1)
.

(20)
The recursion for πt(D

l
i) is obtained from a recursion for

ζγk(t) = Dl
i(t)φγk(t) following a similar idea to that used

in (12) [20], [7]. We have the following proposition.

Proposition 3.

πt(ζγk) = π0(ζγk) +
bγ
α

∫ t

0

πτ−(ζγk)dYτ

+
∑
νξ

hνγ(ξk)

∫ t

0

πτ (ζνξ)dτ + δikδγl

∫ t

0

πτ (φli)dτ.(21)

Proof: The product rule is first applied to Dl
i(t)Λt and

then to (Dl
i(t)Λt)φγk(t). The first application gives

Dl
i(t)Λt = Dl

i(0)Λ0 +

∫ t

0

Dl
i(τ−)dΛτ

+

∫ t

0

Λτ−dD
l
i(τ) + [Dl

i,Λ](t). (22)

Since Λt is continuous P0-a.s., and Dl
i(t) is of finite variation

P0-a.s., [Dl
i,Λ](t) = 0 P0-a.s. [11, Thm 1.11]. An expression

for Dl
i(t)Λt, is obtained by applying (3) to the first integral of

(22), and (19) to its second integral. The resulting expression
is then used, along with (6), in the product rule expansion
of Dl

i(t)Λtφγk(t). Here, [Dl
iΛ, φγk](t) = 0 P0-a.s. since

φγk is of finite variation and Dl
i(t)Λ(t) is continuous P0-a.s.

Applying the conditional mean E0{· | Ft}, and using the fact
that the conditional mean of the martingale involved equals
zero, give the desired result.

IV. IMPLEMENTATION

Implementation of the recursions in this paper is done using
Clark’s transformation [5] and numerical integration.

A. State Estimator

Consider implementation of the state recursion (9). Let
πt(φ) be the row vector obtained from concatenation of the
row vectors {πt(φl1), . . . , πt(φlr)} for l = 1, . . . , d. Define
the block diagonal matrix

B =
1

α
diag[b1Ir, . . . , bdIr] (23)

where Ir is an r×r identity matrix. Then, (9) can be vectorized
as follows:

πt(φ) = π0(φ) +

∫ t

0

πτ−(φ)BdYτ +

∫ t

0

πτ (φ)Hdτ. (24)

Clark’s transformation converts this stochastic state recursion
into a time-varying ordinary differential equation. The trans-
formation, and its differential form obtained by applying Itô’s
formula [11, p. 111], are given by

Lt := exp

{
BYt −

1

2
B2t

}
= L0 +

∫ t

0

BLτ−dYτ . (25)

Now, define qt(φ) = ct(φ)Lt where the row vector ct(φ)
satisfies

dct(φ) = ct(φ)LtHL−1
t dt. (26)

From the product rule [11, p. 220]

qt(φ) = q0(φ) +

∫ t

0

cτ (φ)dLτ−

+

∫ t

0

dcτ (φ)Lτ− + [c(φ), L](t)

= q0(φ) +

∫ t

0

cτ (φ)BLτ−dYτ

+

∫ t

0

cτ (φ)LτHL−1
τ Lτ−dτ + 0 (27)

where 0 denotes a vector of all zeros. Since B and Lτ− are
diagonal matrices, cτ (φ)BLτ− = qτ−(φ)B. Hence,

qt(φ) = q0(φ) +

∫ t

0

qτ−(φ)BdYτ +

∫ t

0

qτ (φ)Hdτ. (28)

Since this equation coincides with (24) when q0(φ) = π0(φ),
we have that πt(φ) = ct(φ)Lt, where ct(φ) follows from the
solution of the deterministic time-varying differential equation
(26). The initial condition of (26) is obtained from π0(φ) =
q0(φ) = c0(φ)e

BY0 . Hence, c0(φ) = π0(φ)e
−BY0 .

A first-order Euler approximation to (26) using t = kδ,
where δ is a step size and k = 0, 1, . . ., is given by [5]

ck+1(φ) = ck(φ) + δck(φ)LkHL−1
k

qk+1(φ) = ck+1(φ)Lk+1, k = 0, 1, 2, . . . , (29)

where Lk represents Lkδ as obtained from (25). Define
∆yk+1 = y(k+1)δ − ykδ where ykδ represents a realized value



of Ykδ . We have from (29) and (25)

qk+1(φ) = qk(φ)(I + δH) exp

{
B∆yk+1 −

1

2
B2δ

}
q0(φ) = π0(φ) (30)

which provide a forward recursion for the unnormalized con-
ditional mean estimate πk(φ) of the state vector. A recursion
for the normalized conditional mean estimate, say π̃k(φ), is
given by

π̃k+1(φ) =
π̃k(φ)(I + δH) exp

{
B∆yk+1 − 1

2B
2δ
}

π̃k(φ)(I + δH) exp
{
B∆yk+1 − 1

2B
2δ
}
1

π̃0(φ) =
π0(φ)

π0(φ)1
, k = 0, 1, 2, . . . , (31)

where 1 denotes a vector of all ones. Normalization is equiv-
alent to the scaling procedure used in [9] to insure numerical
stability.

B. Number of Jumps Estimator

Consider implementation of the recursion for the number
of jumps given by (14). Let πt(η) be the row vector obtained
from concatenation of the row vectors {πt(ηl1), . . . , πt(ηlr)}
for l = 1, . . . , d. Let 1nj denote a unit row vector of size dr
with a one in element (n−1)d+j and zeros elsewhere. Then,
(14) can be vectorized as follows:

πt(η) = π0(η) +

∫ t

0

πτ−(η)BdYτ +

∫ t

0

πτ (η)Hdτ

+

∫ t

0

πτ (φli)hln(ij)1njdτ, (32)

where πτ (φli) is the (l, i)th component of πτ (φ). Application
of Clark’s transformation is done similarly to that in Section
IV-A, and it results in

qk+1(η) = [qk(η)(I + δH)

+δqk(φli)hln(ij)1nj)] exp

{
B∆yk+1 −

1

2
B2δ

}
q0(η) = π0(η) (33)

which provides a forward recursion for the unnormalized
conditional mean estimate πk(η) of the number of jumps
vector. A recursion for the scaled conditional mean estimate
can be obtained as in Section IV-A.

C. Total Sojourn Time Estimator

The recursion (21) for the total sojourn time is similar
to the recursion (14) for the number of jumps. Hence, its
implementation follows closely that of (14) in Section IV-B.
Let πt(D) be the row vector obtained from concatenation of
the row vectors {πt(D

l
1), . . . , πt(D

l
r)} for l = 1, . . . , d.

The vector version of (21) is given by

πt(D) = π0(D) +

∫ t

0

πτ−(D)BdYτ

+

∫ t

0

πτ (D)Hdτ +

∫ t

0

πτ (φli)1lidτ. (34)

ϕ0 ϕ0 ϕ̂fb

H11 -70 10 -120 30 -77.03 14.76
20 -55 2 -8 8.46 -47.95

H12 50 10 70 20 51.80 10.46
25 10 5 1 32.66 6.83

H21 50 0 70 0 49.50 0
0 10 0 1 0 9.54

H22 -60 10 -100 30 -59.51 10.01
20 -30 2 -3 19.61 -29.15

TABLE I
ϕ0 = true; ϕ0 = initial; ϕ̂fb = forward-backward recursions.

Application of Clark’s transformation is done similarly to that
in Section IV-A, and it results in

qk+1(D) = [qk(D)(I + δH) + δqk(φli)1li)]

· exp
{
B∆yk+1 −

1

2
B2δ

}
q0(D) = π0(D), k = 0, 1, 2, . . . , (35)

which provides a forward recursion for the unnormalized
conditional mean estimate πk(D) of the total sojourn time
vector. A recursion for the scaled conditional mean estimate
can be obtained as in Section IV-A.

V. NUMERICAL EXAMPLES

The forward recursions for the bivariate Markov chain were
implemented in Python using the SciPy and NumPy libraries.
The estimates of M ln

ij (t) and Dl
i(t) were used in (4) for EM

estimation of the parameter of the bivariate Markov chain.
The parameter estimate obtained in this way was compared
with the parameter estimate from [13] where M ln

ij (t) and
Dl

i(t) were estimated using forward-backward recursions. We
emphasize that neither approach can be classified as a recursive
parameter estimation approach, since each uses the entire data
in each EM iteration.

We present numerical results for the example studied in
[13, Table 1] and given here in Table I. For this example,
r = d = 2. The generator matrix H is displayed in terms of
its block matrix components {Hln}. The columns labeled ϕ0,
ϕ0, and ϕ̂fb show, respectively, the true parameter value for
the bivariate Markov chain, the initial parameter estimate, and
the forward-backward EM estimate from [13].

The bivariate Markov chain parameterized by ϕ0 in Table I
is neither a BMAP nor an MMMP. Indeed, H is not block
circulant as in a BMAP, and H12 is not diagonal as in an
MMMP. Moreover, according to [2, Thm 3.1], the underlying
process S is not a homogeneous continuous-time Markov
chain since H11 +H12 ̸= H21 +H22.

The true parameter ϕ0 was used to generate a bivariate
Markov chain sequence with 104 jumps in X . In this example,
the state space of the process X was given by b1 = −1 and
b2 = 1. The observed noisy signal Y was generated according
to (1). The realization of Y was then sampled according to
a step size δ to obtain an observed noisy sequence {ykδ},
which was then applied directly in the forward recursions of
Section IV.



ϕ̂for

δ 7.5× 10−3 5× 10−3 2.5× 10−3

Ñ 32, 102 48, 153 96, 305

M̃ 12 13 13
H11 -51.07 15.19 -60.31 15.89 -67.03 15.17

7.22 -43.77 7.45 -43.29 7.76 -45.78
H12 25.32 10.56 33.30 11.11 40.95 10.91

28.11 8.47 28.21 7.62 31.21 6.81
H21 30.51 0 35.80 0 41.58 0

0 12.51 0 11.29 0 10.13
H22 -42.73 12.22 -46.79 10.00 -51.52 9.94

12.81 -25.32 15.97 -27.26 17.90 -28.03

TABLE II
PARAMETER ESTIMATES OBTAINED USING THE FORWARD RECURSIONS

WITH α = 0.01 AND DIFFERENT STEP SIZES δ.

The EM algorithm was terminated either when the relative
difference of successive log-likelihood values (see [13]) fell
below 10−7 or when the number of EM iterations exceeded
200. The estimate ϕ̂fb was obtained after 63 EM iterations.

The parameter estimates obtained using the forward recur-
sive estimators, denoted by ϕ̂for, are presented in Table II
for α = 0.01 and three different step sizes δ. The number
of samples contained in the observed noisy sequence {ykδ}
is denoted by Ñ , and the EM was terminated using the
same criterion as in Table I. The number of EM iterations
required to obtain each estimate is denoted by M̃ . For all
three step sizes, the estimates ϕ̂for obtained by the forward
recursions are reasonably close to the true parameter ϕ0 and
compare favorably with the estimate ϕ̂fb obtained in [13]
using forward-backward recursions. Moreover, the accuracy
of the estimates can be seen to improve with decreasing step
size δ. At a certain point, however, decreasing the step size
further will not improve the accuracy of the estimate, whereas
the computational effort required increases linearly with the
sampling rate 1/δ.

For the estimates shown in Table III, the step size is fixed at
δ = 0.005, whereas three different values of α are used. The
accuracy of the estimates appears to be much less sensitive to
α than to the step size δ. In general, the performance of the
forward recursive estimators improves up to a certain point as
α decreases. It is interesting to note that the number of EM
iterations required was significantly larger for the two larger
values of α. On the other hand, if α is too small, numerical
overflow will occur in computing samples of the operator Lt

in (25).

VI. COMMENTS

The approach taken here for forward recursive estimation
of the statistics of the bivariate Markov chain, from a noisy
version Y of that process, was motivated by the inherit
difficulties in developing such recursions for the observable
process X . If simultaneous jumps were not allowed, such as
in MMMPs, then the recursions could have had explicit forms,
and no numerical integration would have been necessary [9].
The proposed approach appears to perform reasonably well
when the step size δ and the gain α are suitably chosen.

ϕ̂for

α 0.1 0.05 0.005

M̃ 200 200 10
H11 -54.40 15.83 -54.08 17.27 -61.11 15.98

8.20 -50.74 7.61 -47.61 7.47 -42.79
H12 29.36 9.20 26.44 10.38 34.07 11.05

30.60 -11.94 32.64 7.36 27.93 7.40
H21 35.18 0 30.50 0 36.33 0

0 14.41 0 12.63 0 11.06
H22 -49.34 14.16 -37.93 7.44 -47.32 11.00

10.32 -24.73 11.52 -24.15 15.65 -26.71

TABLE III
PARAMETER ESTIMATES OBTAINED USING THE FORWARD RECURSIONS

WITH δ = 0.005 AND DIFFERENT VALUES OF α.

The computational complexity of these estimators, however,
increases linearly with the sampling rate.
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