
Tail-Limited Phase-Type Burstiness Bounds for
Network Traffic

Massieh Kordi Boroujeny, Brian L. Mark, and Yariv Ephraim
Dept. of Electrical and Computer Engineering

George Mason University
Fairfax, Virginia, U.S.A.

mkordibo@gmu.edu, bmark@gmu.edu, yephraim@gmu.edu

Abstract—The bursty nature of network traffic makes it
difficult to characterize accurately, and may give rise to heavy-
tailed queue distributions within the network. Building on prior
work in stochastic network calculus, we propose traffic burstiness
bounds based on the class of phase-type distributions and develop
an approach to estimate the parameter of such bounds using the
expectation-maximization (EM) algorithm. By limiting the tail of
the burstiness bound, our approach achieves a better fit of the
phase-type distribution to the empirical data from heavy-tailed
traffic. The proposed tail-limited phase-type burstiness bounds
fall within the framework for stochastic network calculus based
on generalized stochastically bounded burstiness.We demonstrate
the effectiveness of the proposed methodology with a numerical
example involving a heavy-tailed M/G/1 queue.1

Index Terms—communication networks, stochastic network
calculus, traffic burstiness, phase-type distribution, EM algo-
rithm, heavy-tailed queue.

I. INTRODUCTION

Providing performance guarantees in communication net-
works is a challenging research problem due to the bursty na-
ture of variable bit rate traffic streams. To provide a guarantee,
for example, on the end-to-end delay of a given traffic stream,
sufficient network resources need to be allocated. An admis-
sion control scheme is also needed to ensure that the resource
requirements of a new traffic stream can be accommodated
without compromising those of the existing traffic streams in
the network. Overallocation of network resources to provide
performance guarantees can lead to very poor network uti-
lization. One approach to this issue is to characterize network
traffic by sophisticated stochastic models and to derive end-
to-end network performance metrics based on such models.
Unfortunately, network traffic characterization is difficult due
to the bursty nature of the traffic and analytical end-to-end
network performance results are known only under very simple
assumptions such as Poisson traffic and independence among
nodes in the network. Another approach, pioneered by Cruz
and others (see, e.g., [6], [7]) is to characterize the traffic in
terms of mathematically simple bounds and then to compute
bounds on end-to-end network delay. The original work of
Cruz was based on a two-parameter (σ, ρ) deterministic bound
on a traffic stream and an associated network calculus to
derive deterministic end-to-end delay bounds. However, the
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determistic network calculus was found to provide bounds that
were too loose in practice since they capitalize on the worst
case scenario. Attention then turned to stochastic bounds on
traffic burstiness and an associated stochastic network calculus
to derive end-to-end bounds that are tighter with respect
to network resource allocation, but probabilistic rather than
deterministic.

In this paper, we develop traffic burstiness bounds based on
the concept of “generalized” stochastically bounded burstiness
(gSBB) proposed in [10], [19], which in turn is closely related
to the stochastically bounded burstiness (SBB) concept pro-
posed earlier in [14]. The SBB concept is a generalization of
exponentially bounded burstiness (EBB), which was originally
proposed in [17], [18]. A closely related traffic burstiness
bound based on moment generating functions was developed
in [4], [5]. Stochastic network calculus [5], [9] seeks to derive
end-to-end network performance bounds from such traffic
burstiness bounds. In earlier work [11], we proposed the use
of the phase-type distribution to obtain specialized SBB-type
bounds, referred to as phase-type bounded burstiness (PHBB),
which can give rise to performance bounds significantly tighter
than those obtained via EBB. This was demonstrated using
numerical examples involving the Markov modulated Poisson
Process (MMPP) fed as input traffic to ·/M/1 and ·/E2/1
queues by leveraging results from [12].

We make several contributions in this work. We further
refine the notion of PHBB from [11] by specializing the gSBB
concept using phase-type distributions. We refer to the cor-
responding traffic burstiness bounds as gPHBB (generalized
PHBB). In addition, we propose to bound the tail distribution
of traffic burstiness up to a specified limit. In particular, this
allows us to apply gSBB-type traffic burstiness bounds to
heavy-tailed traffic, which cannot be bounded mathematically
by a phase-type bound, which inherently has an exponentially
decaying tail. We refer to this characterization of traffic as tail-
limited gPHBB. Much of the research on stochastic network
calculus has focused on the derivation of stochastic network
delay bounds from the traffic burstiness bounds. Relatively
little attention has been devoted to deriving or estimating
the parameter of a traffic burstiness bound. We develop an
EM (expectation-maximization) algorithm to estimate the tail-
limited gPHBB parameter for an arbitrary traffic source from
an empirical traffic trace. Our approach can be used to



characterize network traffic via stochastic bounds within the
SBB/gSBB framework and applied to provide stochastic end-
to-end delay guarantees. We provide a numerical example
to demonstrate the effectiveness of the tail-limited gPHBB
characterization of heavy-tailed traffic.

The remainder of the paper is organized as follows. In
Section II, we briefly review the concepts of SBB/gSBB
and the associated stochastic network calculus framework.
In Section III, we define the concept of tail-limited gPHBB
by specializing gSBB using the phase-type distribution and
imposing a limit on the tail distribution. In Section IV, we
develop an EM algorithm to estimate the gPHBB parameter
of a given traffic source. In Section V, we provide a numerical
example involving the application of tail-limited gPHBB to an
M/G/1 heavy-tailed queue. Concluding remarks are provided
in Section VI.

II. STOCHASTICALLY BOUNDED BURSTINESS

The concept of stochastically bounded burstiness is defined
in [14] as follows.

Definition 1 (SBB). A continuous-time traffic process R =
{R(t) : t ≥ 0} is said to have stochastically bounded
burstiness (SBB) with upper rate ρ and bounding function
f(σ) ∈ F if, for all t, s ≥ 0 and all σ ≥ 0,

P

{∫ t

s

R(τ) dτ − ρ(t− s) ≥ σ
}
≤ f(σ), (1)

where F is defined as the family of functions such that for
every n, σ ≥ 0, the n-fold integral (

∫∞
σ

du)nf(u) is bounded.

Let Rs,t :=
∫ t
s
R(τ) dτ denote the amount of traffic arriving in

the interval [s, t). For a discrete-time traffic process, essentially
the same definition of SBB applies, except that s and t are
nonnegative integers, R(t) represents the amount of traffic
arriving during time-slot t, and Rs,t :=

∑t
u=s+1R(u). In this

paper, we will mostly work in continuous-time, although the
results generally carry over to the discrete-time case.

The SBB concept was motivated as a generalization of
exponentially bounded burstiness (EBB), originally proposed
in [17].

Definition 2 (EBB). A traffic process R is EBB if it is SBB
with a bounding function of the form f(σ) = Ae−ασ where
A,α ≥ 0.

In [11], we proposed a bounding function based on the
phase-type distribution, which is a large class of probability
distributions including exponentials, mixtures of exponentials,
and convolutions of mixtures of exponentials.

Definition 3 (PHBB). A traffic process R has phase-type
bounded burstiness (PHBB) if it is SBB with a bounding
function of the form f(σ) = AπeQσ1 where 1 is a column
vector of all ones, (π,Q) represents the parameter of a phase-
type distribution, and A ≥ 0.

Due to the greater modeling fidelity of the phase-type distribu-
tion compared to the exponential distribution, tighter bounds
on traffic burstiness can potentially be achieved with PHBB

compared to EBB at the expense of a more complicated
parameter.

The idea of SBB was further developed in [10], [19] with
the concept of generalized stochastically bounded burstiness.
Let

W (t) := max
0≤s≤t

{
Rs,t − ρ(t− s)

}
, (2)

Definition 4 (gSBB). A traffic process R is said to have
generalized stochastically bounded burstiness (gSSB) with
upper rate ρ and bounding function f(σ) ∈ BF if, for all
t ≥ 0 and all σ ≥ 0,

P {W (t) ≥ σ} ≤ f(σ), (3)

where BF is defined as the family of positive, non-increasing
functions.

Comparing Eqs. (1) and (3), we note that the gSBB character-
ization is more restrictive than that of SBB in the following
sense: For a given bounding function, if a traffic process is
gSBB then it is also SBB, but the converse may not hold. The
gSBB concept has several advantages over SBB. The class of
bounding functions, BF , for gSBB is less restrictive than the
class F appearing in the definition of SBB. In the definition
of gSBB, the process W (t) can be interpreted as the virtual
workload of a constant rate queue with service rate ρ and input
traffic R. This property is useful in establishing stochastic
network calculus results, and as we shall see in Section IV,
central to our approach for estimating the parameter of the
gPHBB traffic burstiness bound discussed next in Section III.

III. GENERALIZED PHASE-TYPE TRAFFIC BOUNDS

In this section, we develop phase-type traffic bounds as
a useful specialization of the gSBB bounds in [10], [19]
and introduce a further refinement by limiting the tail of the
bounding function.

A. Phase-type Distribution

The phase-type distribution is defined in terms of a Markov
chain X = {X(t) : t ≥ 0} with state space E =
{1, 2, . . . , n, n+1}, where states 1, 2, . . . , n are transient states
and n + 1 is an absorbing state. The generator of X has the
form [2] (

Q q
0 0

)
, (4)

where Q = [qij : i, j = 1, . . . , n] is an n×n matrix such that
qij is the transition rate from state i to state j and q = −Q1
is an n × 1 column vector. Define πi = P(X(0) = i) for
i = 1, . . . , n+ 1 and the vector π = (π1, . . . , πn). Hence, the
initial distribution of X is given by (π, πn+1), where πn+1

is the probability that the chain starts in the absorbing state.
Let τ := inf{t ≥ 0 : X(t) = n + 1} be the time until
absorption of the Markov process X . The random variable
τ is said to be phase-type with parameter (π,Q). In this case,



the cumulative distribution function and survival function of
τ are given, respectively, by

Fτ (t) = 1− πeQt1, (5)

Sτ (t) = P(τ > t) = 1− Fτ (t) = πeQt1, (6)

for t ≥ 0. The class of phase-type distributions has the
important property of being dense in the family of distributions
of nonnegative random variables; i.e., the distribution of any
random variable taking values in [0,∞) can be approximated
arbitrarily closely by a phase-type distribution [16, Theorem
5.2]. In addition, phase-type distributions are mathematically
tractable and form a closed set with respect to operations such
as convolutions or mixtures.

B. Tail-Limited Generalized Phase-Type Bounded Burstiness

Now we specialize the gSBB concept to bounds based on
phase-type distributions and restrict the tail of the bound to a
limit T > 0.

Definition 5 (Tail-limited gPHBB). A traffic process R(t)
has tail-limited generalized phase-type bounded burstiness
(gPHBB) with upper rate ρ and bounding parameter
(A,π,Q, T ) if

P {W (t) ≥ σ} ≤ AπeQσ1, (7)

for all t ≥ 0 and all σ ∈ [0, T ]. Here, A ≥ 0, T > 0, W (t) is
given by (2), and (π,Q) represents the parameter of a phase-
type distribution. When no tail limit is imposed, i.e., T =∞,
the traffic process is referred to simply as gPHBB.

Tail-limited gPHBB traffic processes inherit the stochastic
network calculus of gSBB processes developed in [10], [19],
which are analogous to the stochastic network calculus for
SBB and EBB processes [14], [17], respectively. Using prop-
erties of the phase-type distribution, results for a stochastic
network calculus based on tail-limited gPHBB can be derived.

The following Characterization theorem follows directly
from Definition 5.

Theorem 1 (Characterization). Consider a work-conserving
system that transmits at a constant rate of ρ and is fed with a
single traffic stream with rate process R(t) and Wq(t) is the
queue workload at time t. Then R(t) is tail-limited gPHBB
with upper rate ρ and bounding parameter (A,π,Q, T ) if and
only if

P{Wq(t) ≥ σ} ≤ AπeQσ1, (8)

for all t ≥ 0 and all T ≥ σ ≥ 0.

The following Sum and Input-Output theorems for tail-
limited gPHBB are useful for deriving stochastic bounds on
end-to-end network delay.

Theorem 2 (Sum). Let R1(t) and R2(t) be tail-limited gPHBB
traffic processes with upper rates ρ1 and ρ2 respectively,
and bounding parameters (A,α,G, T1) and (B,β,H, T2),
respectively. Then R1(t) + R2(t) is tail-limited gPHBB with

upper rate ρ = ρ1 + ρ2 and bounding parameter (C,π,Q, T )
where T = min(T1, T2), C = A+B,

π =

[
Aα

A+B
,
Bβ

A+B

]
, Q =

(
pG 0
0 (1− p)H

)
, (9)

and p is a real number such that 0 < p < 1.

Proof: As R1(t) and R2(t) are gSBB, we can apply
the Sum theorem for gSBB [19, Theorem 3]. In this case,
a bounding function of the aggregated traffic is given by
g(σ) = f1(pσ) + f2((1− p)σ), where

f1(σ) = AαeGσ1, for T1 > σ > 0

f2(σ) = BβeHσ1, for T2 > σ > 0.

We have

g(σ) = AαepGσ1 +Bβe(1−p)Hσ1

= (A+B)

[
Aα

A+B
,
Bβ

A+B

](
epG 0
0 e(1−p)H

)
1,

for T = min(T1, T2) ≥ σ > 0. By setting T = min(T1, T2),
g(σ) is well-defined.

Theorem 3 (Input-Output Relation). Let Ri(t) be the input
traffic rate process to a work-conserving element, which trans-
mits at rate C. Suppose that Ri(t) is tail-limited gPHBB with
upper rate ρ < C and bounding parameter (A,π,Q, T ). Let
Ro(t) denote the output traffic rate process. Then the following
hold:

1) Ro(t) is less bursty than Ri(t), almost surely; i.e.,

max
0≤s≤t

{
Rs,to −ρ(t−s)

}
≤ max

0≤s≤t

{
Rs,ti −ρ(t−s)

}
, a.s.

2) Ro(t) is tail-limited gPHBB with upper rate ρ and the
same bounding parameter (A,π,Q, T ).

Proof:
1) This relation follows directly from [19, Theorem 5] and

does not depend on the bounding function.
2) Since Ri(t) is tail-limited gPHBB with upper rate ρ

and bounding parameter (A,π,Q, T ), which is a spe-
cial case of gSBB, from [19, Corollary(Input-Output
Relation)] it follows that Ro(t) is tail-limited gPHBB
with upper rate ρ and the same bounding parameter
(A,π,Q, T ).

IV. PARAMETER ESTIMATION VIA EM ALGORITHM

We develop a method for estimating the parameter of a
tail-limited gPHBB bound for a traffic source based on an
EM algorithm. Our approach leverages the interpretation of
W (t) in Definition 4 (gSBB) as the virtual workload in a
constant rate server queue, as well as the phase-type form of
the bounding function in Definition 5 (gPHBB). For a given
upper rate ρ, the traffic is, in effect, offered to a queue with a
constant rate server of rate ρ. Samples of the virtual workload
of the queue are used to estimate, via the EM algorithm,
the parameter (π,Q) of a phase-type distribution that would
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Fig. 1. Hyper-Erlang form of a phase-type random variable (r1 may differ
from rM ).

satisfy (7) at equality when A = 1 and T = ∞. The left-
hand side of (7) is known either in theoretical form (as in the
example of Section V) or can be approximated empirically
from the observation samples. The value of the tail-limit
parameter T is assumed to be specified in advance, depending
on the performance requirements of the traffic stream. The
EM parameter estimate (π̂, Q̂) is then applied to derive a tight
tail-limited gPHBB bound of the form in (7) by adjusting the
value of A. Note that when A = 1, the right-hand side of (7)
using the parameter estimate for (π,Q) may not be a true
tail-limited upper bound or, if it is, possibly a tighter bound
could be obtained with a smaller value of A. Thus, we set A
to the smallest value that ensures the upper bound property
of (7).

A. Hyper-Erlang Model

Various EM algorithms for fitting data to a phase-type
distribution have been developed in the literature, notably the
algorithm of Asmussen [1]. In this section, we adopt an EM
algorithm developed by Thummler et al. [15] for estimating
the parameter of a hyper-Erlang distribution. Although the
hyper-Erlang distribution is a special case of a phase-type
distribution, the class of hyper-Erlang distributions is also
dense in the family of distributions with nonnegative sup-
port [15]. When a phase-type parameter (π,Q) is specialized
to the form of a hyper-Erlang distribution, the number of
nonzero components in Q is significantly fewer than in the
general case. Hence, fitting with the hyper-Erlang distribution
is computationally simpler and less prone to overfitting.

The hyper-Erlang distribution may be viewed as a mixture
of Erlang distributions. Consider a hyper-Erlang model con-
sisting of a mixture of M Erlang distributions, where the or-
ders of the Erlang distributions are given by r = (r1, . . . , rM )
and the mixture probabilities are given by π̃ = (π1, . . . , πM ).
The ith component of the mixture is an Erlang distribution of
order ri parameterized by λi, with probability density function

pi(x;λi) =
(λix)ri−1

(ri − 1)!
λie
−λix, x ≥ 0, (10)

for i = 1, . . . ,M . The parameter of the hyper-Erlang distri-
bution is given by Θ = (π̃, r,λ), where λ = (λ1, . . . , λM ).

A hyper-Erlang random variable can be represented in terms
of a phase-type random variable parameterized by (π,Q).

The corresponding Markov chain for the hyper-Erlang random
variable is shown in Fig. 1, where the absorbing state is
shaded. In this case,

Q = diag{q1,q2, . . . ,qM}, (11)

where

qi =


−λi λi 0 . . . 0

0 −λi λi . . . 0
...

. . . . . .
...

...
0 0 . . . −λi λi
0 0 . . . 0 −λi


ri×ri

. (12)

The initial probability vector π is given by

π = (π1, 0, . . . , 0︸ ︷︷ ︸
r1−1

, π2, 0, . . . , 0︸ ︷︷ ︸
r2−1

, . . . , πM , 0, . . . , 0︸ ︷︷ ︸
rM−1

, πM+1)

(13)
In this case, the probability density function of τ is given by

fτ (t) =

M∑
i=1

πi
(λit)

ri−1

(ri − 1)!
λie
−λit, t ≥ 0. (14)

Note that the vector π̃ of mixture probabilities in the hyper-
Erlang model is a subvector of π in the phase-type represen-
tation.

The hyper-Erlang distribution is a particular case of a phase-
type distribution consisting of 3M parameter values consisting
of the components of the vectors r ∈ NM+ , π̃ ∈ RM+ , and λM ,
where N+ denotes the set of nonnegative integers and R+

denotes the set of nonnegative reals. When traffic is fed to a
constant rate server, the probability that the queue workload
is empty is given by P{W (t) = 0} = 1 − ρ, where ρ is
the utilization factor. To capture this effect, we introduce an
additional (M + 1)st branch to the hyper-Erlang model with
corresponding branch probability denoted by πM+1. In this
case, the hyper-Erlang probability density function becomes

p(x; Θ) =

M∑
i=1
xk 6=0

πipi(xk;λi) + πM+11{x=0}, (15)

for i = 1, . . . ,M , where 1A(·) represents the indicator
function on the set A. We shall assume that the vector r of
Erlang orders for the hyper-Erlang distribution is constant.
Accordingly, the parameter of the (extended) hyper-Erlang
model is given by Θ = (π̃, πM+1,λ). The hyper-Erlang
parameter can then be mapped to a phase-type parameter
(π,Q) to derive the gPHBB bound given in Definition 5. In
addition, the parameter A must be chosen to ensure that the
workload survival function P{W (t) ≥ σ} is upper-bounded
in accordance with (7).

B. EM Algorithm
Given an observation sequence of samples of the queue

workload process, x = (x1, . . . , xK), the log-likehood of the
data is given by

logL(x; Θ) = log p(x; Θ) = log

K∏
k=1

p(xk; Θ), (16)



where the last equality assumes independence of the observed
samples. We follow the approach of [15], in which the Erlang
order vector r is chosen from a set R = {r ≥ 0 : r1 = n},
where 0 is a row vector of all zeros and n is a fixed positive
number chosen in advance. The number of Erlang components,
M , in the vectors r ∈ R ranges from 1 to n. The phase-
type parameter Θ corresponding to each r ∈ R is estimated
and then the estimate with the highest incomplete data log-
likelihood, given by (16), is chosen.

In [15], the unobserved data yk, representing the Erlang
branch from which the sample xk was drawn, is introduced
to derive an EM algorithm based on complete data. Let y =
(y1, . . . , yk) represent the unobserved data sequence. The EM
algorithm developed in [15] in effect maximizes the complete
log-likelihood function logL(x,y; Θ). To accommodate the
positive probability mass at xk = 0, this EM algorithm
requires a slight modification. We omit the details here, but
provide the key re-estimation formulas of the EM algorithm
as follows:

π̂i =


1

K

K∑
k=1
xk 6=0

q(i | xk; Θ̂), i = 1, 2, . . . ,M,

K0

K , i = M + 1,

(17)

and

λ̂i = ri ·

∑K
k=1
xk 6=0

q(i | xk, Θ̂)∑K
k=1
xk 6=0

xkq(i | xk; Θ̂)
(18)

for i = 1, . . . ,M . In the above equations, q(yk | xk; Θ̂) repre-
sents the posterior probability mass function of the unobserved
sample yk given the observed data sample xk and is given by

q(yk | xk; Θ̂) =
π̂yk · pyk(xk; λ̂yk)∑M
i=1 π̂i · pi(xk; λ̂i)

(19)

for yk ∈ 1, 2, . . . ,M , xk 6= 0, and

q(M + 1 | xk; Θ̂) =

{
1, xk = 0,
0, xk 6= 0.

(20)

To initialize the EM algorithm, we set πM+1 = K0

K , as πM+1

will be fixed through all iterations of the algorithm.

V. CASE STUDY

A. M/G/1 Heavy-Tailed Queue

In this section, we adopt the model of the M/G/1 queue
in [3]. In this model, the service time, denoted by τθ, depends
on a gamma-distributed random variable θ. The conditional
probability density function of τθ given θ = θ is given by

P{τθ < t | θ = θ} = 1− δ
(

θ

θ + t

)v
, (21)

where 1 < v < 2, 0 < δ ≤ 1, and the density of θ is given by

fθ(θ) =
s2−v

Γ(2− v)
θ1−ve−sθ, (22)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Buffer size 
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10-1

100 True Probability vs. gPHBB bounds derived by EM algorithm

True Probability
gPHBB bound, mixture of exponentials, with A=1.1, number of phases=5
gPHBB bound, general Phase-type, with A=0.52, number of phases=5

tail-limit T=3890

Fig. 2. Estimated gPHBB bound and true tail probability for a heavy-tailed
M/G/1 queue.

where s > 0 is a constant and Γ(·) is the gamma function.
For the particular case v = 3/2, the cumulative distribution
function of τθ is shown in [3] to have the form

P{τθ ≤ t} = 1 + δ

[
2
√
st√
π
− (1 + 2st)esterfc(

√
st)

]
, (23)

where the complementary error function is defined by

erfc(x) =
2√
π

∫ ∞
x

e−u
2

du. (24)

The distribution of the stationary waiting time W for the
M/G/1 queue is given by [3]:

P{W ≤ t} = 1−
1+
√
ρ

2

√
ρe(1−

√
ρ)2st · erfc

[
(1−√ρ)

√
st
]

+
1−√ρ

2

√
ρe(1−

√
ρ)2st · erfc

[
(1 +

√
ρ)
√
st
]
. (25)

B. Numerical Example

We consider a heavy-tailed M/G/1 queue as described
above. We set s = δ = 1 and λ = 0.5. The stationary
waiting time distribution of the queue is given by (25). For
this example, we consider the queue workload, which is simply
related to the waiting time by a constant factor. The probability
that the queue is empty is given by P{σ = 0} = 1 − ρ =
1− λβ = 0.5 The survival function of this stationary waiting
time is shown in Fig. 2 as the true probability curve.

Since the workload distribution is heavy-tailed, the survival
function cannot be bounded by a phase-type survival function.
We demonstrate that the workload distribution can be bounded
by a tail-limited gPHBB. In this particular case, we have set
the tail limit parameter to T = 3890, in units representing
the workload, e.g., bytes of data. The tail limit is explicitly
shown in Fig. 2, and represents where the tail of the gPHBB
curve is to be cut off. In other words, the gPHBB curve is
only claimed to bound the true workload survival function up
to the tail limit T .



To estimate the gPHBB parameter, we apply the EM al-
gorithm for the hyper-Erlang model with the total number
of phases set to n = 5. We generated N = 106 random
samples drawn from the heavy-tailed workload distribution
given in (25). For this example, the hyper-Erlang parameter
estimate turns out to be a mixture of exponentials, such
that M = n = 5 and π = π̃. This is in agreement
with an observation in [8] that when the probability density
function of the queue workload is completely monotone, as
in this example, it can be well approximated by a mixture
of exponentials. The following gPHBB parameter values were
obtained: A = 1.1,

π = [0.037, 0.059, 0.12, 0.14, 0.14], (26)

λ = [2.0e−4, 0.36e−3, 1.5e−2, 7.6e−2, 0.38], (27)

where ed := 10d. The phase-type matrix Q was obtained from
λ using (11).

We have also computed a gPHBB bound using the EM
algorithm for the general phase-type distribution described
in [1]. In this case, we have a phase-type bound with 5
phases. Estimates of the parameters A and π were obtained
as, respectively, A = 0.52 and

π = [4.7e−2, 4.4e−9, 0.95, 8.1e−9, 5.7e−7].

The estimate of the Q matrix was as follows:
−4.9e−2 1.7e−5 3.3e−2 1.8e−5 1.2e−2

3.1e−6 −1.5e−2 2.6e−7 1.4e−2 1.2e−3

1.3e−1 1.0e−6 −2.6e−2 1.3e−7 2.4e−4

1.1e−6 3.3e10−3 7.5e−9 −3.4e−3 1.4e−4

4.3e−3 8.7e−4 3.5e−6 5.1e−4 −5.7e−3

 .
From Fig. 2, the gPHBB bound appears to be slightly looser
than the one obtained using the hyper-Erlang model. This can
be explained by overfitting of the more general phase-type
model compared to the hyper-Erlang model.

VI. CONCLUSION

We proposed the use of phase-type distributions to spe-
cialize the general bounding function in the gSBB traffic
burstiness bounding framework [10], [19]. We established key
properties of the proposed tail-limited gPHBB bounds. We
developed an approach to estimate a tail-limited gPHBB bound
for a given traffic source based on the EM algorithm. A
numerical example was provided to demonstrate the gPHBB
bound for an M/G/1 queue with heavy-tailed service using
results from [3]. We showed that the notoriously difficult case
of a heavy-tailed input traffic can be bounded meaningfully
using phase-type bounds over a finite time horizon.

The proposed approach for obtaining gPHBB bounds could
be applied to variable bit rate (VBR) traffic sources with
tight delay constraints, for example, in multimedia streaming
applications. For real-time traffic, training data could be used
to obtain an initial estimate of the gPHBB bounds via the EM-
based approach. An online algorithm could be developed to
adapt the gPHBB bounds to the time-varying characteristics
of a real-time traffic stream. Such an approach presumes that

the network is capable of renegotiating the parameter of a
traffic stream in real-time [13]. This is a topic of ongoing
investigation.
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