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Abstract—Network traffic is difficult to characterize due to
its random, bursty nature. Even if a traffic source could be
fit to a stochastic model with reasonable accuracy, analysis
of end-to-end network performance metrics for such traffic
models is generally intractable. In prior work, an approach to
characterize traffic burstiness using a bound based on the class of
phase-type distributions was proposed. Such phase-type bounds
could be applied in conjunction with stochastic network calculus
to derive probabilistic end-to-end delay bounds for a traffic
stream. In this paper, we focus on the problem of estimating
a tight phase-type burstiness bound for a given traffic trace.
We investigate a method based on least squares and another
based on the expectation-maximization algorithm. Our numerical
results compare the two approaches in the scenario of a heavy-
tailed M/G/1 queue. We find that while both methods are viable
approaches for deriving phase-type bounds on traffic burstiness,
the least squares approach performs better, particularly when a
tail limit is imposed.'

Index Terms—stochastic network calculus, traffic burstiness
bound, phase-type distribution, least squares, heavy-tailed queue.

I. INTRODUCTION

Providing performance guarantees in communication net-
works is an important, yet challenging task due to the bursty
nature of variable bit rate traffic streams and the difficulty of
modeling their interactions within a network. To address this
issue, we adopt the approach of stochastic network calculus,
in which traffic burstiness bounds are used to compute end-to-
end network performance bounds. In particular, we adopt the
“generalized” stochastic bounded burstiness (gSBB) concept
proposed in [8], [19], which is closely related to the stochas-
tically bounded burstiness (SBB) concept proposed earlier
in [14]. In the gSBB and SBB frameworks, the burstiness of a
given traffic source is bounded by functions satisfying certain
properties. The traffic burstiness bounds can be propagated
through the network via stochastic network calculus theorems,
which result in end-to-end network performance bounds.

In earlier work [9], [10], we proposed the use of a particular
class of bounding functions for applying the gSBB and SBB
traffic burstiness bounds based on phase-type distributions.
The class of phase-type distributions has the important prop-
erty of being dense in the family of all distributions with
non-negative support. This property implies, in theory, that
any given traffic source can be bounded arbitrarily tightly
with a phase-type bound. In practice, there is a trade-off
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between computational complexity of the phase-type model
and tightness of the phase-type bound. The tightness of the
bound will also depend on the characteristics of the particular
traffic source and the amount of traffic data available.

In the present paper, we develop and investigate methods
for estimating phase-type bounds for a given traffic stream. We
develop a method to estimate a phase-type bound for a given
traffic source using a least squares criterion. We compare the
least squares approach with another method proposed in [10]
based on the expectation-maximization (EM) algorithm. In
both cases, the bound is obtained by offering the traffic stream
to a constant service rate queue and fitting the observed virtual
workload distribution to a phase-type distribution. We consider
special cases of the phase-type distribution, including 1) a
mixture of exponential distributions, also known as a hyper-
exponential distribution; 2) a mixture of Erlang distributions,
also known as a hyper-Erlang distribution; and 3) an acyclic
canonical form of the phase-type distribution. We demonstrate
the various methods in a case study involving a heavy-tailed
queue. For this system, the least squares approach achieves
the tightest phase-type bound when the underlying phase-type
distribution has the form of a hyperexponential distribution.

The remainder of the paper is organized as follows. In Sec-
tion II, we review the phase-type bounds developed in [10]. In
Section III, we highlight properties of phase-type distributions
that we use to estimate phase-type bounds. In Section IV, we
develop a direct method based on a least squares criterion
to estimate a phase-type bound for a given traffic source. In
Section V, we provide a numerical example demonstrating the
proposed method to an M/G/1 heavy-tailed queue. Concluding
remarks are provided in Section VI.

II. PHASE-TYPE BOUNDED TRAFFIC

The concept of phase-type bounded traffic is defined as
follows [10].

Definition 1. A traffic process R(t) is phase-type bounded
with upper rate p and bounding parameter (A, w, Q,T) if

P{W(t) > 0} < Ame?71, (1)

for all t > 0 and all o € (0,7]. Here, 1 is a column vector of
all ones of appropriate dimension, A > 0, T' > 0, and W (¢)



is the virtual workload of a constant rate queue with service
rate p and input traffic R, defined by

t
W(t) = Jax, {/S R(7m)dt — p(t — s)} , 2)
and (7, Q) represents the parameter of a phase-type distri-
bution (see Section III-A). The integral in (2) represents the
amount of traffic arriving to the queue in the interval (s,].

The phase-type traffic bound is a particular case of gener-
alized stochastically bounded burstiness (gSBB), which was
developed in [8], [19] and is defined as follows.

Definition 2 (gSBB). A traffic process R is said to have
generalized stochastically bounded burstiness (gSSB) with
upper rate p and bounding function f(o) € BF if, for all
t>0andall o >0,

P{W(t) = o} < f(o), A3)

where BF is defined as the family of positive, non-increasing
functions.

In [10], it was shown that the phase-type bound defined
above is closed with respect to stochastic network calculus
theorems based on the gSBB concept. We also refer to the
phase-type traffic bound as tail-limited gPHBB because it
may be considered a special case of gSBB with an additional
constraint on the length of the tail of the distribution to be
considered. The concept of gSBB is closely related to the
Stochastically Bounded Burstiness (SBB) concept introduced
in [14], which in turn generalizes the Exponentially Bounded
Burstiness (EBB) concept proposed earlier in [18].

III. PHASE-TYPE DISTRIBUTION

In this section, we briefly review the phase-type distribution
and two special forms, namely, the hyperexponential distribu-
tion and the canonical form 1, which are used in Section IV.

A. Definition

The phase-type distribution is defined in terms of a Markov
chain X = {X(¢) t > 0} with state space E =
{1,2,..., M, M + 1}, where states 1,2,..., M are transient
states and M + 1 is an absorbing state. The generator of X
has the form [1]

Q q
(O o) 4)
where Q = [g;; : 4,j = 1,..., M] is an n X n matrix such that
qi; is the transition rate from state ¢ to state j and q = —Q1

is an M x 1 column vector. Define m; = P(X(0) = i) for
t=1,...,M + 1 and the vector w = (7, ..., 7). Hence,
the initial distribution of X is given by (m,mar41), where
w41 1s the probability that the chain starts in the absorbing
state. Let 7 := inf{t > 0: X(¢) = M + 1} be the time until
absorption of the Markov process X. The random variable 7
is said to be phase-type with parameter (7, Q). In this case,
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Fig. 1. Canonical Form 1(CF1) of an acyclic phase-type random variable

the cumulative distribution function and survival function of
T are given, respectively, by

F(o)=1-me?71, ®)
S(a)=P(T>U):1—F(o):ﬂ'eQ”1, oc>0. (6)

The parameter of a phase-type distribution consists of M2+ M
independent scalar components. The class of phase-type dis-
tributions has the important property of being dense in the
family of distributions of non-negative random variables; i.e.,
the distribution of any random variable taking values in
[0,00) can be approximated arbitrarily closely by a phase-
type distribution [17, Theorem 5.2]. In addition, phase-type
distributions are mathematically tractable and form a closed
set with respect to operations such as convolutions or mixtures.

B. Hyperexponential distribution

The family of phase-type distributions includes mixtures of
Erlang distributions, also known as hyper-Erlang distributions.
Although a special case of the phase-type, the family of hyper-
Erlang distributions is also dense in the set of all distributions
with non-negative support. The class of hyper-Erlang distri-
butions in turn contains the class of mixtures of exponential
distributions, also known as hyperexponential distributions.
Although the class of hyperexponential distributions does not
have the denseness property of the class of phase-type distribu-
tions or the class of hyper-Erlang distributions, investigations
in [5] have shown that monotonically decreasing densities can
be well-represented using hyperexponential distributions. In
the context of phase-type traffic bounds, the density of the
virtual workload is typically monotonically decreasing. Thus,
in this paper we focus on the simpler class of hyperexponential
distributions rather than the class of hyper-Erlang distributions.

A hyperexponential distribution with M mixture compo-
nents is parameterized by the exponential rates given by
A = (A1,...,Ay) and the mixture probabilities given by
7 = (71, ..., 7). Thus, the parameter of a hyperexponential
distribution with M exponential mixture components consists
of 2M parameters. In this case, the survival function is given
by

M
Ste(oimA) = me 7, >0, (7
i=1
where the dependence on the parameter (7, A) is shown
explicitly in the notation on the left-hand side.

C. Canonical form 1 distribution

By restricting Q to an upper-triangular matrix, a so-called
acyclic phase-type distribution is obtained. Like the general



phase-type distributions and the hyper-Erlang distributions, the
family of acyclic phase-type distributions is also dense in the
set of distributions with non-negative support [4]. In [4] it
is shown every acyclic phase-type random variable can be
represented in canonical form 1 (CF1) such that the associated
generating Markov chain can be represented as in Fig. 1, where

M+1
>0, i=12... M+l > m=1
i=1

AM 2 Apm—12 ... 2 > A 20, ®)

and the generator matrix has the form

A1 A O 0
0 =X X ... 0
Q=|: . : : ©)
0 0 ... —Am-1 Am—1
0o 0 .. 0 —Aum

when there is no mass at absorbing state 7,41 = 0. If there
is no probability mass at absorbing state, this representation
of the CF1 phase-type distribution consists of 2M parameter
components. the Laplace transform of the cumulative distribu-
tion function of the CF1 random variable is given by [2]

M

D(s) = [[(s + M.

i=1

M- (s) = T4 + ggz;,

(10)
The following relation is useful for computing the matrix
exponential [12]:
eQ =vePVT, (11)
where V. = [v1,va,...,V,,] is the eigenvector matrix of
Q and D = diag{d;,ds,...,dp} is the diagonal matrix
of the corresponding eigenvalues. If the \;’s are all distinct
(¢ =1,2,..., M), then it can be shown that eigenvalues of
Q are given by {—A1,—MAg,..., —Ap}. Therefore we have
D = diag{—A}. The assumption of distinct A;’s is not a major
limitation of the CF1 phase-type distribution. Therefore, the
survival function in (6) can be written as
Set(o;m,A) = weQ91 = 7VePivTl,

c>0. (12)

IV. LEAST SQUARES METHOD

In this section, we formulate an optimization method to
fit a given traffic trace to a general phase-type distribution,
a hyperexponential distribution, and a CF1 distribution. The
method is formulated to obtain an upper bound on the tail of
the empirical traffic distribution while minimizing the squared
error. Hence, this approach is referred to as a least squares
method. Our approach leverages the interpretation of W (t)
in Definition 1 (phase-type bounded traffic) as the virtual
workload in a constant rate server queue.

A. General phase-type distribution

In Definition 1, the tail probability P{W (t) > o} is upper
bounded by a scalar multiple of the survival function, S(t), of
a general-phase type distribution, as given in (6). The error of
the bound is given by

glo; A, m, Q) = AweQ71 — P{W(t) > o},  (13)

for o € (0,7]. We can assume that mw;q = 0, since no
bound is imposed on P{W (¢) = 0}; hence, w1 = 1. Further,
by defining o« = A, the error can be re-parameterized as

9(0;0,Q) = ae?1 — P{W(t) > o}, (14)

for 0 € (0,T]. The squared error over the interval (0,7,
normalized by the length of the interval 7', can be written as

T
Men@) = 1 [ Q) do

We assume the tail limit 7" and the number of elements M
in the probability vector 7 are given. The problem of finding
phase-type bound parameter (A, 7, Q,T") for a given T > 0
to fit a given traffic trace is then formulated as the following
semi-infinitely constrained optimization problem:

(e
minh(a, Q)

15)

subject to :
9(o;0,Q) =0, Vo € (0,7,

o >0, (16)

where QQ is constrained to be the transition rate matrix pa-
rameter of a phase-type distribution. We then set A = al
and # = «a/A. Problem (16) is difficult to solve for a
general phase-type distribution. Thus, we consider special
cases, in particular, the hyperexponential and acyclic phase-
type distributions.

B. Hyperexponential distribution

For the hyperexponential distribution, the survival function
is given by (7). The error in the phase-type bound for the
hyperexponential distribution can be written as

M
Ghe(00,X) =Y e M —P{W(t) > o},  (17)
i=1

for o € (0,7 and the corresponding average squared error is
given by

1 (7

Phe(a, A) := — / gt (o, \) do. (18)
T Jo

For the hyperexponential distribution, Problem (16) reduces to

1;1})1\1 hhe(a7 >‘)

subject to :
he(o;0,A) >0, Vo € (0,T],
a>0, A>0. (19)

As in the general case, we set A = al and # = a/A.



C. CFI phase-type distribution

For the CF1 phase-type random variable the optimization
problem formulation is given by

min her (e, A)

subject to :
get(o;, X)) >0, Vo € (0,7,

a>0, A\y>Ay_1>-->A >0, (20)
where
get(o;, ) = aVePT V11 - P{W(t) > o}, 21
and
1 (T
hee(a, ) := f/ g% (o0, N) do. (22)
0

D. Numerical optimization method

Problems (19) and (20) are semi-infinitely constrained op-
timization problems. By relaxing the upper bound constraint
on the interval o € (0,7, these formulations become simpler
constrained optimization problems. The constrained optimiza-
tion formulation for the hyperexponential distribution is simply

hne(ct, A). (23)

min
a>0,A>0

For the CF1 distribution, the constrained optimization formu-
lation is
min
a>0
Ay >->A1>0

hee(0e, ). (24)

A solution obtained from the solving the simpler constrained
optimization formulation can be made into an upper bound
by multiplying o« by a scalar @ > 1. Then the parameter
(acx,\) can be applied as the initial point for the semi-
infinitely constrained formulation. Alternatively, the solution
(acx, \) may itself be used directly if it gives a sufficiently
tight bound.

In our numerical studies we have used the fmincon
function in MATLAB [11] for constrained optimization, which
is based on an interior-point algorithm [16], and fseminf in
MATLAB for semi-infinite constrained optimization. In [7],
a problem formulation similar to Problem (20) without the
upper bound constraint was used for phase-type fitting, but
their optimization method was based on the Frank-Wolfe
algorithm [6].

We can improve the speed and accuracy of the optimization
algorithms by providing the partial derivatives of the objective
function with respect to the parameter components. For the
CF1 phase-type and hyperexponential distributions, the deriva-
tive is relatively simple. For the hyperexponential distribution,
we have

Ohpe(a,N) 2 (T
% = T/ & Ai ghe(a;a?A) da’ (25)
; 0
9 [T
W = _T/ aioe” N gre(o; o, A) do,  (26)
i 0

Algorithm 1 Least squares method for hyperexponential.
Input: Input traffic; p, T, M; threshold e
Input: Initial point for (c, A)
Output: A, 7w, A
1: Feed traffic stream to a server with rate p and compute
empirical P{W (t) > o} for o € (0,T].
2: Compute partial derivatives (25)—(26).
3: Compute (c, A) by solving (23) using fmincon.
4: Find the smallest @ > 1 such that

gne(0;aa,X) >0 Vo € (0,T).

a ¢+ ax
if hpe(a, A) > € then
Compute (a, A) by solving (19) using fseminf.
end if
A+ al; m+ a/A
10: return A, w, A

R A4

for v = 1,..., M. For the CF1 phase-type distribution, we
have

Ohet(a,N) 2 [T

% = ?/0 e VeP V= lgi(o;a, N)do,  (27)
where e; is a M-element row vector with e;(j) = 0 for j =
1,2,...,M, j #i and e;(i) = 1. Similarly, we have

8hcf(a7A) 2 /T —\ T -1
—_— = —— ““aVe; e,V 1gct(o; o, A)do.
o, ; oe aVe; e 9ot (05 )(2;

In computing the squared error, the integration need not be
calculated using an equidistant set of points of the interval
(0, 7). In fact, the survival probability densities encountered
in communication networks mostly have almost fixed-slope
linear tails for large values of o. Therefore, the integration can
be done on a logarithmic-scale equally-distant set of points on
[0, T, with a much smaller number of points.

The least squares method for the hyperexponential distribu-
tion is summarized in Algorithm 1. In Steps 3 and 7, the cur-
rent value of (a, A) is used as the initial point for executing the
MATLAB functions fmincon and fseminf, respectively.
In Step 6, the average squared error hye(cr, A) is compared
against a threshold e. If the threshold is exceeded, a better
parameter (a, A) is obtained by solving the semi-infinitely
constrained optimization problem (19) using fseminf with
the current value of (a, A) as the initial point. We omit a
formal description of the least squares method for the CF1
distribution, since it is very similar to Algorithm 1.

V. CASE STUDY

In this section we investigate the performance of the least
squares method of Section IV in characterizing a traffic stream
with Poisson process arrivals and heavy-tailed packet lengths,
denoted as M/G/1 heavy-tailed traffic. This traffic model was
used previously in [10] to characterize the traffic using an
EM-based algorithm. We compare the results derived by least



squares method with the result derived using the EM-based
algorithm.

A. M/G/I heavy-tailed queue

We adopt the model of the heavy-tailed M/G/1 queue in [3].
In this model, packets arrive to the queue according to a
Poisson process with rate A\. The service time, denoted by
T, depends on a gamma-distributed random variable 6. The
conditional probability density function of 7¢9 given 8 = 0 is

9 v

where 1 < v < 2,0 < ¢ <1, and the density of 8 is given by

2—v

fa(f)) _ F(SQ — U) 9171]6759,

(29)

(30)

where s > 0 is a constant and T'(-) is the gamma function.
For this service time random variable, 79, we have

B Blre) = 2—0v0

v—1s
Thus, the utilization factor of the queue is given by p = Af.
For stability of the queue we must have p < 1. For the
particular case v = 3/2, the cumulative distribution function
of 7g is shown in [3] to have the form

2v/st
NG

where the complementary error function is defined by

erfc(x) = %/ e du.
Tr x

We consider the packet lengths as being equal to the service
times in the M/G/1 queue with constant service rate 1. Then
the virtual workload at the time of a packet arrival will be
equal to the waiting time of the packet (including its own
service time) in the adopted M/G/1 queue. Let W () denote
the virtual workload of the queue, as defined in (2) and let
t, denote the arrival time of the nth packet to the queue,
n=1,2,.... Then W (t,) is equivalent to the waiting time of
the nth packet arriving to the queue. The distribution of the
stationary waiting time

€Y

Plro<t}=1+6 { — (1 + 2st)eterfe(v/st) |, (32)

(33)

W= lim W(ty,)
n— oo
for the M/G/1 queue (with v = 3/2) is given in [3, Eq. (1.8)]
as follows:

P{W<o}=1- #ﬁe(l_ﬁ)%“ ~erfc [(1—/p)V/s0]
+ #\/ﬁe(lf\/ﬁ)%a cerfe [(1+ /p)Vso]. (34)

The result (34) applies to the waiting time in equilibrium or
steady-state. On the other hand, for a traffic stream to be phase-
type bounded according to Definition 1 the bound should be
valid for all ¢ > 0. We next argue that if the bound applies
to the steady-state waiting time distribution, then it applies
to the virual workload distribution for all ¢ > 0. A random

TABLE I
PHASE-TYPE BOUND PERFORMANCE FOR M/G/1 HEAVY-TAILED TRAFFIC

Method Obj. func. value(xT)  Log-likelihood(x107) M
1 LS(he): Prob. (23) 0.2676 —3.3434 30
2 LS(he): Prob. (19) 0.2051 —3.3434 30
3 LS(CF1): Prob. (24) 0.9991 —3.3814 5
4 LS(CF1) Prob. (20) 0.9975 —3.3813 5
5  EM(hyper-Erlang) [10] 0.5351 —3.2277 30

variable X is stochastically smaller than random variable Y,
denoted as X <y Y, if P{X > 2z} < P{Y > «} for all =
[13]. According to the following theorem, the waiting times
of a sequence of customers arriving to a GI/G/1 queue are
stochastically monotonically increasing.

Theorem 1. (see [15, Theorem 5.1.1]) Consider a GI/G/1
queue such that the stationary waiting time distribution exists.
If W(0) <g W(t1), then

W(t1) <o W(t2) <st ... <q W.

(35)

In all of the cases we have considered, the traffic is station-
ary and ergodic and the queue is stable since the utilization
factor p < 1. This guarantees existence of a stationary waiting
time distribution, such that Theorem 1 applies. In this case,
(35) implies that W(t) <5 W(t,) for all ¢t < ¢, and
n > 1, and hence, W(t) <i W for all ¢ > 0. Therefore,
if P{W > o} is bounded by a function f(0) = Amwe?71,
the same bound applies to P{W(t) > o} for all ¢ > 0. A
similar argument was used in [8] to justify the gSBB bound
in a discrete-time setting.

B. Numerical example

Next, we characterize the M/G/1 heavy-tailed traffic de-
scribed in the previous section by hyperexponential and CF1
phase-type bounds using the least squares (LS) method. We
compare the results with phase-type bounds obtained using the
EM-based algorithm proposed in [10].

In our case study we assume v = 1.5 and set s = § = 1 and
A = 0.5. Then, 8 = 1 according to (31) and p = 0.5, which
implies that P{W = 0} = 1 — p = 0.5. In this example we
have chosen 7' = 5 x 10°. In applying the EM-based method,
107 samples were generated using (34). We have compared the
objective function values resulting from the different methods.
The integration required to compute the squared error was
done using 10* equidistant points on a logarithmic scale in
the interval (0, 7.

In Table I, the squared error and log-likelihood values
obtained using five different methods are shown. Methods 1
and 3 involve constrained optimization only followed by
multiplication of the vector o« by a scalar @ > 1 such
that an upper bound is obtained. Method 2 corresponds to
Algorithm 1, while Method 4 is a similar algorithm using
the CF1 phase-type distribution. In estimating phase-type
bounds with the proposed least squares method, we have
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Fig. 2. Phase-type bounds and tail probability for M/G/1 heavy-tailed traffic.

used hyperexponential distributions with M = 30 mixture
components (Methods 1 and 2) and CF1 phase-type with
M = 5 (Methods 3 and 4). Further improvement of the bound
was not obtained by increasing the order of the CF1 phase-
type distribution. Method 5 is an EM-based approach proposed
in [10] using a hyper-Erlang distribution with M = 30 Erlang
mixture components. The EM-based algorithm results in the
special case of a hyperexponential distribution. This result is
expected, since a distribution with a monotonically decreasing
probability density function, as in our case, can be well
approximated using a mixture of exponentials [5].

As can be seen in Table I, for the least squares approaches,
going from the constrained optimization to the semi-infinitely
constrained formulation results in a tighter bound, as expected.
The best result is achieved by using Method 2. The bound
derived by the EM-based algorithm (Method 5), results in the
highest likelihood, which is expected, since the EM algorithm
aims to maximize the likelihood of the samples. However,
Method 5 results in a looser bound on the tail probability of
the virtual workload. Note that the EM approach does not take
into account the tail limit 7.

The (empirical) survival function of the virtual workload
corresponds to the curve labelled “true probability” in Fig. 2.
Here, the stationary virtual workload distribution is heavy-
tailed and therefore cannot be bounded for all o by a bound
in the form of a phase-type survival function. Nevertheless,
we can bound this distribution by a phase-type bound with
a finite number of phases over a time interval [0,7]. In
practice, the virtual workload cannot grow without bound,
since physical buffers are always of finite size. The phase-
type bounds obtained using Methods 2, 4, and 5 are shown
in Fig. 2. Over the interval (0, T, Method 2 clearly results in
the tightest phase-type bound.

VI. CONCLUSION

We developed a method for characterizing a given traffic
stream in terms of phase-type bounds. This characterization

can be used in conjunction with stochastic network calculus
results to bound end-to-end performance measures such as
delay and virtual workloads in the network. A least squares
criterion was used to formulate the problem of finding phase-
type bounds as an optimization problem using two special
forms of the phase-type distribution: the hyperexponential
and canonical form 1 distributions. The best results for our
numerical example were obtained using the hyperexponential
distribution. Compared to an EM-based method proposed
in [10], the least squares approach produced tighter bounds.
The least squares method described in this paper is an offline
approach, but it could be developed into an online method by
considering a sufficiently large moving window of the most
recent traffic samples.
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