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Abstract— We consider a scenario in which frequency ag-
ile radios opportunistically share a fixed spectrum resource
with a set of primary nodes. We develop a collaborative
scheme for frequency agile radios to estimate the maximum
power at which they can transmit, without causing harmful
interference to the primary receivers. The proposed scheme
relies on signal strength measurements, which are used
to localize primary transmitters. An approximation to the
maximum interference-free transmit power is derived using
the Cramér-Rao lower bound on localization accuracy. We
present numerical results to demonstrate the effectiveness
of the proposed scheme under a variety of scenarios.

I. INTRODUCTION

In conventional wireless systems, the spectrum is
allocated statically among a set of transmitters over a
geographic coverage area. Recent studies have shown
that significant portions of the wireless spectrum are
highly underutilized over certain geographic coverage
areas [1]. In principle, such “spectrum holes” could be
exploited by frequency-agile radios (FARs), which are
capable of dynamically tuning to different frequency
ranges. Frequency agility and high receiver sensitivity
are key features of emerging cognitive radios [2]. An
open research question is whether effective opportunistic
spectrum sharing can be realized efficiently and practi-
cally.

An essential first step in opportunistic spectrum access
for a FAR node is to determine the maximum power
with which it can transmit on a given frequency channel
without causing harmful interference to primary users.
In this paper1, we develop a method to estimate the
maximum interference-free transmit power (MIFTP) for
a FAR node on a given radio channel, based on signal
strength measurements. The signal strength measure-
ments may be obtained by a single FAR node at different
locations at different points of time, or by collaborative
sharing of measurement information among spatially
separated FAR nodes. We develop an estimator for the
location of the primary transmitter and an associated
Cramér-Rao bound (CRB) on the error of the estimator.
An estimate for the MIFTP is then obtained using the
CRB for the location estimator. We assume that the
primary node transmits at constant power during an
observation period; we do not address the separate issue
of opportunistic spectrum access in the time-domain, i.e.,

1This work was supported in part by the National Science Founda-
tion under Grants CNS-0520151 and ECS-0246925.

exploiting periods for which the primary transmitter may
be idle [3], [4].

In [5], the impact of secondary transmissions on
a primary receiver is studied in terms of interference
probability. Because of the integral forms involved it is
difficult to use the given probability expressions to solve
for (even homogeneous) allowable secondary transmit
power. In [6], an additional no-talk radius is defined
within which the secondary users must be quiet to guar-
antee service to primary users within some a protected
radius. Once these distances are specified (in terms of
SNR margins), the aggregate interference at the edge
of the protected region is computed, which can then be
used to obtain the total permissible secondary transmit
power. However, this approach assumes that the primary
transmit power and the local SNR at the secondary
receivers are already known, so that SNR can be used
as a proxy for distance. To avoid these limitations, our
approach exploits collaboration among secondary nodes
for explicit sensing of the primary transmitter’s power
and location.

The remainder of the paper is organized as follows.
Section II describes our assumed model for opportunistic
spectrum sharing. Section III discusses signal strength-
based localization and the associated CRB. Section IV
derives an approximation for the MIFTP. Section V
presents numerical results, which demonstrate the ac-
curacy of the approximation. Finally, the paper is con-
cluded in Section VI.

II. MODEL FOR OPPORTUNISTIC SPECTRUM ACCESS

A. Signal strength model
We assume that all transmissions are omnidirectional

and the signal propagation is governed by a lognormal
shadowing model (cf. [7]) such that the propagation loss
between two nodes i and j is given by

Li,j = g(di,j , ε) + W, (1)

where the function g(d, ε) = 10ε log10 d represents the
generic log-distance path loss component, with ε denot-
ing the path loss factor. For simplicity, we denote g(d, ε)
by g(d). We assume that the shadowing noise W ∼
N (0, σ2

W ). If the receiver noise power, antenna gains,
etc., are known and the fast-fading effects are sufficiently
averaged out, then the received signal strength (SS) at
node i due to node j is given by

Si = sj − Li,j = sj − g(di,j) + W, (2)
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where sj is the transmit power of node j.

B. Maximum interference-free transmit power

Consider a FAR node a and a primary transmitter p,
which transmits on a given frequency channel γ. For
the FAR node a to use the channel γ opportunistically,
it must determine the maximum power at which it
can transmit on channel γ, without causing harmful
interference to any potential receiver or victim node v
within the range of the primary transmitter p. More
formally, the maximum interference-free transmit power
(MIFTP) on a frequency channel γ is defined as the
maximum transmit power of node a on channel γ, such
that the probability of interference to any victim node v
is less than a prescribed threshold (cf. [8]).

Thus, the MIFTP determines the radius of a spectrum
hole considered in the spatial domain, centered at the
FAR node a, with respect to a given frequency channel γ.
For the channel γ to be usable for FAR node a, its
associated MIFTP must be sufficiently large to allow
communications with at least one other FAR node.
The issue of how FAR nodes opportunistically select
frequency channels to form a wireless network of FAR
nodes is an important topic that is beyond the scope
of the present work. In this paper, we focus on the
problem of accurately estimating the MIFTP for a given
FAR node, which is a critical enabler of opportunistic
spectrum sharing.

The received power at node v due to node p is given
by

Rv = sp − Lp,v = sp − g(dp,v) + W, (3)

where sp is the transmit power of node p. The received
power at node v from node a is given by

Iv = sa − La,v = sa − g(da,v) + W, (4)

where sa is the transmit power of a.
We define the outage probability of a victim node v

with respect to the transmitter p, as the probability that
the received power Rv from node p is below a predefined
detection threshold rmin:

Pout(p, v) , P {Rv < rmin} , (5)

when p is transmitting. The coverage distance is defined
as the maximum distance between the node p and any
potential victim node v such that the outage probability
does not exceed a predefined threshold εcov > 0:

dcov(p) , max {dp,v : Pout(p, v) ≤ εcov}
= g−1

(
sp − rmin + σW Q−1(1− εcov)

)
,

where g−1(·) denotes the inverse of g(·) and Q(x) ,
1√
2π

∫∞
x

e−
t2
2 dt denotes the standard Q-function. Note

that dcov(p) depends on sp, rmin, εcov, σ2
W , and the path

loss function g(·). We assume that the FAR node knows
or can estimate sp and therefore can evaluate dcov(p).
The circle centered at node p with radius dcov(p) is called
the coverage area of the transmitter p. Any potential

victim node v, which lies outside of coverage area of
node p would be oblivious to the interference caused by
the FAR node a.

We define the interference probability with respect to
a given victim node v as the probability that Iv exceeds
a predefined interference tolerance threshold imax:

Pint(a, v) , Pr {Iv ≥ imax} , (6)

when node a is transmitting. For a fixed primary trans-
mitter p and FAR node a, the MIFTP is defined as the
maximum transmit power of the FAR node such that
the interference probability with respect to any potential
victim node within the coverage distance from node p
does not exceed a threshold εint > 0:

s∗a , max{sa : Pint(a, v) ≤ εint,∀v : dp,v ≤ dcov(p)}.
(7)

Proposition 1: If dp,a > dcov(p), the MIFTP is given
by

s∗a = imax + g(d∗a)− σW Q−1(εint), (8)

where d∗a , dp,a− dcov(p) is called the critical distance
for the FAR node a with respect to the primary trans-
mitter p. Otherwise, s∗a = 0.2

III. ROLE OF LOCALIZATION AND CRB

Our proposed scheme for discovering spectrum holes
is based on localizing the primary transmitters and using
the location estimates to approximate the MIFTP. Local-
ization in this context differs from more conventional
scenarios (cf. [10]) in two respects: (1) The FAR nodes
collaboratively localize the primary transmitter. (2) No
cooperation is assumed between the FAR node and the
primary transmitter. For the purpose of spectrum hole
estimation, localization techniques based on the signal
strength (SS) and angle-of-arrival (AOA) information are
more appropriate than time-of-arrival (TOA) or time-
difference-of-arrival (TDOA) methods. This is because
in the noncooperative scenario, knowledge of the trans-
mit waveform, which is required to extract the TOA
information, is typically not available or difficult to ob-
tain. For TDOA estimation, the conventional generalized
cross-correlation method can be very demanding. This
is because for a single TDOA estimate, the received
(digitized) signals at two nodes need to be transmitted
to a common site for processing, [11] p. 54.

A. SS-based localization

We limit our discussion to SS-based localization of
a single primary transmitter in the geographic coverage
area. Let L = [xp, yp]T denote the location of the pri-
mary transmitter. Now suppose that a set of uncorrelated
observed SS measurements, {S1, · · · , SN}, is available,
together with a corresponding set of position coordinates

2Due to space limitations, all proofs of original results in this paper
are omitted, but can be found in [9].



3

{L1, · · · , LN}, where Li = [xi, yi]T , i = 1, · · · , N .
The set of observables,

O , {(Si, Li) : i = 1, · · · , N},
may be obtained in several ways. For example, consider
a scenario in which N FAR nodes, located at posi-
tions L1, · · · , LN , collect the signal strength observables
S1, · · · , SN at a given time. The FAR nodes exchange
their observables among each other, such that at least
one of the FAR nodes receives the entire set O. Such a
FAR node can then compute an estimate L̂ = [X̂p, Ŷp]T

of the location of the primary transmitter. Alternatively,
the observable set O may be obtained by measurements
from a single FAR node at N different points in time
along a trajectory as the node moves in the coverage area.
In general, a given observable (Si, Li) may be obtained
either from a measurement taken by the FAR node itself
in the past, or from a measurement by another FAR node
that shares this information with the given FAR node.

Given a set of observations, O, the observation equa-
tions can be written in vector form as follows:

S = z + W , (9)

where

S = [S1, · · · , SN ]T , z = [z1, · · · , zN ]T , (10)

W = [W1, · · · , WN ]T , (11)

with zi = sp − 10ε log10 di, and di =√
(xi − xp)2 + (yi − yp)2. An estimate L̂ of the

location of the primary transmitter can be obtained from
the SS observation equation (9).

B. Cramér-Rao lower Bound

The Cramér-Rao lower bound (CRB) provides a lower
bound on the variance (or covariance matrix) of any
unbiased estimate of an unknown parameter. For the
SS localization model of (9) , the CRB of any unbiased
estimate L̂ of L is given by

EL[(L̂−L)(L̂−L)T ] ≥ J−1
L , (12)

where EL[·] denotes conditional expectation with respect
to L and JL is the Fisher information matrix (FIM)
given by

JL = EL

[
∂

∂L
ln fS|L(S)

(
∂

∂L
ln fS|L(S)

)T
]

,

where fS|L(S) is the likelihood function. In (12), the
matrix inequality A ≥ B should be interpreted as the
assertion that the matrix A−B is non-negative definite.
The CRB provides a lower bound on the mean-squared
errors for the components of L.

If the primary transmitter’s signal power is known, the
FIM can be expressed as follows [10]:

JL =
(

10ε

σW ln 10

)2

HD2HT , (13)

where

H ,
[

cos φ1 cos φ2 · · · cosφN

sin φ1 sin φ2 · · · sin φN

]
, (14)

D , diag
[
d−1
1 , · · · , d−1

N

]
, (15)

and

φi = tan−1

(
yp − yi

xp − xi

)
, i = 1, · · · , N, (16)

is the angle between x-axis and the line connecting
(xi, yi) and (xp, yp) measured counterclockwise.

C. Unknown Transmitter Power

For opportunistic spectrum access, the transmit power
is unknown. Therefore, the parameter vector to be esti-
mated and its MLE are given by

Θ = [xp, yp, sp]T and Θ̂ML = [X̂p, Ŷp, Ŝp]T ,

respectively. The next proposition gives a closed-form
expression for the CRB when the transmit power is
unknown.

Proposition 2: The CRB is given by

J−1
Θ =

[
J−1

L + b−1ccT −b−1c
−b−1cT b−1

]
, (17)

where

b , N

σ2
W

− aT J−1
L a, c , J−1

L a, (18)

a , − 10ε

σ2
W ln 10

[
N∑

i=1

cosφi

di
,

N∑

i=1

sin φi

di

]T

, (19)

assuming that JL given in (13) is invertible.

IV. APPROXIMATION FOR MIFTP

The true MIFTP, as given in Proposition 1, cannot
be calculated directly, since the true location, L =
[xp, yp]T , of the primary transmitter p is unknown. In
this section, we derive an approximation for the MIFTP
first for the case where the transmit power is known and
then for the case in which it is unknown.

A. Known transmit power

Assume first that the transmit power sp of the primary
transmitter is a known constant. Let L̂ML = [X̂p, Ŷp]T

denote the MLE of L. Given a set of N ≥ 3 independent
SS measurements from the primary transmitter, obtained
by the FAR nodes, L̂ML provides an unbiased estimate
of L as the shadowing noise tends to zero. In this
asymptotic regime, the mean squared error of L̂ML

achieves the CRB, which we denote by J−1
L [10].

Suppose that the FAR node a is located at La =
[xa, ya]T . Given L̂ML, the MLE for the distance dp,a,
denoted by D̂p,a, can be obtained by applying the
invariance principle (cf. [12], p. 217), which states that
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Fig. 1. Illustration of relationship between r and β. If 0 < |r| < β,
s∗a > 0. Otherwise, s∗a = 0.

the MLE of a function h(·) of L is given by h(L̂), where
L̂ denotes the MLE of L. Hence, we obtain

D̂p,a =

√(
X̂p − xa

)2

+
(
Ŷp − ya

)2

. (20)

Proposition 3: In the asymptotic regime σ2
W → 0, the

MLE D̂p,a achieves the associated CRB, given by

J−1
p,a , HT

p,aJ−1
L Hp,a, (21)

where

Hp,a , [cos φp,a, sinφp,a]T , φp,a = tan−1

(
yp − ya

xp − xa

)
.

Let Ep,a , D̂p,a−dp,a denote the estimation error of
D̂p,a. Proposition 3 implies that in the asymptotic regime
σ2

W → 0, Ep,a is Gaussian with zero mean and variance
J−1

p,a , i.e.,

Ep,a ∼ N (
0, J−1

p,a

)
. (22)

Define β , D̂p,a − dcov(p). Suppose Ep,a = r. If |r| ≥
β > 0, then in the worst case, the FAR node lies within
dcov(p) of the true primary transmitter p (see Fig. 1(a)).
In this scenario, the FAR node must not transmit, i.e.,
s∗a = 0, to avoid potentially harmful interference to the
victim nodes. If 0 < |r| < β, then the FAR can transmit
with positive power, i.e., s∗a > 0 (see Fig. 1(b)). For this
case, we obtain the following result.

Proposition 4: Under the assumption (22) and for
|r| ≤ 0.993β, the interference probability conditioned
on Ep,a is upper bounded as follows:

Pint(a, v|Ep,a = r) ≤ Q(b1 + b2|r|), (23)

where

b1 , imax + 10ε log10 β − sa

σW
, b2 , − 50ε

βσW ln 10
.

(24)

Requiring that sa > 0, we obtain

Pint(a, v) =
∫ β

−β

Pint(a, v|Ep,a = r)fEp,a(r)dr,

where fEp,a(r) denotes the probability density function
(pdf) of Ep,a. We can then show that

Pint(a, v) ≤
∫ ∞

−∞
Q(b1 + b2r)fEp,a(r)dr

= Q


 b1√

1 + b2
2J
−1
p,a


 ,

where the last equality can be found in [13], p. 102.
To obtain an expression for the MIFTP, we require the

FAR node transmitter power, sa, to satisfy

Q


 b1√

1 + b2
2J
−1
p,a


 ≤ εint.

Since the true CRB of D̂p,a, i.e., J−1
p,a is unknown,

we replace it with the MLE of J−1
p,a , which is denoted

by Ĵ−1
p,a . This is justified by the invariance principle

mentioned earlier and also illustrated in Section V in
our numerical studies. Hence, we obtain the following
approximation for the MIFTP:

ŝa = imax + 10ε log10 β

− σW

√
1 +

(
50ε

βσW ln 10

)2

Ĵ−1
p,a ·Q−1(εint). (25)

We point out that as the accuracy of the estimate D̂p,a

improves, the CRB estimate Ĵ−1
p,a tends to zero and the

right-hand side of (25) converges to the true MIFTP as
given in (8). The approximate formula (25) for MIFTP
requires at least three independent signal strength mea-
surements, i.e., N ≥ 3, which should be obtained from
FAR nodes in the vicinity of the primary transmitter.

B. Unknown transmit power

When the primary transmitter power sp is not known,
it can be estimated together with the location L as a
parameter vector Θ = [LT , sp]T . We can show that
the MLE, Θ̂ML, achieves the CRB asymptotically as
σ2

W → 0 [9]. However, as shown by (17), the localization
error increases due to the estimation of the additional
parameter sp. In particular, the CRB on location is given
by

J−1
p,a = HT

p,a

(
J−1

L + b−1ccT
)
Hp,a. (26)

We define β1 , D̂p,a − D̂cov(p), where D̂cov(p) =
g−1(Ŝp−rmin+σW Q−1(1−εcov)). Let Ecov , D̂cov(p)−
dcov(p) denote the estimation error of D̂cov(p). Similarly
to Ep,a, we can model Ecov as Ecov ∼ N (

0, J−1
cov

)
,

where

J−1
cov =

(
∂dcov(p)

∂sp

)2

b−1 =
(

dcov(p) ln 10
10ε

)2

b−1,

and b is given in (18). Defining E , Ep,a − Ecov, we
see that E ∼ N (

0, J−1
1

)
, where J−1

1 , J−1
p,a + J−1

cov −
2Cov(Ep,a, Ecov). The covariance of Ep,a and Ecov can
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be calculated by applying the same invariance principle
used to obtain (21).

Let Ep,a = r and Ecov = r0. The FAR node can
transmit with positive power, i.e., s∗a > 0, if 0 < |r −
r0| < β1, otherwise s∗a = 0. Here, the critical distance
from the FAR node is given by

d∗a = dp,a − dcov(p) = D̂p,a − r − (D̂cov(p)− r0)
= β1 − r1,

where r1 , r− r0. We note that here r1 plays the same
role as r of Section IV-A.

Following the same steps as before, we can obtain
the following MIFTP approximation for the case of
unknown transmit power (cf. (25)):

ŝa = imax + 10ε log10 β1

− σW

√
1 +

(
50ε

β1σW ln 10

)2

Ĵ−1
1 ·Q−1(εint). (27)

V. NUMERICAL RESULTS

In this section, we present plots of the true MIFTP and
the approximate MIFTP estimated from signal strength
measurements under a range of parameter settings. We
choose our simulation parameters keeping in mind the
application to unused television broadcast bands. We
consider the case when sp is unknown because of its
practical importance. The crucial parameters affecting
the MIFTP estimation are dp,a, sp, εint, σW , ε, N
and the CRB J−1

p,a . We shall assume that the remaining
parameters are known constants. Each of the MIFTP
values is calculated as an average over 1000 simulation
trials and is shown with the associated 95% confidence
interval. We set the parameters as follows:
• Detection thresholds for the victim and FAR nodes

are −83 and −121 dBm, respectively.
• Path loss factor ε = 4. In practice, the path loss

factor can be estimated separately [14], [15].
• εcov = 0.05, imax = −100 dBm, εint = 0.01.
• Standard deviation of shadowing noise, σW = 8 dB.
• Primary node location L = [50, 50]T [km].

A. Distance dp,a

Fig. 2 plots the true and estimated MIFTP values vs.
dp,a for N = 5, 10, 15, 20 for the case ε = 4. Here, we
vary dp,a from 20 to 100 km and position the target FAR
node at La = (xa, ya), where

La = L +
dp,a√

2
[1, 1]T . (28)

For a given transmit power of the primary transmitter,
sp = 80 dBm, we find dsense(a), the sensing distance
of the FAR nodes. It denotes the radius beyond which
the FAR nodes cannot detect the primary signal and is
given by dsense(a) = g−1(sp − ra + σW Q−1(1− εcov)),
where ra denotes the FAR node sensitivity. For each
simulation trial, we randomly place N FAR nodes, with
uniform distribution, inside the circle with radius equal

to dsense(a) and centered at L. The set of SS measure-
ments to compute the MLE of L or Θ is collected by
these FAR nodes, which can be used by other far away
FAR nodes to estimate the MIFTP.

The confidence intervals shown in Fig. 2 arise due to
randomness in the localizing FAR node positions, as well
as the shadowing noise. We see that the accuracy of the
approximate MIFTP formula improves with increasing
dp,a and increasing N . In our simulations we found
that the MIFTP values depend strongly on the path
loss factor ε. For larger values of ε, the accuracy of
the MIFTP approximation improves significantly and
the effect of N decreases. This is because, although
the received signal becomes weaker as ε increases, the
sensitivity of the MIFTP approximation to the location
estimation error reduces.

In our simulation studies we have observed that, the
MLE of the CRB can be estimated quite accurately for
N ≥ 10 and almost in all cases, it is greater than its true
value. This justifies the use of the MLE of CRB in the
MIFTP calculation. We can also calculate the probability
of interference, P̂int, which results when the FAR node
transmits with power level equal to the MIFTP estimate.
Let ŝi

a denote the MIFTP estimate for the ith simulation
trial, i = 1, · · · ,M . Then the probability of interference
under the MIFTP approximation is given by

P̂int =
1
M

M∑

i=1

P int(a|ŝi
a), (29)

where Pint(a|ŝa) denotes the interference probability
given the FAR node transmits with power ŝa (cf. (6)).
Fig. 3 shows that P̂int increases with increasing dp,a,
but is always less than εint. Therefore, the approximate
MIFTP value can safely be used by the FAR node as an
upper bound on the maximum allowable transmit power.

B. Interference probability threshold, εint

Fig. 4 shows a plot of MIFTP vs. the interference
probability threshold, εint, which is varied from 0.001
to 0.1. In this scenario, we set ε = 4, and dp,a = 50
km. The location of the FAR node is set according
to (28) and the values of the other parameters are set
as in the previous scenario. We have observed that the
MIFTP increases relatively slowly with increasing εint.
In particular, for N ≥ 10 there exists a tradeoff in
the MIFTP value of about 15 dB when εint = 0.001
and when εint = 0.1. Also, the gap between the true
and approximate MIFTP values decreases slowly with
increasing εint. We observed that P̂int increases almost
linearly with increasing εint, but is always less than the
specified threshold. These results suggest that the MIFTP
approximation provides a tight approximate upper bound
to the true MIFTP.

VI. CONCLUSION

The main result of this paper is an accurate method
for estimating the maximum interference-free transmit
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power (MIFTP), which a FAR can use in a given
frequency channel without causing harmful interference
to victim nodes. In effect, the MIFTP provides a con-
crete characterization of the size of a spectrum hole in
the spatial domain for a given frequency channel. The
MIFTP formula derived in this paper relies on signal
strength measurements obtained by one or more FAR
nodes in the vicinity of a given primary transmitter.

Our numerical results validate the accuracy of the
proposed MIFTP estimation formula for several different
scenarios and over a range of parameter settings. The
proposed MIFTP estimation method can significantly en-
hance the performance of opportunistic spectrum access
methods (cf. [8]), by exploiting collaboration among the
FAR nodes. In ongoing work, we are exploring how other
types of information gathered by the FAR nodes can be
used to further improve the efficiency of spectrum hole
estimation.
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