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Abstract— We propose the concept of link mobility state and
present a model and algorithm for link mobility tracking in a
mobile ad hoc network (MANET). The link mobility state is
a function of the relative distance between any pair of nodes
at the two ends of a given link and evolves according to
a first-order autoregressive model. The link mobility tracking
algorithm is based on a Kalman filter and a parameter estimation
algorithm, which provide an estimate of the probability that a
given link remains available at a future time. The link availability
probability can be taken as a measure of link stability and applied
to the route discovery and route maintenance phases of MANET
routing protocols to reduce control overhead and packet loss
due to route breakages. Our simulation results demonstrate the
effectiveness of the proposed link mobility tracking algorithm.

I. INTRODUCTION

Mobile ad hoc networks (MANETS) are self-organizing,
rapidly deployable, and require no fixed infrastructure. They
are comprised of wireless nodes, which can be deployed any-
where, and must cooperate in order to dynamically establish
communications. The flexibility of a highly dynamic MANET
introduces many complexities into the tasks of network control
and management, including routing, flow control, and power
management. For example, traffic routes change over time,
subject to the movement of the mobile nodes. The links of the
network are not fixed entities, rather their states change over
time and are dependent on the relative spatial locations of the
nodes, transmitter and receiver characteristics, and the signal
propagation properties of the environment.

In this paper, we introduce the concept of link mobility
tracking as a means to determine the real-time status of the
link between any two mobile nodes and to anticipate the future
availability of the link. We define the link mobility state to
consist of the relative distance, relative velocity, and relative
acceleration between the pair of nodes at the two ends of
any given link. We propose a first-order autoregressive (AR-
1) model to describe the evolution of the link mobility state in
discrete-time. The link mobility model is similar to the AR-1
model used to model node mobility in [1]. The key difference
is that the link mobility state captures relative distance infor-
mation, whereas the node mobility state represents absolute
location information. The link mobility model provides the
basis for a discrete-time algorithm to jointly estimate the link
mobility state using a Kalman filter, and the link mobility
model parameters using a recursive algorithm.

In the face of a dynamically changing MANET topology,
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what is needed is a means to transmit packets over the more
stable routes available in the network and a trigger mechanism
to initiate re-routing and/or route repair in advance of route
breakages. By providing this capability, link mobility tracking
can be applied to improve the performance of any MANET
routing protocol. The computation of link stability metric tends
to be more straightforward in proactive routing protocols [2],
since such protocols have built-in mechanisms for periodic
link state dissemination and neighbor discovery, which can be
re-used for link mobility tracking and the dissemination of the
link stability metric. Reactive routing [3], [4] protocols can be
made mobility-aware by introducing some additional neighbor
discovery mechanisms.

The remainder of the paper is organized as follows. In
section II, we provide a brief discussion of related work to
set the context for the present work. Section III presents
the link mobility model and discusses its application to the
prediction of future link availability. Section IV discusses how
the link state and the parameters of the link mobility model
can be jointly tracked in real-time. Section V discusses how
the link stability metric can be derived from the link mobility
model. Section VI presents numerical results demonstrating
the effectiveness of the link mobility estimator. Finally, the
paper is concluded in Section VII.

II. RELATED WORK

The idea of using mobility or location prediction to improve
routing performance has been proposed in earlier papers.
In [6], each node maintains and periodically checks a list of
its neighbor nodes. This scheme provides a coarse measure of
route stability, but may unfairly penalize relatively stationary
nodes that have highly mobile neighbors. By contrast, link
mobility tracking provides information on the “mobility” of
the link between a pair of nodes, rather than the mobility of a
single node. Both [7] and [8] represent the mobility behavior
of a node in terms of a random walk model. While the random
walk model is useful for conceptual modeling, the model does
not accurately reflect node movements in realistic scenarios.
Moreover, estimation the state and parameters of the random
walk model cannot be done efficiently in real-time.

The concept of link mobility state discussed here is unique
to the present paper, but is related to the node mobility
state concept in [1], [5]. Our proposed link mobility tracking
scheme is based on a first-order autoregressive model, which
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Fig. 1. Tllustration of link mobility tracking vs. node mobility tracking.

has been shown (cf. [1]) to accurately model node mobility.
More importantly, the model lends itself to efficient and
accurate real-time state estimation via the Kalman filter and
MMSE (Minimum Mean Squared Error) parameter estimation.

IITI. LINK MOBILITY MODEL

Consider a particular mobile node X in an ad hoc network.
Another node Y in the network is defined to be a neighbor
if it lies within the radio transmission/reception range of
node X. In this case, a bidirectional wireless link exists
between nodes X and Y. This link will continue to exist
as long as nodes X and Y remain in radio range of each
other, assuming they are also within line-of-sight (LOS). If
the nodes move apart, eventually the link will break. The
purpose of the link mobility model is to predict, in advance,
the availability of the link after a certain time interval. We
then use the probability of link availability as a measure of
link stability.

A. Link mobility state

We propose a link mobility model based on an autoregres-
sive model similar to the AR-1 model for node mobility state
presented in [1]. In this case, however, we are not interested
in the absolute mobility state of each node. Rather, we are
interested in the relative mobility state between a pair of nodes,
i.e., the link mobility state. The link mobility state between
two nodes at time ¢ is defined by a (column) vector '

s(t) = [d(t),d(t), d(1)]', (1)

where d(t) denotes the relative distance between the nodes,
d(t) is the first derivative of d(t) or relative velocity, and d(t)
is the second derivative of d(t) or relative acceleration.

Note that the relative distance d(t) is always nonnegative,
ie., d(t) > 0, but the relative velocity d(t) and relative
acceleration may take on positive or negative values. A value
of d(t) < 0 indicates that node Y is moving fowards node X
at time ¢, while a value of d(t) > 0 indicates that node Y
is moving away from node X. A similar comment applies to
the relative acceleration d(t). The link mobility state defined

IThe notation ’ indicates the matrix transpose operator.

by (5) is applicable whether the nodes are constrained to
move in a two-dimensional plane or are free to move in
three-dimensional space. The information contained in the link
mobility state captures the dynamics of the relative distance
between the two nodes of interest, and by inference, the
behavior of the associated link.

The evolution of the link mobility state can be considered
in discrete-time, assuming a uniform sampling interval 7. The
discrete-time link mobility state is defined by

Sp 2 5(n7) = [dp, dn,dn)’,  — o0 <n < oo, 2)

where d,, £ d(n7), d, £ d(n7), and d,, £ d(n7). In
comparison, the node mobility state for two-dimensional space
in the discrete-time AR-1 model of [1] is defined by

Up = [gjnvinai}naymymyn]/» 3)

where (x,,y,) denote the (x,y)-position coordinates of the
node at the discrete-time instant n. The components z,, and
I, represent the velocity and acceleration in the x-direction,
while the components ¥,, and %, represent the velocity and
acceleration in the y-direction, at time n.

Figure 1 illustrates the concept of link mobility tracking
in comparison to node mobility tracking. The solid circle
represents a node O thats track the link and node mobility
state of the open circle, which represents a node X that
is moving with respect to node O. The node X is initially
located at position (zg,%9) and moves to the positions
(x1,21), -+ -, (x5,¥5), in sequence. The solid lines represent
the trajectory taken by node X. The dashed lines represent
the sequence of relative distance values dy, dy, ---, ds.
Node mobility tracking involves the estimation of the position
sequence {(x,,yn)}, together with the corresponding velocity
and acceleration sequences {(Z,,¥,)} and {(Z,,%n)}. By
contrast, link mobility tracking estimates the sequence of
relative distance values {d,, }, together with the corresponding
velocity and acceleration sequences {d,,} and {d,,}. In order
to extend the node mobility state to three-dimensional space,
the state u,, should be expanded to include the z-coordinate
and the associated velocity and acceleration components in
the z-direction. However, the form of the link mobility state
remains the same in the three-dimensional case.

B. Link mobility state equation

The AR-1 model for the node mobility state u,, is given as
follows [1]:

Upt1 = Bun + vy, (4)

where B is a 6 x 6 transformation matrix, the vector v,, is a
6 x 1 discrete-time zero mean, white Gaussian process with
autocorrelation function R, (k) = &V, where o = 1 and
0r = 0 when k # 0. The matrix V is the covariance matrix
of v,. The transformation Bs,, in (4) captures the equations
of motion for the state variables from time n to time n + 1,
modulo the noise term v,,.

A model similar to (4) can be applied to represent the
evolution of the link mobility state. However, care must be



taken to ensure that the computed value of d, is always
positive. Thus, we specify the link mobility state equation as
follows:

Snt1 = sgn({As, + wy)1 - (As, + wy), )

where (s); denotes the first component of the vector s. The
matrix A has the following form:

1 7 712/2
A = 0 1 T , (6)
0 0 «
and
Wy = [wn,lywn,27wn,3]/

is a 3 x 1 discrete-time zero mean, white Gaussian process
with autocorrelation function R, (k) = 0;Q, where §p = 1
and d; = 0 when k # 0. The matrix @ is the covariance
matrix of v,. The term « in (6) is a parameter of the model
that must be specified or estimated.

In the state equation (5), if the first component of As,, +w,,
is negative, s, 11 should be set equal to —(As,, +w,,). In this
case, since the distance component has gone negative from
time n to n + 1, the polarities of all three components of the
vector As,,+w,, should be reversed in order to obtain the next
state vector s,1. Similar to the node mobility state equation
(3), the transformation As,, in (5) captures the evolution of the
state s from time n to time n + 1, modulo the noise term w,,.
Let . ..

9n £ Sgn(dn +dnT + dn72/2 + wn,1)~

Then the state equation (5) is equivalent to the following
system of equations:

dn—i—l = dn (dn + dnT + Jn72/2 + wn,l)a (7)
dn—i—l = dn (dn + d'nT + wn,?)a (8)
dn—i—l = dn (adn + wn,3)~ (9)

IV. LINK MOBILITY TRACKING

The link mobility model given by (5) allows us to track
the link state given a sequence of observation data. Signal
measurements typically available in wireless networks such as
RSSI (received signal strength indicator) or TOA (Time-of-
Arrival) can serve as observation data for tracking link mo-
bility. A single signal measurement of either kind is sufficient
to perform link mobility tracking using a Kalman filter. For
concreteness, we shall assume that RSSI is used as the source
of observation data, although TOA could just as easily be used
instead.

A Kalman filter can be used to perform accurate link
state estimation as long as the mobility characteristics of the
link do not change significantly over time. The link mobility
characteristics are defined by the parameters A,, and @,,. From
the form of A, it can be seen that the only undetermined
parameter is the parameter «. If the link mobility characteris-
tics change over time, state estimation will become inaccurate
unless the mobility parameters A,, and @),, are re-estimated.
To accommodate changes in the link mobility parameters, we

propose an integrated link mobility and parameter estimator
similar to the one described in [1] for the AR-1 node mobility
model. The link parameter estimator uses the sequence of state
estimates to re-estimate the link mobility parameters.

A. Link mobility state estimation

Assuming a lognormal shadowing model, the RSSI at
time n, measured in dB, received at a given mobile node X
from a neighbor node Y is given follows [9]:

on = k — 10vlog(dy,) + Py, (10)

where x is a constant determined by the transmitted power,
antenna height, wavelength, and gain of the node Y, v is
a slope index (typically 7 is between 2 — 5), 1, is a zero
mean, stationary Gaussian process with standard deviation
oy typically in the range from 2 — 10 dB, and d,, is the
relative distance between nodes X and Y, as defined earlier.
The propagation model (10) can be written in the form of an
observation equation incorporating the link mobility state as
follows:

Op = h(sn) + /(/)nv (11)

where

h(sn) = r — 10y1log(dy). (12)

The observation sequence {o,} for link mobility tracking
consists of scalar values, whereas for node mobility tracking,
the observation sequence consists of vectors containing at
least three components (cf. [1]). This is due to the fact that
localization of a node in two-dimensional space requires at
least three independent observations. By contrast, estimation
of the relative distance between two nodes requires only a
single signal measurement.

Although the link mobility state equation (5) does not,
strictly speaking, represent a linear system, the system is
approximately linear in practice because the term (As,,+w,);
rarely falls below zero in realistic scenarios. This has been
confirmed in our numerical experiments. Therefore, we can
apply an extended Kalman filter to estimate the link mobility
state from the observation data. To that end, the observation
signal o,, is linearized as follows (cf. [10]):

on = h(s}) + HyAsp + ¥y,

where s; is the nominal or reference state vector and

13)

*
As, =8, — s,

is the difference between the true and nominal state vectors. In
the extended Kalman filter, the nominal vector is obtained from
the estimated link mobility state at time n—1, i.e., 8}, = §,,_1.
The 1 x 3 vector H,, is given by

oh

H, =+

88 8=8,_1 = [_107/<§n71>1,070]

(14)

The steps in the extended Kalman filter are given below
(cf. [10]). In the extended Kalman filter, §,,, denotes the
state estimate at time n given the observation vector at time n



and 8,,_; denotes the state estimate at time n given the
observation vector at time n — 1. In terms of the earlier
notation, 8, = 8.

Initialization:
1) 3p-1=0
2) Mo, =13

Recursive estimation (n =1,2,---):

) H,= [_107/<§n—1\n—1>17070]

2) K, = Mn|n_1H;l(HnMn|n_1H;l + o’ifg)_l
Correction steps:

3) §n\n = §n|n71 + Kn(on - h(gn\nfl))

4) My, = (Ig—Kan)Mn|n_1(Ig—Kan)’JraiKnK;L
Prediction steps:

5) '§n+1\n = Sgn<An'§n\n>1An§n|n

Here, 0 denotes the 3 x 1 vector of all zeros, I3 denotes the
3 x 3 identity matrix, M;); = Cov(éi‘ 7, and K, is the Kalman
gain matrix. The most involved computation in the Kalman
filter is the inversion of a 3 x 3 matrix in the calculation of K,,,
which should be well within the capabilities of most modern
mobile devices.

B. Link mobility parameter estimation

Due to the autoregressive form of the link mobility model,
the MMSE (Minimum Mean Squared Error) estimates of the
parameters A and () can be obtained using a form of the Yule-
Walker equations [11]. Recall from (6) that the matrix A is
determined by the parameter . Define the residual error at
time n by

€n £ Sp — AAnflsnfh (15)

where /Aln denotes the MMSE estimate of A,, at time n. The

orthogonality principle requires that
Els;,—1en] =0, (16)

From (16), the MMSE estimate of « at time n can be obtained
as

L rn(1)/rn(0), if r(1) #£0,
Gn = { 0, otherwise, a7
where
r(0) = E[(d,)?] and 7,(1) = E[dpd,_1]. (18)

Given &,,, the estimate /Aln is completely determined by (6)
and the sampling interval T,,. The corresponding estimate for
the noise covariance matrix (2., is calculated as follows:

1 n

/

:g E €;e;.
i=1

The link mobility state estimates §,,, which are obtained
using the extended Kalman filter as discussed in subsection V-
A, are used to re-estimate the model parameters at time n.
The steps involved in estimating the link mobility parameters

19)

are listed below.

Initialization:
D) az = (31>:§
2) Ay =A4,Q2=0Q
3) r2(0) = 7’(0), r2(1) = 7(1)

where the initial parameter values A, Q, #(0), and 7#(1) can
be determined from a set of training samples.

Link mobility parameter estimation ( n = 3,4,---):

1) eAn = 8p — An—lsnA—l
2) Qn= i [(n - 2)Qn—1 + eneu .

3) an = (3n
4) ,(0) = 225 [(n = 2)r1(0) + aj]
5) (1) = nig[( 3)rn— 1(1)+an 10y

6) Obtain A,, from &, = rn(1)/rn(0) .

The link mobility parameter estimates A,, and Qn depend
only on the estimated state sequence up to §,. Therefore,
A, and Qn can be applied in the prediction step of the
Kalman filter in subsection IV-A in place of A, and Q,,
respectively. This results in a joint link mobility state and
estimation scheme, which combines the Kalman filter-based
state estimation, with MMSE parameter estimation as dis-
cussed above.

V. LINK STABILITY METRIC

Given the link mobility model, which is estimated in real-
time as discussed in section IV, a link stability metric can be
derived based on the predicted probability of link availability
at a future time. In this section, we derive a link stability
metric based on the probability of link availability predicted
at a future time.

Suppose the link mobility state between two nodes X and
Y is tracked using the joint state and parameter estimation
scheme discussed in section IV. From the prediction steps (5
and 6) of the extended Kalman filter specified in subsection I'V-
A, the one-step predicted link mobility state estimate at
time n + 1 given the set of all observations up to time n
is given by

§n+1\n = Sgn<An'§n\n>1An§n|n (20)
and the corresponding covariance matrix is given by
Mn+1\n = AnMn|nA;L + Qn (2])

The predicted relative distance estimate at time n + 1 given
the set of observations up to time n is given by

dn+1|n = <§n+1\n>1~ (22)
The corresponding variance of czn+1|n is given by
U?l+1‘n = <Mn+1\n>(1,1)~ (23)

Then d,, 41}, is Gaussian-distributed with approximate mean

dn+1|n and variance o2 et |ne



Let dyj, be the transmission/reception range of nodes in the
network. We shall assume for simplicity that all nodes have
the same transmission/reception range. Then the probability
that the link between nodes X and Y will remain active at
time n + 1, given the set of observations up to time n can be
expressed as follows:

£ P[dn+1\n < dth] (24)

pn+1|n

_<z_‘in+1\n)
2

1 dth
= 7/ e i dp
V27To—n+1\n 0

din — Jn n _dAn n
= Q <”‘ — ) -Q (“' ) (26)
On-&-l\n O'n-‘rl\n

where Q(z) £ \/%7 = e=¥’/2 dy denotes the standard Q-
function. In principle, the one-step predicted link availability
probability could be extended to an m-step predicted value by
repeating the Kalman filter prediction step to derive approxi-
mations for cin+m‘n and 0,4 |- In this paper, however, we
shall take the probability p, 1), as a measure of the stability
of the link between nodes X and Y at time n, which we shall
denote by p,(X,Y).

(25)

VI. NUMERICAL RESULTS

To evaluate link mobility tracking, the link mobility be-
havior between a pair of mobile nodes was simulated using
Matlab. The serving area is assumed to be a 800 m x 800 m
square bounded by the points (—400, —400) and (400, 400).
Since the link mobility state captures the relative distance,
velocity, and acceleration between the two nodes, one of the
nodes, labelled O, can be fixed at the origin (0, 0) system with-
out loss of generality. The other node, labelled X, moves in
the serving area according to the random waypoint model [3],
[12].

In the representative scenario of Fig. 2, node O tracks the
link mobility state between itself and node X. The mobility
of node X is governed by a random waypoint model with
velocity uniformly distributed in the range [5,15] m/s and a
pause time of zero, which represents the highest degree of
mobility. The transmission/reception range is set to dy, =
250 m. The link stability threshold is set to p;, = 0.5.
The signal propagation parameters in (10) are set to x = 0
and v = 3. The variance of the noise process 1, is set to
Oy = 4 dB.

Figure 2 shows a sample path of the actual relative distance
over a time interval of 200 s. The vertical axis on the left
represents the relative distance in units of meters, while the
right-hand vertical axis represents the link stability metric,
taking values in the range [0, 1]. The estimated relative distance
trajectory is obtained from the link mobility tracking procedure
described in section IV. The sampling interval is assumed to
be a constant 7 = 2 s. One can see that the estimated distance
tracks the actual distance closely over the observation interval.
When the slope of the actual distance curve changes sign, the
estimated distance deviates from the actual distance but then
recovers within several seconds. The graph also shows the

trajectory of the link stability metric computed by node O.
Observe that the link stability metric trajectory always crosses
the threshold py, in the vicinity of a crossing, in the opposite
sense, of the estimated distance trajectory with respect to the
threshold dyj,. That is, an upcrossing of p;j, always corresponds
to a downcrossing of dy, and vice versa.

In Fig. 2, the downcrossing of the link stability curve with
respect to p;p just prior to ¢ = 236 s occurs approximately
2 s before the upcrossing of the relative distance curve with
respect to dg,. This implies that the link stability metric
anticipates the breakage of the link approximately 7 = 2 s
in advance of the link breakage event. Recall from section V
that the link stability metric is defined in terms of the estimated
probability of link availability 7 time units into the future.
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Fig. 2. Tracking of link relative distance and link stability.

Figures 3-5 show the tracking performance of the link
mobility estimator for various parameter settings. The average
speed of the mobile node was varied between 0 and 40 m/s
(i.e., 0 and 144 mph), which spans most real-life speeds.
Each simulation run was 2500 s long and the results were
averaged over a total of 40 simulation runs. The tracking error
is reported as the average of the absolute errors during the
simulation. The absolute error is the absolute value of the
difference between the actual relative distance at time ¢ and
the value predicted by the link mobility estimator, 7 seconds in
advance. The results indicate that the tracking error increases
with increasing node velocity, as should be expected. For
a wide range of real-life speeds, the link mobility tracking
performance is quite accurate.

Figure 3 provides insight into how the estimation algorithm
performs under varying noise levels for time-step 7 = 1 s.
The noise level is varied by changing the parameter oy. As
expected, the error increases for increasing noise levels and
larger time steps. Figures 4 and 5 provide another perspective
on the performance of the link mobility estimator when o, =
1 dB and 2 dB, respectively, and for different values of the
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Fig. 3. Tracking error for time-step 7 = 1 s.
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Fig. 4. Tracking error for oy, = 1 dB.

time-step 7. As expected, the error increases for increasing
values of 7 and larger values of oy.

VII. CONCLUSION

This paper introduced the concept of link mobility tracking,
a simple, but powerful idea that can be applied to improve
the performance of MANETs. We presented a link mobility
state model based on an autoregressive model and a link
tracking algorithm based on combining the Kalman filter and
a recursive parameter estimator. A link stability metric was
defined as the estimated probability of link availability at the
next discrete-time index. The link stability metric can be used
to proactively invoke re-routing or route repair to avoid route
breakage events in advance. Our numerical results illustrate
the predictive power and accuracy of the link mobility tracking
algorithm.
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