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ABSTRACT

Syntactic landmine detection has been proposed to detect and classify non-metallic landmines using ground
penetrating radar (GPR). In this approach, the GPR return is processed to extract characteristic binary
strings for landmine and clutter discrimination. In our previous work, we discussed the preprocessing method-
ology by which the amplitude information of the GPR A-scan signal can be effectively converted into binary
strings, which identify the impedance discontinuities in the signal.

In this work, we study the statistical properties of the binary string space. In particular, we develop a
Markov chain model to characterize the observed bit sequence of the binary strings. The state is defined
as the number of consecutive zeros between two ones in the binarized A-scans. Since the strings are highly
sparse (the number of zeros is much greater than the number of ones), defining the state this way leads to
fewer number of states compared to the case where each bit is defined as a state. The number of total states
is further reduced by quantizing the number of consecutive zeros. In order to identify the correct order of
the Markov model, the mean square difference (MSD) between the transition matrices of mine strings and
non-mine strings is calculated up to order four using training data. The results show that order one or two
maximizes this MSD.

The specification of the transition probabilities of the chain can be used to compute the likelihood of
any given string. Such a model can be used to identify characteristic landmine strings during the training
phase. These developments on modeling and characterizing the string statistics can potentially be part of a
real-time landmine detection algorithm that identifies landmine and clutter in an adaptive fashion.

Keywords: Landmine detection, Ground penetrating radar, Syntactic pattern recognition, Binary string,
Markov chain

1. INTRODUCTION

A high-performance, robust and real-time landmine detection system is essential for successful military and
humanitarian demining operations. Despite the efforts of the research community over the last 10-15 years,
satisfactory performance in the field has yet to be achieved. Most existing solutions are specialized in terms
of the metal content of mines and the applied sensor, and typically employ some form of anomaly detection
based on probabilistic modeling and pattern recognition.1–3 In recent years, multi-sensor solutions are also
being studied for performance improvement.4

Our efforts are focused on detecting low metal anti-tank landmines using ground penetrating radar (GPR)
with high speed and detection performance. We have proposed the syntactic pattern recognition (SPR)
method for landmine detection.5 In this approach, the GPR signal is preprocessed in two steps to identify
the impedance discontinuity profile of the target.6 The first step is inverse filtering, which deconvolves the
composite scattered signal due to the target and bandpass characteristics of the GPR. The second step is
concavity detection, which converts the filtered signal into binary-valued strings, where a ‘1’ indicates a
change in impedance of the target, and a ‘0’ indicates no change in impedance.

After preprocessing, the crucial next step is to extract the characteristic mine strings from training data,
such that the discrimination between mine and non-mine strings is maximized. Using the training data, the
characteristic mine strings need to be found from a set of strings of relevant length from the different available



landmine prototypes/exemplars. Towards this end, we propose a Markov chain model to characterize the
statistics of the binary strings.

The state of the Markov model is defined as the number of successive zeros between the ones in the
binary strings. Due to the inherent sparseness of the binarized GPR A-scans, this way of defining the states
yields a smaller total number of states. We also quantize the states which makes the involved computation
tractable. In order to identify the correct order of the model, we calculate the mean square difference (MSD)
between the mine and non-mine string transition probabilities. This study reveals that Markov chain with
order 1 or 2 is sufficient depending on the number of ones available in the strings considered.

The initial state and transition probabilities of the Markov chain allow us to compute the likelihood of
each string. This information is useful to identify the best candidate mine strings yielding best detection and
false alarm performance. We can also design a simple maximum likelihood-type detector which computes
the likelihood of each A-scan given the mine string transitions. We present a few results showing the promise
of such an approach.

In Section 2 we present the proposed Markov chain model for characterizing the binarized GPR A-scans.
Section 3 presents results showing the effectiveness of the Markov model in capturing the statistics of the
binary strings. The paper is concluded in Section 4 with a summary of the present work and future research
directions.

2. MARKOV CHAIN MODEL FOR BINARIZED GPR A-SCANS

In this section, we develop a Markov chain model to characterize the statistics of the binary strings corre-
sponding to mine and non-mine strings of GPR A-scans. We seek a computationally efficient model which
captures the different transitions in the bit sequence of the strings in a statistical manner. We first define the
states of the Markov chain, propose a quantization scheme to limit the number of total states, and finally
discuss the usefulness of the model to compute string likelihood.

2.1 Definition of Markov states

Given a binary string of L bits with Z ‘1’s, one can define a two-state Markov chain model where the
occurrence of ‘0’ and ‘1’ are the only two possible states. This is an over-simplified model because it can not
adequately capture the correlation among the successive bits in the sequence. We choose to define the state
in a manner which allows us to capture correlation among successive bits, exploits the sparseness inherent
in the strings, and is computationally efficient.

We define a given Markov state as the number of zeros in between two consecutive ones such that the state
Si indicates that there are i successive zeros between the two ones under consideration. By this definition,
the L = 12, Z = 4 bit string S , 100010100001 can be represented by the state sequence S3S1S4. The state
sequence S3S1S4 means that the first ‘1’ is followed by three zeros (represented by state S3), which is followed
by a ‘1’, which is followed by a zero (represented by state S1), which is followed by a ‘1’, which is followed
by four zeros (represented by state S4), which is finally followed by the last ‘1’. Due to the sparseness of
the ‘1’s the same string can be represented by a sequence of 3 states, instead of 12 states required by the
two-state model.

2.2 Order of Markov chain

With the above definition, we can calculate the initial state (I) and transition probabilities (P ) of the Markov
chain from the training data. In the considered GSTAMIDS (Ground Standoff Mine Detection System) GPR
dataset, most of the mine and non-mine binary strings are of length L=50 to 100, with number of ones Z=3
to 10. It was empirically found that for the vast majority of cases the highest number of consecutive zeros
observed in the strings is 60. That is, it is sufficient to have Si with max (i) , imax = 61, where the last state
is a dump state which includes all cases greater than 60 consecutive zeros. In this case, the total number of
possible states is 61.

To accurately account for the correlation among successive bits it is important to identify the correct order
of the Markov chain. Intuitively, the higher the Markov chain order, the more accurately the correlation of



the bits is incorporated into the transition matrix. For example, if order d = 1, then the string S = S3S1S4

includes two state transitions: S1|S3 and S4|S1. For d = 1, the initial state vector has size imax× 1, and the
state transition matrix has size imax×imax. On the other hand, if d = 2, then S has only one state transition:
S4|S3S1. For this case, the initial state matrix has size imax × imax, and the state transition matrix has size
imax × imax × imax. In general, a Markov chain with order d > 3 has d-dimensional initial state probability
hypercube with idmax elements, and (d+1)-dimensional transition probability hypercube with id+1

max elements.

Given a range of allowable string lengths L and the allowable number of ones Z, we can estimate the
parameters, I, the initial state probabilities, and P , the transition probabilities, of the Markov chain for
a specified order d. For estimating the initial state probabilities, the first state(s) of each valid string
is counted by incrementing the corresponding component of I. In the end, all the components of I are
normalized to convert them into valid probabilities. For estimating the state transition probabilities, all the
state transitions of each valid string are counted by incrementing the corresponding elements of P , followed
by normalization to render valid probabilities. For example, in the example of S = S3S1S4 with d = 1,
I3 ← I3 + 1, P3,1 ← P3,1 + 1, and P1,4 ← P1,4 + 1. Note that the first index in the subscript of P indicates
the from state and the second index indicates the to state of the transition. If d = 2, then I3,1 ← I3,1 + 1,
and P3,1,4 ← P3,1,4 + 1.

2.3 State quantization

From the above discussion we notice that the size of P increases exponentially as id+1
max. For d = 4 and imax =

61, the number of elements in P grows very quickly indeed (614+1=844,596,301). We propose a quantization

of the states such that a set of consecutive states (Si, Si+1, · · · , Si+q−1) is lumped into a single state S
(q)
i .

For example, a quantization of q = 5 means we have the quantized states S
(5)
1 = (S1, S2, S3, S4, S5), S

(5)
2 =

(S6, S7, S8, S9, S10), · · · , S(5)
12 = (S56, S57, S58, S59, S60), S

(5)
13 = S61. For q = 10, the quantized states are

S
(10)
1 = (S1, · · · , S10), S

(10)
2 = (S11, · · · , S20), · · · , S(10)

6 = (S51, · · · , S60), S
(10)
7 = S61. The baseline case of

q = 1 means no quantization is performed on the states. With quantization q = 5 and q = 10, P has
134+1 = 371, 293 and 74+1 = 16, 807 elements, respectively, when d = 4.

Aside from reducing computational complexity, state quantization serves another important purpose.
Without any quantization, the state transition probabilities in P become more and more sparse as we go to
higher orders of the Markov chain. This may in turn render the computed likelihoods of many strings zero,
simply because a particular transition did not occur even once in the observed data. Quantizing the states
as mentioned above helps smooth out such cases. Another point to note is that the number of available
transitions decreases as the Markov order is increased for a fixed number of strings. This may be an issue
when higher order Markov models are considered with a limited number of strings available. So, comparison
and use of different Markov orders should be performed in conjunction with an appropriate state quantization
level, and a sufficiently large number of strings.

2.4 Likelihood of strings

The binarized GPR truth data can be separated into two categories: mine strings and non-mine strings.
The mine strings are found by extracting a specified volumetric region around the true locations of known
landmines using truth information. The remaining GPR data is considered to be non-mine strings. Due to
the high sidelobe leakage of the impulse GPR used to acquire the data, we used a guard region around each
mine to ensure that no mine strings were considered as non-mine strings.

Once the initial state and transition probabilities for these two types of data, mine and non-mine strings,
have been estimated for a specified state quantization and Markov order (q, d), it is straightforward to
calculate the likelihood for any given string. We denote the initial state and transition probabilities for the
two data types explicitly as I(q,d,m), P (q,d,m), I(q,d,m̄), and P (q,d,m̄), where the notations m and m̄ stand for
mine and non-mine information, respectively.

The computation of string likelihood is best illustrated by examples. Again, let us consider our example
string S = S3S1S4. The likelihood of S given all mine and non-mine string information is denoted by
L(q,d,m)(S) and L(q,d,m̄)(S), respectively. Given all mine string information, we can compute the different



string likelihoods for q = 1, 2 and d = 1, 2 as follows. The likelihoods when non-mine string information is
given can be computed similarly.

L(1,1,m)(S3S1S4) ≡ L(1,1,m)(S
(1)
3 S

(1)
1 S

(1)
4 ) = I

(1,1,m)
3 P

(1,1,m)
3,1 P

(1,1,m)
1,4 (1)

L(1,2,m)(S3S1S4) ≡ L(1,2,m)(S
(1)
3 S

(1)
1 S

(1)
4 ) = I

(1,2,m)
3,1 P

(1,2,m)
3,1,4 (2)

L(2,1,m)(S3S1S4) ≡ L(2,1,m)(S
(2)
2 S

(2)
1 S

(2)
2 ) = I

(2,1,m)
2 P

(2,1,m)
2,1 P

(2,1,m)
1,2 (3)

L(2,2,m)(S3S1S4) ≡ L(2,2,m)(S
(2)
2 S

(2)
1 S

(2)
2 ) = I

(2,2,m)
2,1 P

(2,2,m)
2,1,2 . (4)

String likelihoods computed using the Markov chain probabilities can be very useful to find the charac-
teristic mine strings from training data. It can be used as a measure to identify which of the mine strings
are more likely across the different landmine exemplars. Eventually, it may be possible to design landmine
detectors that discriminate between landmine and clutter based on the likelihood of observed strings during
training phase. In particular, it can be utilized as a feature to classify mine strings from non-mine strings.
We will explore this aspect in detail in our future work.

It is interesting to note that once the Markov chain parameters have been estimated, it is possible to assign
a probability to a newly encountered string not observed previously. Moreover, the Markov parameters,
namely the initial state and transition probabilities, can be dynamically updated as new GPR data is
gathered. This makes it possible to develop landmine detection schemes capable of dynamically adapting to
different operating conditions due to soil, clutter and other environmental variations.

3. RESULTS

We developed and evaluated the Markov chain model using the GPR data collected at a government test
site. The acquired amplitude GPR signal is converted into binary strings by inverse filtering followed by peak
detection.6 The mine and non-mine strings are separated into two groups by using ground truth information.
The initial state and transition probabilities are calculated as described in Section 2.

3.1 MSD of mine and non-mine strings

To determine the correct order of the Markov chain, we calculate the mean square difference (MSD) of the
transition probabilities P (q,d,m) and P (q,d,m̄) for Z = 3, 4, · · · , 10 and d = 1, 2, 3, 4. Since the dimensions of
P depend on the chosen d, we compute MSD by normalizing by the number of elements in P . The MSD for
(q, d) is computed as

MSD(q, d) =

∑imax

i=1

∑imax

j=1 · · ·
∑imax

l=1

(
P

(q,d,m)
i,j,··· ,l − P

(q,d,m̄)
i,j,··· ,l

)2

id+1
max

,

where {i, j, · · · , l} denotes the set of (d+ 1) indices corresponding to the (d+ 1) dimensions of P .

To find the correct order of the Markov chain, we identify which order maximizes the MSD between the
mine and non-mine strings. In Fig. 1, MSD(q, d) is plotted as a function of the number of ones (Z) in the
strings for q = 1 (imax = 61) and d = 1, 2, 3. The MSD for d = 4 is not calculated because of the large
memory requirements for this case (P consists of 615 elements). The same is plotted in Figs. 2 and 3 for
d = 1, 2, 3, 4, using q = 5 (imax = 13) and q = 10 (imax = 7), respectively. For the different quantization
levels, we notice that the MSD is maximized for d = 1, 2 depending on the value of Z. In particular, the
MSD is maximized for d = 2 when Z = 4 and Z = 5 for all quantization levels q = 1, 5, 10. For rest of the
values of Z, d = 1 yields the highest MSD, with the exception of Z = 8 for q = 10 (see Fig. 3).



3.2 Likelihood of strings

As described in Section 2, we can compute the likelihood of any string once the initial state and transition
probabilities have been estimated. In Fig. 4, we plot the likelihood of all mine strings for both mine and
non-mine state transition probabilities, P (q,d,m) and P (q,d,m̄). For the given GPR data set considered, there
are 23,867 mine and 373,849 non-mine strings with Z ∈ [3, 20].

In Fig. 4 we plot the likelihood (in descending order, blue color) of all 23,867 mine strings computed
using mine string transitions P (q,d,m) for (q, d) = (5, 1). On the same plot we also show the the likelihood
of the same mine strings computed using non-mine string transitions P (q,d,m̄) for (q, d) = (5, 1) (red color).
So this plot indicates whether particular mine strings are more likely or less likely to occur in mine exem-
plars/prototypes compared to non-mine regions. The fact that particular mine strings can be more likely
to occur in non-mine regions compared to mine regions is due to the fact that the specification of the mine
locations provided in truth information of the training data is not absolutely precise, and the specified mine
regions can contain typical non-mine responses.

Clearly, Fig. 4 shows that only a small fraction of all the 23,867 mine strings is significantly highly likely
to occur in the mine regions compared to non-mine regions. The best characteristic mine string(s) with
attractive detection performance should be chosen from this subset of mine strings. Fig. 5 shows a similar
plot as Fig. 4, but for Z = 6 only, which includes 5,123 mine strings.

3.3 Mine detection based on likelihood of strings

To test whether the proposed Markov model and the associated string likelihood computation is useful
in detecting actual mines, we computed likelihoods of strings of a brick (512 deep x 51 crossrange x 100
downrange) of actual GPR data comprising an area of approximately 12.75 m2. The string likelihoods are
computed using P (q,d,m) for (q, d) = (5, 1), L ∈ [50, 100] and Z ∈ [6, 10]. For each A-scan in the brick,
multiple strings may exist within the specified range of string length and the number of ‘1’s, L and Z. In
such a case only the maximum of all the different string likelihoods of a given A-scan is retained.

Figs. 6,7, and 8 show six such example bricks. In Figs. 6 and 7, the string likelihoods converge at the
locations of true mines within the brick. However, in Fig. 8, the string likelihoods do not converge at the
true mine locations, instead sporadic hotspots are observed across the bricks. This is an encouraging result
since it shows that it may be possible to design mine detectors based on string likelihoods derived from a
Markov chain model of binarized GPR signals. Of course, the feasibility of detector design based on the
proposed statistical string statistics requires further study.

4. CONCLUSION AND FUTURE DIRECTIONS

We proposed a Markov chain model to characterize the string statistics of binarized GPR signals for syntactic
landmine detection. An efficient and computationally tractable definition of the Markov states were provided.
The order of the Markov chain was determined empirically by observing which order maximizes the mean
square difference between mine and non-mine strings. The Markov parameters, namely, the initial state and
transition probabilities, were estimated and used to compute the likelihood of any given string. Finally, the
likelihood of strings was shown to be an effective measure for discriminating mine and non-mine strings.

The proposed Markov model only dealt with strings and their state transitions in the depth direction.
However, it is possible to generalize this model to include transitions in the cross range and down range
directions as well. This would allow the model to capture more information regarding the mine, thereby
allowing a more accurate characterization of the landmine string statistics. Another way to include more
information is to work with ternary strings rather than binary strings by distinguishing between positive
and negative peaks of the preprocessed GPR signals. Yet another interesting avenue of research may be to
explore hidden Markov processes for modeling the binary/ternary strings. This may be a powerful tool since
it may allow us to estimate the true unobserved impedance discontinuity profile of the target in an effective
manner.
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Figure 1: MSD(q, d) for q = 1 (imax = 61) as a function of Z (the number of ‘1’s) for Markov chain order
d = 1, 2, 3.
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Figure 2: MSD(q, d) for q = 5 (imax = 13) as a function of Z (the number of ‘1’s) for Markov chain order
d = 1, 2, 3, 4.
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Figure 3: MSD(q, d) for q = 10 (imax = 7) as a function of Z (the number of ‘1’s) for Markov chain order
d = 1, 2, 3, 4.
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Figure 4: Likelihood of mine strings given mine string transition probabilities P (q,d,m) and non-mine string
transition probabilities P (q,d,m̄) for (q, d) = (5, 1) and Z ∈ [3, 10].
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Figure 5: Likelihood of mine strings given mine string transition probabilities P (q,d,m) and non-mine string
transition probabilities P (q,d,m̄) for (q, d) = (5, 1) and Z = 6.
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Figure 6: Projected maximum string likelihood of two bricks (each of approximately 12.75 m2 region) of
actual GPR data. The string likelihoods are computed using P (q,d,m) for (q, d) = (5, 1) and Z ∈ [6, 10]. For
this example the likelihood of the computed strings converge around the true mine locations.
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Figure 7: Projected maximum string likelihood of two bricks (each of approximately 12.75 m2 region) of
actual GPR data. The string likelihoods are computed using P (q,d,m) for (q, d) = (5, 1) and Z ∈ [6, 10]. For
this example the likelihood of the computed strings converge around the true mine locations.
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Figure 8: Projected maximum string likelihood of two bricks (each of approximately 12.75 m2 region) of
actual GPR data. The string likelihoods are computed using P (q,d,m) for (q, d) = (5, 1) and Z ∈ [6, 10]. For
this example the likelihood of the computed strings do not converge around the true mine locations as in
the cases of Figs. 6 and 7.


