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Abstract—In low-earth-orbit (LEQO) satellite communications,
frequency Doppler shift (FDS) results in lower or higher received
frequency than the signal initially transmitted from the satellite.
To maintain high throughput and low bit error rate, FDS
compensation methods are needed. Such methods rely on the
accurate prediction of FDS. In this paper, we study and evaluate
four models for frequency Doppler shift prediction in the LEO
constellation at L-Band frequency using both simulation and ex-
perimental measurements from the Iridium NEXT constellation.
Two models are from the literature and two new models are
introduced here. The two new models differ from the existing
models by estimating the earth’s central angle using multiple
factors, i.e., the slant ranges for different elevation angles and
the coordinates of both the satellite and the earth station. Our
simulation and experimental results confirm that the new models
achieved significantly improved accuracy in various scenarios.

Index Terms—SATCOM, LEO constellation, L-Band, Doppler
shift, Iridium NEXT.

I. INTRODUCTION

Many low-earth-orbit (LEO) satellites have been launched,
and more will be established for broadband communication
in the next couple of years. The LEO satellites offer several
advantages over medium-earth-orbit (MEO) and geostationary
orbit (GEO) satellites, including higher received signal power
and lower latency. Moreover, LEO satellites are deployed in in-
dividual constellations and communicate in different frequency
bands, which provides spectral diversity.

One of the most challenging problems in LEO satellites
is accurately estimating the down-link frequency for Doppler
shift analysis. A frequency Doppler shift (FDS) occurs when
a source of waves moves relative to an observer or vice
versa, resulting in a change in frequency in relation to the
observer. These Doppler shifts must be compensated for in
satellite communications to deliver the most accurate and
reliable services. Frequency Doppler shift prediction (FDSP) is
a possible solution to help the ground transceivers compensate
for the Doppler shift errors. A Doppler estimation scheme
using the relative time information was introduced in [1]
and [2]; these authors consider the simple case of circular
LEO satellites in the equatorial plane and Doppler observed
by points on the equator. Figure 1 shows the effects of four
orbital passes, as a series of S-shaped curves, for four different
frequency types (i.e., 144 MHz in VHF, 433 MHz in UHF, 1.6
GHz (L-band), and 2.4 GHz in UHF).

In this paper, we study four models for FDSP based on
LEO satellites with circular (or elliptical) orbits. The first
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Fig. 1: Doppler shifts based on the elevation angles (LEO:
orbit H = 780 km) with the fixed ground station.

two models, referred to as Model 1 and Model 11, are from
the literature [2] and [3], while the other two, referred to
as Model III and Model 1V, are original models developed
in this paper. The baseline model, Model I, achieves low
range error in lower orbit but incurs a substantial prediction
error variance in other scenarios such as higher altitudes,
weak signal environments, or different geographical areas.
The two new models introduced in this paper, Models III
and IV, use different input values observed at the maximum
elevation angle, inclination, the ground station coordinate, and
the earth terminal coordinates and may reduce the FDSP error
in different scenarios. We compare the four models using both
simulations via the Systems Tool Kit (STK) and experimental
measurements from the Iridium NEXT satellite constellation.
We conclude that one of the new models, Model 1V, is the
most promising approach for FDSP, achieving the lowest error
margins.

The remainder of the paper is organized as follows. Sec-
tion II describes the orbital model and assumptions for
LEO that are used to evaluate the proposed FDSP models.
Section III develops the four FDSP models in detail and
compares them using STK simulation. In Section IV, we
present experimental results obtained from measurements of
the Iridium NEXT network and use them to evaluate the four
FDSP models. Concluding remarks are given in Section V.
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Fig. 2: Ground station geometry.

II. ORBITAL MODEL AND ASSUMPTIONS

Low Earth orbits are between 300-3000 km in altitude.
They are characterized by the orbital velocity needed to
maintain the satellite in orbit, about 7.5 km/s in the lowest
orbits. As described in [4], the orbital period is about 90
minutes due to this high velocity, which means that a satellite
is in view for only a few minutes. The FDS is present in the
communication links because of the relative velocity between
the satellite and any particular point on the Earth. In most
cases, this FDS must be compensated for by the earth terminal
equipment.

The slant range (s) represents the distance between a
satellite and a ground station. This range changes over time.
The altitude (a) or orbital’s radius can be calculated as

H+ R, =a, 6]

where R, is the Earth’s radius (6378 km) and H is the
LEO satellite’s height from the ground. The angle formed
between the ideal horizon plane and the slant range is called
the elevation angle, . The LEO satellite orbit is parame-
terized on the maximum elevation angle observed at the earth
station. The earth is considered to be spherical and lower-order
perturbations are ignored.

III. FREQUENCY DOPPLER SHIFT PREDICTION MODELS

Figure 2 shows the ground stationary geometry. Two sides of
the triangle in the figure are known: the distance R, from the
ground station to the earth’s center and the distance a from the
satellite to earth’s center-orbital radius. There are four critical
variables in this triangle: the elevation angle 6p; the central
angle 1, i.e., the separation angle between the satellite and the
earth terminal; the slant range s; and the nadir angle «, which
is the angle under which the satellite sees the ground station.
Given two of these variables, the others can be found using
the following equations [5]:

a+ 0+ =90, )
scosfp = asin, 3)
ssina = R, sin, (@)

In FDS prediction, the critical parameter is the slant range s.
This parameter is used during the link budget calculation and is
expressed through the elevation angle 6. Applying the cosine
law to the triangle in Fig. 2 yields

s(t) = \/a% 4+ R.2 — 2aR, cos(t). (5)
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Fig. 3: Model I simulation results (fp1)-

Our objective is to predict the FDS fp(t) as accurately
as possible based on the variables v (¢) and 6p(t). From
the frequency Doppler fundamental, we can define the FDS
equation relative to the frequency of the carrier, f,, the velocity
of the satellite, and the speed of light c as follows:

Folt) = 122, ©®

c

Since the frequency shift produced by the Doppler effect is
proportional to the relative velocity between transmitter and
receiver, the momentum of the satellite can be obtained as the
derivative of the slant range s(t) between the satellite and the
station:

ds(t)

o(t) = — PTRE (7

Inserting (5) into (7), and then applying the result to (6) yields
the following generic equation for FDS prediction:

_ feaRe dcosy(?)

folt) = ¢ s(t) dt ’ ®

The cos(t) term can be derived in two different ways as
discussed below.

A. Baseline Model: Model 1

We use the FDSP model in [6] as a baseline and refer to
it as Model 1. Based on the horizon angle in ¢y using the
angular momentum, g is the period at the satellite making the
maximum elevation angle with the earth station in the earth-
centered, earth-fixed coordinate system. Consequently, 0 (to)
is the maximum elevation angle at ¢y, a known angle based on
the geographical area and the satellite inclination angle 6;. As
was done in [3], using the elevation angle between the earth
station and the satellite, we can write the central angle as

cos(t) = cos(8r(t) — Or(to)) cos(to). )

Estimation of the term v (¢,,) with Model I is dependent on
(o). Error in the estimation of ¢ (ty) propagates to estimates
of ¥(t1),v¥(t2),...,¥(t,), which could cause a significant
error in the prediction process. From Fig. 2, we have

cos(fr (1) (to)) = (r/a) cos(0p(t)). (10)
We can then derive
cosp(to) = cos™ ' ((r/a) cosOp(t)) — Op(to)).  (11)



Substituting (11) into (9) results in
cos(t) = g(t) cos(Op(t) — Or(to)), (12)
where
g(t) = cos (cos™'((r/a) cosOp(t)) — Or(to)) .

Substituting (12) into (8), we obtain the following equation
for the Model I FDS prediction:

_ feaRe dcosi(t)

13)

t) = 14
fowm (¢) ¢ s(0) 7 (14)
_ _JeaResin(p(t) — (ko) 9T (o
c\/a? + R2 —2aR, cos(0r (t) — Or(t0))g(t)
From the angular momentum fundamental, we have
d Or(t
%F() = wp(t) = ws — we cos b;, (16)

where w; is the angular velocity of the moving satellite, w, is
the angular velocity of the earth terminal, and 6; is the satellite
inclination angle. We derive a simpler expression for fpn (¢)
by substituting (16) into (15):
fe aRe dcosp(t)
t = — B —

Jon(t) ¢ s(t) dt

feaRe sin(0p(t)—0r(to))g(t)(ws —w, cos ;)

cy/a? + R.2 — 2aR, cos(0p(t)—0r (to)) g(t)

Figure 3 shows a simulated S-shaped variation for maximum
elevation angles 0 (to) ranging over 0, 15, and 25 degrees
for a hypothetical terminal with six different altitude and
frequency configurations using Model 1. All simulations were
done with the Systems Tool Kit (STK) software. The simulated
symmetric S-curve graph follows the pattern in Fig. 1, which
verifies Model I. The Model I simulation reports the FDS range
between +20 to -20 kHz with a 780 km satellite height and at
1.6 GHz with a maximum elevation 0z (to) of 15 degrees.

Ali et al. [7] have proposed using the Model I FDSP method
in LEO constellations. Elias [8] proposed using the algorithm
published by Ali et al. to predict the maximum elevation using
Model 1. A more recent paper by Zizhong et al. [9] also
presented experimental results based on accurate Iridium data
collected in a weak signal environment under a dense forest at
Beijing University of Aeronautics and Astronautics (BUAA)
for 30 minutes. The actual measured FDS shown in [9, Fig.
9a] lines up with the simulated data in this paper as shown in
Fig. 3. Zizhong et al. measured insubstantial error margin [§]
and actual frequency Doppler shift results in the field.

a7

B. Alternative Existing Model: Model 11

The second model, referred to as Model II, is from [3]
and is based on the coordinates of a fixed earth terminal and
instantaneous LEO satellite position. We have

cosy)(t) =cosTs(t) cosT, cos(Gs(t)-Ge)+sinTs(t) sin T,
(18)
where T(t) is the latitude of the moving satellite at time ¢,
Gs(t) is the longitude of the moving satellite, T, is the

Method Il

=780 km@1.6GHz
1500 km@1.6GHz
2250 km@1.6GHz

780 km@2GHz

—1500 km@2GHz

180 —2250 km@2GHz

= —780 km@2.4GHz
—————————  —1500 km@2.4GHz
—2250 km@2.4GHz

Frequency Doppler Shift

Elevation Angle (degree)

Fig. 4: Model 1I simulation results (fpnio).

earth terminal’s latitude, and G, is the longitude of the earth
terminal. We derive fpma2(t) by substituting (18) into (5)
and (8), and considering the second derivative of cos)(t) as
follows:

d? cos1(t)

2 = —wi(t) cos(t). (19)
We then obtain
fe aRe dcosip(t) h(t)
t) = — = 20
foma(t) = S0 dt ook (20)
where
u(t) = a®>+R? — 2aR. (cos Ty(t) cos T, cos(Gs(t)-Ge)
+sinTy(t)sinT,), 1)
and
h(t) = feae { {ws sin 0; cos <sin_1 <Sst(t)>>
sin 0;
wg cos b;
~tan Ty (t) cos(G4(t)-Ge) — <cosT5(t) — W, COS Ts(t))

-sin(Gs (t)Ge)] } cos T, + ws sinb; cos Ty (t) sinTe. (22)

Figure 4 shows the STK simulation analysis of the S-shaped
variation for a hypothetical terminal connecting to six different
altitude and frequency configurations using Model II.

As shown in Figure 4, regardless of the operating fre-
quencies, the FDS in Model II merges 10-20 degrees before
and after the satellite converges to the overhead elevation.
Theoretically, based on (8), Doppler shifts should not merge
unless the satellite is over the pinnacle angle. The simulated S-
curve graph for Model II does not follow the pattern (Fig. 1).
The Model II simulation reports the FDS range between +35
to -35 kHz at 780 km height and 1.6 GHz frequency.

C. Proposed Models: Model IIl and Model IV

Model I uses the relative time to the reference time when the
satellite makes the “maximum elevation angle” with the user
terminal. The algorithm is limited in this scenario, which can
conclude this low error range. The prediction algorithm based
on Model I produces an FDS with a significant prediction
error variance in other scenarios with features such as higher
altitudes, weak signal environments, or different geographical
areas. Considering the L-band communication operation, the
prediction error tolerance is essential for statistical reasons and
the instantaneous time. New prediction methods using satellite
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Fig. 5: Model III simulation results (fpns)-

and stationary ground station parameters are proposed to
reduce prediction error. We propose the new Models III and 1V,
which use the value observed at the maximum elevation angle,
the ground station, and the earth terminal coordinates. The
new methods can improve the terminal’s ability in weak signal
Doppler estimation or different altitudes to obtain a better error
rate than Model I since more factors are considered. We will
simulate the output of new models and compare them with
Models I and II.

From (5), it is evident that the denominators in (17) and
(20) are equal to the slant range s. Thus, the denominators
can be swapped, which yields Model III:

_ feaRe dcosy(t)

Fomis(t) = ¢ s(t) dt
_ feaResin(0p(t) — 0p(to))g(t)(ws — we cos 191-)7 23)
c(0r(t)/10)/u(?t)

where R, is the Earth’s radius, a is the LEO satellite’s altitude
(1), ws is the angular velocity of the moving Satellite, w, is
the angular velocity of the earth terminal, and 6; is the satellite
inclination angle.

Figure 5 shows the simulated S-shaped variation for a
hypothetical terminal communicating to six different altitude
and frequency configurations using Method III. Equation (23)
is based on the elevation in the numerator and uses the
satellite and ground station coordinates in the denominators.
In the denominator, 6 (t) is the elevation angle where, for
the negative FDS, 180 - 0p(¢) shall be used. Simulation of
this method shows some anomalous results for shorter satellite
altitudes (e.g., 780 km height) with different frequencies. The
Model I simulation reports the FDS range between +20 to -
10 kHz at a satellite height of 780 km satellite’s and frequency
1.6 GHz with a maximum elevation 6z (to) of 15 degrees.

Next, we derive another model, Model 1V, as follows:

fe aRe dcosip(t)
foma(t) = s a
h(t)0r(t)(1000/a)
cy/a? + R.2 — 2aR, cos(0r(t) — 0r (o)) g(t)

Using Model 1V, Fig. 6 shows the simulated S-shaped vari-
ation for a hypothetical terminal connecting to six different
altitude and frequency configurations. Equation (24) is based
on the satellite’s view elevation in the denominators and uses
the numerator’s satellite and ground station coordinates. The

(24)

Method IV

—780 km@1.6GHz
1500 km@1.6GHz
2250 km@1.6GHz
780 km@2GHz

—1500 km@2GHz

—2250 km@2GHz

= —780 km@2.4GHz

~ —1500 km@2.4GHz
—2250 km@2.4GHz

Frequency Doppler Shift
(kHz)

Elevation Angle (degree)

Fig. 6: Model 1V simulation results (fpn4).

coordinates used for the Model IV prediction are the same
as those used in Model II. Model IV simulation reports the
FDS range between +20 to -20 kHz, at 780 km satellite height
and 1.6 GHz with a maximum elevation angle 0 (ty) of 15
degrees. The angle 6 (t) in the denominator is the elevation
angle, where for negative FDS, 180—6x(t) shall be used. The-
oretically, the adaptive compensation algorithm (fpy4) seems
to be the most applicable alternative method for the LEO
satellite systems for the general error tolerance level between
250-500 Hz. The Iridium constellation is approximately 780
kilometers (485 miles) above the Earth.

IV. EXPERIMENTAL RESULTS AND EVALUATION

The Iridium NEXT constellation consists of 66 active LEO
satellites that orbit the Earth in 6 different orbital planes
spaced 30° apart. The planes are near-polar orbits with 86.4°
inclination angle and 780 km orbital altitude. Iridium NEXT
signals are transmitted over the 1616-1626.5 MHz band, part
of the L-band. There are 252 carriers in both the up-link and
down-link channels with carrier spacing of 41.6667 kHz, as
discussed, for example, in [10].

A. Experimental Setup

The Iridium signals are functional in 30 duplex sub-bands
between 1616 and 1626 MHz and 12 simplex channels be-
tween 1626 and 1626.5 MHz, which consist of 90 ms time-
division multiple access (TDMA) frames. This paper employs
random traffic channels throughout the Iridium NEXT carriers
during the data ping burst using the 8.8.8.8 IP address,
Google’s primary Domain Name Service (DNS) server. Thus,
in this test, we did not rely on the Ring channel only.

We next describe the ground terminal setup and downlink
measurements and analyze the frequency Doppler measure-
ments, which will be used to compare the four FDSP models
discussed in Section III. The Iridium NEXT data were col-
lected by a Thales VesseLINK 700 terminal installed on top
of the Iridium headquarters building in McLean, VA (38.924,
-77.223), for three different sweeps (about 15 minutes each).
In contrast, different visibilities to the Iridium NEXT satellite
were monitored for different angles of elevations (see Figure
6). In order to listen to the channels on the downlink only, two
circulators were used and the output was obtained to measure
the received signal’s frequency with a vector signal analyzer.



No. No. of | Inclin. | Height Orbital Freq.
of sats. | planes ° (km) Period (min) | Range (MHz)
[ 66 [ 6 [ 84 [ 781 ] 100 [ 1616-1626.5 |

TABLE I: Specifications of Iridium LEO satellite.
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B. Experimental Results

One set of results was captured on March 8, 2022, and
two were conducted on March 29 (see Table II). Visible
registered satellites were observed and recorded using some
Python codes by extracting them from the recorded Wireshark
(pcap) files. Later, all information was post-processed and
linked to the measured values. Three Iridium NEXT satellites
were visible and provided service to the VesseLINK Terminal
on two different days and three trials, as listed in Table II.
Satellite Vehicle identifiers were 160 (NORAD ID:43569), 114
(NORAD 1D:41923), and 102 (NORAD ID:41920). Detailed
coordinates are listed in Table II. In another view, all three
satellite routes are referenced to the stationary terminal. Two
of the satellites (SV-160 and SV-114) passed almost directly
overhead (75° and 85° elevation angle in order), and the third
satellite (SV-102) passed far away east on the Atlantic Ocean.

Every diamond point in Fig. 9 denotes the Doppler shift
measured by subtracting the actual frequency from the ex-
pected frequency. Generally, the Doppler shift curve of the
Iridium NEXT satellite is a kind of S-shape curve where we
experience the lowest frequency Doppler when the satellite is
in its lowest slant range or highest elevation angle (close to
zero means the satellite is located near the top of the receiver).
Figure 7 illustrates the slant ranges between the terminal and
the visible satellite under test while moving very fast in the
LEO constellation with about 7.5 km/s velocity, which also can
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Fig. 8: Elevation look angles.

SV-160 Time Slant EL Az. FDS
(°N,°W) @032922 (km) (kHz)
(30.1, 77.2) 11:28:45 AM 1296 | 32° 181° 26.65
(31.9,77.2) 11:29:15 AM 1136 | 44° 181° 23.95
(37.2,77.1) 11:30:45 AM 806 74° 183° 8.32
(44.4, 76.8) 11:32:45 AM 1018 65° 1° -12.92
(49.2, 76.5) 11:34:45 PM 1427 | 28° 1° -33.33
SV-114 Time Slant EL Az FDS
(°N,°W) @032922 (km) (kHz)
(25.5,76.7) 12:32:00 AM 1752 14° 178° 26.03
(34.8, 76.7) 12:33:30 AM 1271 63° 178° 18.02
(39.1, 76.5) 12:35:55 AM 785 85° 57° 0.82
(50.9, 75.8) 12:39:15 AM 1621 21° 3° -30.43
(53.7, 75.5) 12:40:00 AM 1920 15° 3° -36.05
SV-102 Time Slant EL Az FDS
(°N,°W) @032922 (km) (kHz)
(34.8, 65.3) 13:46:30 PM 1406 | 34° 107° 21.87
(41.1, 65.2) 13:47:35 PM 1330 | 82° 84° -0.63
(44.8, 65.1) 13:48:00 PM 1345 55° 73° -15.63
(48.2,65) 13:48:45 PM 1419 | 28° 59° -24.50

TABLE II: FDS for three different satellite positions.
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Fig. 9: Measured FDS in kHz.

be correlated to Fig. 8. The measured parameters in Table II
and the graphs fall into the expected values, including the FDS
versus elevation versus the slant range.

C. Evaluation of FDSP Models

In this section, we compare real-world experimental mea-
surements with the FDSP results obtained using Models I-1V,
i.e., fomi to fpma. This outcome rests on the distinction that
whereas experiments are versions of the real-world captured,
models are artificially constructed to represent the real world.
Table III shows the FDS measurements and lists the calculated
frequency Doppler shifts based on the four models, as shown
on the right side of the table. The table is divided into three
parts, where each part represents a different space vehicle (SV)
with IDs: 160, 114, and 102. We compare our measurements
to the FDS values calculated from the four models. Due
to communication systems sensitivity, the Doppler frequency
prediction error is given by

Ex(t) = fo(t)-fomx(t),

where X = 1,2,3,4. Table IV shows the Doppler frequency
prediction errors Ex(t). As can be observed, in most in-
stances (slant range, elevation angles, and satellite coordi-
nates), Model IV shows better performance compared to the
other models with respect to the prediction error. Table IV
shows the magnitudes of the prediction errors averaged over

(25)



SV-160 Slant | EL FDS fomr | fom2 | foms | fpma
CNW) | km) (kHz) || Hz) | kHz) | (Hz) | (kHz)
(30.1, 77.2) 1296 32° 26.65 29.96 29.16 23.78 29.34
(31.9, 77.2) 1136 44° 23.95 27.28 26.57 21.97 26.35
(372, 77.1) 806 74° 8.32 11.03 9.37 9.77 8.45
(41.9, 76.8) 1018 65° -12.92 -16.78 -14.55 -15.13 -12.88
(49.2,76.5) 1427 28° -33.33 -29.92 -30.12 -22.6 -31.85
SV-114 Slant | EL FDS fom1 | fom2 | foms | fpowma
(°N,°W) (km) (kHz) (kHz) (kHz) (kHz) (kHz)
(25.5,76.7) 1752 14° 26.03 30.36 32.68 20.94 28.8
(34.8,76.7) 1271 63° 18.02 23.63 19.64 15.35 18.38
(39.1,76.5) 785 85° 0.82 4.6 -0.36 2.86 -0.35
(50.9,75.8) 1621 21° -30.43 -36.96 -31.07 -21.70 -32.17
(53.7,75.5) 1920 15° -36.05 -31.63 -32.31 -19.2 -32.35
SV-102 Slant | EL FDS fomt | fom2 | foms | fowma
(°N,°W) (km) (kHz) (kHz) (kHz) (kHz) (kHz)
(34.8,65.3) 1406 34° 21.87 23.94 18.22 20.69 20.93
(41.1,65.2) 1330 82° -0.63 4.47 -0.30 2.72 -0.50
(44.8,65.1) 1345 55¢ -15.63 -17.94 -10.85 -12.64 -15.37
(48.2,65) 1419 28° -22.50 -23.94 -17.98 -19.21 -22.37

TABLE III: Measured frequency Doppler shift versus Models
I-IV.

SV-160 Slant | EL || Bi(t) | B2(D) | Es(®) | Ea(D)
(°N,°W) (km) (kHz) | (kHz) | (kHz) | (kHz)
(30.1,772) | 1296 | 32° || 331 | -251 287 2.69
(319,77.2) | 1136 | 44° || -333 | -2.62 1.98 2.4
(37277.1) | 806 | 74° || 271 | -105 | -145 | -0.13
41976.8) | 1018 | 65° || 3.86 1.63 221 -0.04
(49.2,76.5) | 1427 | 28° || -341 | 321 | -1073 | -148
SV-114 Slant | EL || Ei(t) | E2(D) | BEs(®) | Ea(D)
(°N,°W) (km) (kHz) | (kHz) | (kHz) | (kHz)
(255,76.7) | 1752 | 14° || 433 | -6.65 500 | 277
(348,76.7) | 1271 | 63° || 561 | -1.62 | 267 -0.36
(39.1,76.5) | 785 | 85° || -3.78 1.18 2.04 1.17
(509,75.8) | 1621 | 21° || 6.53 064 | 873 1.74
(53.7755) | 1920 | 15° || -442 | 374 | -1685 | 37
SV-102 Slant | EL || BEi(f) | E2(t) | E3(f) | Ea(D)
(°N,°W) (km) (kHz) | (kHz) | (kHz) | (kHz)
(34.8°,65.3°) | 1406 | 34° || 207 3.65 .18 0.94
(41.1°,65.2°) | 1330 | 82° 5.1 033 | 335 | -013
(44.8°,65.1°) | 1345 | 55° || 231 478 | 299 | -026
(48.2°,65°) | 1419 | 28° 144 | 452 | 329 | 013

TABLE IV: Doppler frequency prediction error (Ex (t)).

fourteen scenarios. The averaged magnitudes of the prediction
errors, denoted by Ex(t), X = 1,2,3,4, are shown in
Table V.

[ Ei®) [[ B2 [ Es(t) [[ Ea®) |
[ 3.73 KHz || 2.72 kHz || 4.67 kHz || 1.28 kHz ||

TABLE V: Average Doppler frequency prediction error
(E x (t)) for Models I-1V, Iridium band and SV height 780 km.

V. CONCLUSION

More accurate FDSP will help LEO ground transceivers
perform better frequency compensation against the phase
distortion due to Doppler shifts. Such frequency compensation
has the potential to significantly improve the bit error rate
(BER) and the Signal to Noise Ratio (SNR) (i.e., up to 3dB or
10-15 percent). We studied and evaluated four different models
of FDS in the LEO constellation. Models I and II are existing
models from [2] and [3], respectively, while Models III and
IV were developed in this paper. The new models take into
account more parameters than the earlier models and are

expected to perform better over a more extensive range of
scenarios.

We conducted an experimental analysis using real-world
frequency Doppler shift measurements based on the Iridium
NEXT constellation. The experimental results clearly showed
that Model IV achieved the smallest average prediction error
over a variety of different scenarios. Our measured results in
this paper showed that Model IV provides more accurate FDS
predictions, up to 2 or 3 kHz better on average compared
with Models I and II. Therefore, Model IV is a promising
candidate for FDSP and frequency Doppler compensation for
transceivers operating in the LEO constellation and L-band
frequencies.
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