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Abstract—The increased proliferation of IoT devices and the
emergence of 5G networks have necessitated increased security of
data storage and communication in such connected devices. Thus,
cryptography is used in IoT environments to provide secrecy and
integrity to the data as well as both authentication and anonymity
to the communications across the IoT network. However, IoT
devices are resource-constrained devices; have limited memory,
network bandwidth, power, and compute units. Since most of
the existing cryptographic algorithms were designed to run on
resource powerful devices (e.g., desktops or servers), many of
these algorithms may not fit into resource-constrained devices.
Therefore, in this work, we present a practical performance
analysis of different implementations of the Advanced Encryption
Standard (AES), which is the most widely used symmetric-key
cryptosystem in the IoT environment. Specifically, we explore
execution times, energy consumption, and memory usage of the
different AES implementations across 4 different public libraries.
Furthermore, our analysis is done using various modes, key
sizes, plaintext sizes, and microprocessor-based IoT devices. Our
results show that for the same combination of inputs and a given
algorithm, different crypto library implementations give results
with widely varying relative differences. As per the obtained
results, the PyCryptodome library seems to be the most suitable
one in terms of both execution time and energy on a resource-
constrained IoT device and has the most efficient memory usage.

Index Terms—IoT, energy, time, cryptography, symmetric,
encryption, decryption, AES

I. INTRODUCTION

The Internet of Things (IoT) paradigm facilitates having
devices connected anytime from everywhere and 5G networks
enable the scaling up of IoT networks in terms of the number
of devices and overall capacity. The term “Things” in the
IoT refers to any device that has sensors (e.g., temperature,
pressure, humidity, light, motion, and acceleration) and is
connected to the Internet, such as smart thermostats, wearable
electronics, structural health monitoring devices [1], and smart
home devices [2]. Furthermore, IoT devices are resource-
constrained in a multitude of ways; they are battery-powered
and have limited memory and compute units.
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To ensure the confidentiality, authenticity, and integrity of
the data generated by the IoT devices and communication
across the IoT network, cryptographic algorithms are utilized.
However, most of the standardized cryptographic algorithms
are designed to run on resource powerful devices, e.g., desk-
tops, laptops, and servers. Thus, many of these algorithms may
not fit into the resource-constrained IoT devices. Therefore, it
is very important to understand and compare the energy con-
sumption and performance of current cryptographic algorithms
implementation across different state-of-the-art public libraries
to be able to streamline their use in IoT environments.

While evaluation of the security levels and resource con-
sumption trade-offs on IoT boards has been done in prior
works [3]-[7], these works have limitations; they either use
powerful devices in their evaluation, such as smartphones and
FPGAs [5]-[8], or focus on a specific platform or a specific
implementation [3], [4], making the results not generalizable.
Furthermore, while lightweight cryptographic algorithms have
been proposed by both academics and industry [9]-[11], they
are not standardized, are mostly designed for microcontroller-
based devices, and have been found to trade security for energy
efficiency [12], [13].

In this work, we experimentally evaluate the execution
time, energy, and memory consumption of AES, the most
widely used symmetric key cryptographic algorithm in IoT
devices. AES is an integral part of numerous open protocol
standards, such as IPsec and TLS. Our analysis evaluates
different AES software implementations across four of the
prominent C language-based crypto libraries. Our exploration
includes various encryption/decryption modes, plaintext sizes,
key sizes, and microprocessor-based devices.

The contributions of this paper are the following:

1) We present a comparative evaluation study of AES

implementation in four state-of-the-art crypto libraries.

2) To the best of our knowledge, this is the first ex-

perimental evaluation study that focuses on running



Fig. 1. Experimental setup of our characterization process.

crypto algorithms across a variety of microprocessor-
based devices.

3) We provide a characterization of the supported encryp-
tion/decryption modes across all studied crypto libraries.

II. EXPERIMENTAL METHODOLOGY AND SETUP
A. Testbed hardware

In this paper, we focus on the microprocessor-based class
of devices. The most widely used IoT device belonging to this
category is the Raspberry Pi [14]. We used three models with
varying hardware configurations as shown in Table I to span
across frequently used metrics like speed, memory, size, and
weight [15]. While Zero W has the benefit of being ultra-low
in cost and size, 3B+ features lower RAM but higher frequency
than its more recent counterpart 4B. The experimental setup
for our characterization process is shown in Figure 1. In
particular, the Zero W model was our prime target due to
its highly-resource constrained design. As shown in Table II,
we confirmed that this device does not support any ARM
NEON instructions [16] in its list of supported features. While
3B+ and 4B models support ARM NEON instructions, in our
experiments, we focus on running the algorithms on the CPU
without hardware support and leave evaluation with hardware
support for future work.

B. Testbed software

All the candidate IoT devices were installed with the
same latest version of Raspbian OS version 5.10.63 32-
bit. Furthermore, the AES implementation in the following
C language-based crypto libraries were used to obtain our
results: PyCryptodome [17], GnuPG [18], OpenSSL [19] and
wolfSSL [20]. We downloaded the source code of all of the
evaluated libraries and compiled them using the default con-
figuration. Furthermore, after studying each of these libraries,
we found that different crypto libraries support a different set

TABLE I
HARDWARE USED IN OUR CHARACTERIZATION PROCESS.

Operating
Raspberry . ) Bus Width
On-chip Memory Microprocessor Frequency
Pi Model (bits)
(GHz)
512MB
Zero W ARMI1176JZ(F)-S 32 1
RAM
1GB LPDDR2 Cortex-A53
64 24
SDRAM (ARMVS)
4GB LPDDR4-3200 | Quad-core Cortex-A72 64 Ls
SDRAM (ARMVS) ’
TABLE 11
HARDWARE FEATURES SUPPORTED IN RASPBERRY PI ZERO W.
Attribute Values
Processor 0
Model Name | ARMv6-compatible processor rev 7 (v6l)
Features half thumb fastmult vfp edsp java tls
Hardware BCM2835
Model Raspberry Pi Zero W Rev 1.1

of block cipher modes as shown in Table IV (refer Table III
for mode acronym expansion).

C. Time measurements

We have developed a testing framework based on the Python
programming language. This framework executes a crypto
operation (encryption/decryption in this case) for a user-
specified number of iterations. The start and end times of each
such crypto operation in the Python framework are used to
calculate the duration of one such operation. Subsequently, the
arithmetic mean of all these consecutive durations is obtained

TABLE III
BLOCK CIPHER MODE ACRONYMS
Acronym Full Form
ECB Electronic codebook
CBC Cipher block chaining
CFB Cipher feedback
OFB Output feedback
CTR Counter
TABLE IV
BLOCK CIPHER MODES SUPPORT ACROSS DIFFERENT CRYPTO LIBRARIES
Crypto Library Block Cipher Mode
ECB | CBC | CFB | OFB | CTR
PyCryptodome 4 4 4 4 4
GnuPG 4
OpenSSL v v v 4 4
wolfSSL 4 4




TABLE V
MEASUREMENT RESOLUTION SETTINGS

Parameter | Resolution
Time 1 second
Voltage 0.001 V
Current 0.0001 A
TABLE VI

MEASUREMENT ACCURACY

Parameter Accuracy
Voltage (0.5 % + 2 digits)
Current (1 % + 4 digits)

and reported as the average execution time of the evaluated
crypto operation.

D. Energy measurements

To measure power, we have used a USB power meter
device [21]. The resolution and accuracy of the power mea-
surement device are shown in Tables V and VI respectively.
The USB power meter connects the power supply output
port and the IoT device input port. For each second, the
instantaneous values of voltage and current are logged in
an Excel spreadsheet and multiplied to get the instantaneous
power. The total energy consumed for a single encryption or
decryption operation is obtained by dividing the sum of power
values between a start and end time by the number of iterations
for that particular encryption or decryption operation.

III. EXPERIMENTAL RESULTS

This study aims to provide a comprehensive evaluation of
different AES implementations in different crypto libraries
across different microprocessor-based IoT devices while vary-
ing the encryption/decryption mode, plaintext size, and key
size.

A. Execution time, energy consumption, and memory usage

We ran both encryption and decryption operations on a
Raspberry Pi Zero W device for a sample plaintext size
of 1,024 bytes. In addition, the key size was set to 256
bits and all supported block cipher modes were tested to
obtain the geometric mean across all supported modes. Each
encryption/decryption operation was executed 1,000 times and
the average execution time and energy consumption were
measured.

Figure 2 shows the average execution time, while Figure 3
shows the average energy consumption from our experiment.
Our results show that the PyCryptodome library consumes
significantly less time and energy compared to the other tested
libraries. Furthermore, we evaluated the memory usage of
running the encryption/decryption operations using the four
evaluated libraries for a single iteration of plaintext size 1,024
bytes and key size 256 bits. The results are shown in Figure 4.
The results show that wolfSSL is the best-performing library in
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operations for different crypto libraries

terms of memory usage. On the other hand, PyCryptodome has
very close memory usage to wolfSSL but offers significantly
better execution time and energy consumption as shown in
Figures 2 and 3.

B. Impact of plaintext sizes on the execution time

To test the effect of plaintext size on the execution time, we
conducted an experiment where we fixed the key size to 256
bits and varied the plaintext sizes. The experiment was done
on a Raspberry Pi Zero W device. The number of iterations
was set to 2,000 for each crypto operation and the geometric
mean of the supported modes was calculated and reported.

Figures 5 and 6 show the average execution time while
varying the plaintext size for encryption and decryption op-
erations, respectively. Although the results show that the
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different crypto libraries
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Fig. 6. Average AES decryption execution time while varying plaintext size
for different crypto libraries

execution times of the PyCryptodome library increased while
increasing the plaintext size, the slope of this increase was
much lower compared to the other evaluated crypto libraries
for different plaintext sizes. In addition, PyCryptodome is still
the best performing in terms of execution time across different
plaintext sizes.

Moreover, we observed that wolfSSL’s CBC mode of en-
cryption seems to fail for plaintext sizes greater than 1,024
bytes across all tested devices. We have reported this observa-
tion to their software team. As a result, a heap overflow bug
was fixed in their GitHub repository'.

C. Impact of key size on the execution time

To evaluate the impact of the key size used on the execution
time, we fixed the plaintext size at 512 bytes and varied the key
sizes to obtain the results on a Raspberry Pi Zero W device.
The number of iterations was set to 2,000 for each crypto
operation and the geometric mean is calculated and reported.

Figures 7 and 8 show the average execution time while
varying the key size for encryption and decryption operations,
respectively. For all four evaluated crypto libraries, the ob-
tained results show very little variation in execution times
across key sizes. This behavior can be attributed to the AES
algorithm’s translation of key sizes to the number of rounds.
In the AES algorithm, this translation occurs as follows: key
sizes 128, 192, and 256 are mapped to the number of rounds
10, 12, and 14, respectively.

Lcommit cOlal5elcdffac5c0555f42d9b4be0878cf0d31d [22].
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D. Impact of hardware resources on the execution time

In this set of experiments, plaintext size was fixed at 1,024
bytes and key size at 256 bits for all the crypto operations.
We fixed the number of iterations at 30,000 for all experiments
and reported the average values. Figures 9 and 10 show the
encryption execution time and energy respectively of each
cipher block mode of PyCryptodome crypto library running on
each of the three Pi devices. The decryption execution times
and energies are similar to their encryption counterparts; thus,
we show only the encryption results due to the limited space.

The study documented in [23] and [24] have shown the dual
benefits of higher security and lower computational overhead
of CTR mode as compared to other block cipher modes,
making it an ideal candidate for symmetric crypto operations
on resource-constrained IoT devices. Since our target was
to obtain maximum possible security along with maximum
utilization of hardware resources, our results showed that this
goal was achievable at a slightly higher expense of execution
times/energy as compared to the remaining secure and efficient
block cipher modes (OFB and CBC). On the contrary, our
results showed that the benefits in smaller form factors of
hardware configurations are reduced significantly by their
higher execution times and energy consumption for the same
test settings. On further investigation, we found Zero W, 3B+,
and 4B models to operate at nearly the same voltages (4.9,
5.1, and 4.9 Volts, respectively). But their operating currents
were different (0.3, 0.6, and 0.7 Amps, respectively).

E. Impact of block cipher modes on ciphertext generation

The results shown in Table VII were obtained on an Intel®
Core™ i7-6700 CPU @ 3.40GHz x &8 desktop machine
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running the Ubuntu 20.04.2 LTS operating system. The reason
for this switch was to overcome lower processing overheads on
IoT devices and to focus only on the crypto libraries’ behavior,
which is independent of the underlying hardware target.

For a plaintext size of 16 bytes and key size of 16 bytes,
we found different crypto libraries showing a variation in
ciphertext lengths for a sample number of 3 consecutive itera-
tions. Overall, the PyCryptodome library showed consistency
and predictability across consecutive iterations for each block
cipher mode of encryption. Excluding CBC mode, the cipher-
text lengths for the remaining modes appear to be the least
for the PyCryptodome library. This observation helped us to
conclude that this library will consume the least energy during
the propagation of encrypted data across a communication
network. The ciphertext analysis of different block cipher
modes according to [25] shows the PyCryptodome library to
comply with their expected lengths unlike the other crypto
libraries, thus increasing its reliability of implementation.

IV. DISCUSSION AND FUTURE WORK

In this paper, we confined our results to the micropro-
cessor class of IoT devices and widely used C language-
based crypto libraries. In follow-up work, we plan to run
similar experiments on the microcontroller class of devices

TABLE VII
CIPHERTEXT VARIATION W.R.T. BLOCK CIPHER MODES

Crypto Library Block Cipher Mode
ECB CBC CFB OFB CTR
PyCryptodome | 33,33,33 | 48,48,48 | 16,16,16 | 16,16,16 | 16,16,16
GnuPG NA NA 63,57,60 NA NA
OpenSSL 33,33,33 | 33,33,39 | 21,27,24 | 24,21,24 | 21,21,21
wolfSSL NA 27,27,33 NA NA 24,21,21

using lightweight ciphers (LWC), RTOSs, and our preferred
symmetric algorithm AES. As an initial step, we analyzed
the features of a prominent NIST LWC Round 2 candidate
SAEAES as listed in [26]. Some of its characteristics are
well suited for the widely used microcontroller-based Arduino
devices. This algorithm requires small ROM and RAM sizes.
The same algorithm structure exists for the hash, encryption,
and decryption functions. In addition, only one buffer of size
16 bytes is needed for storing the internal state. Authentica-
tion algorithms written as assembly language subroutines are
callable from the C language. Two implementations exist for
this algorithm: fast speed and small memory size. Also, it takes
a constant number of cycles for fixed data length and memory
consumption of the outer LWC routine is much smaller than
that of the inner AES routine.

While surveying possible candidates for LWC algorithms
for our future experiments, we intend to focus on algorithms
that adhere to the guidelines prescribed in [27], [28], and [29].
In particular, we will focus on algorithms that tend to use a
single S-Box architecture as their results show this step to be
the most power-hungry step of the AES algorithm.

In summary, we plan to split our future characterization
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results across different levels, with each level being further
split into different blocks as shown in Figure 11. Our ultimate
goal is to evaluate both asymmetric and symmetric crypto
algorithms on resource-constrained IoT devices since both
have their own advantages and disadvantages and are usually
combined in practice to transmit large chunks of information.
Usually, an asymmetric algorithm is used to store or transmit
the symmetric key, while the actual large-sized messages are
encrypted or decrypted using a symmetric algorithm. Post
completion of symmetric cryptography analysis w.r.t. AES, we
plan to perform experiments along similar lines on a widely
used asymmetric cipher RSA. We would then combine our
results on symmetric and asymmetric ciphers to derive a hybrid
solution following some of the guidelines meant for creating
such customized solutions as stated in [30]. This would help
us maximize energy and latency benefits in a diverse landscape
of resource-constrained IoT devices.

V. CONCLUSION

From our experimental results, we conclude that the Py-
Cryptodome crypto library proves to be a promising candidate
in terms of execution time and energy on IoT devices capable
of running any Linux-based operating system. The major
drawback of this library appears to be the absence of a
simplified user interface via the Linux command-line to allow
users to readily test out various input combinations and verify
results on the fly. This barrier was overcome by developing
our custom wrapper software to interface with their GitHub
code. In the future, we plan to open-source our implementation
upon successful industrial deployment.
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