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Abstract—The purpose of spectrum sensing is to determine
idle portions of a licensed spectrum band that could be used
by unlicensed or secondary users without causing harmful
interference to primary users. Collaborative spectrum sensing
involves multiple secondary users to make joint decisions about
spectrum occupancy. By exploiting multiuser diversity, collab-
orative sensing can alleviate the effects of hidden terminals
and severely shadowed radio environments. In this paper, we
investigate and compare two schemes for collaborative spectrum
sensing of a narrowband channel based on online parameter
estimation of a hidden bivariate Markov model: a hard decision
scheme and a soft decision scheme. Relative to prior collaborative
sensing approaches that do not incorporate a model of the state
of the primary user, the proposed schemes improve the accuracy
and reliability of collaborative spectrum sensing, especially in
low signal-to-noise ratio environments. Numerical results are
presented to demonstrate the performance of the proposed model-
based collaborative spectrum sensing schemes.1

Index Terms—Dynamic spectrum access; cognitive radio;
spectrum sensing; collaboration; hidden Markov model; online
recursive estimation.

I. INTRODUCTION

Cognitive radio is an emerging technology for reclaiming
underutilized spectrum resources, which will likely play a role
in future 5G wireless networks. In a wireless network support-
ing dynamic or opportunistic spectrum access, unlicensed or
secondary users (SUs) are permitted to make use of portions
of a licensed spectrum band that are left idle by the licensed
or primary users (PUs) as long as no harmful interference
is incurred on the PUs. In such a scenario, the SUs are
equipped with cognitive radios that can detect spectrum holes
and make use of such holes for their own communications.
Spectrum holes can be characterized in space, frequency, and
time. In this paper, we focus on temporal spectrum sensing
of a given channel, where the PU occupying the channel
alternates between an active and an idle state. The SU attempts
to determine the time intervals for which the channel is idle.

Various approaches to temporal spectrum sensing have
been studied in the literature, including energy detection,
matched filter detection, and cyclostationary detection (cf. [1]).
Matched filter detection requires knowledge of the modulation
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scheme employed by the PU. Cyclostationary detection can
provide much better performance than energy detection, but
is much more computationally intensive and requires longer
sensing times. In [2], an approach to temporal spectrum
sensing based on a hidden bivariate Markov model (HBMM)
was proposed. The HBMM extends the more traditional hidden
Markov model (HMM) by allowing for more general state
sojourn time distributions of the PU. The state sojourn times
of an HBMM have discrete phase-type distributions, whereas
those of an HMM are limited to geometric distributions. The
higher degrees of freedom afforded by the HBMM can provide
higher modeling fidelity than the HMM, which results in
better detection performance. Recently, a recursive parameter
estimation algorithm for the HBMM, based on a recursive
parameter estimation algorithm developed by Rydén [3], was
developed in [4]. Together with the state estimation and
prediction recursions presented in [2], the recursive HBMM
parameter estimation algorithm forms the basis for fully online
temporal spectrum sensing scheme.

In radio environments with severe shadowing and fading
effects, spectrum sensing by a single SU can lead to hidden
terminal effects and other errors which can result in harmful
interference to the PUs. Collaborative or cooperative spectrum
sensing techniques leverage multiuser diversity to improve
sensing performance. These techniques extend the temporal
sensing methods mentioned above by involving multiple SUs
in a joint decision-making process to determine when a
given channel is idle or active. Collaborative sensing can be
categorized into two main approaches: hard decision fusion
and soft decision fusion. In hard decision fusion, each SU in
a group of SUs makes an independent decision on the active or
idle state of the channel. These 1-bit decisions are forwarded
to a fusion center, which combines the individual SU decisions
into a final decision according to a fusion rule. Two popular
fusion rules are the majority vote and the more conservative
OR-rule, in which the PU is deemed active if at least one
of the SU decides that the PU is active. Hard decision fusion
based on voting is one of the simplest suboptimal collaboration
methods [5].

In soft decision fusion, each of the SUs forwards measure-
ments to the fusion center, which is combined according to



a set of weights and compared to a threshold to determine
the final decision. The soft decision fusion scheme uses the
likelihood ratio test (LRT) to implement the Neyman-Pearson
classifier [6]. This classifier, however, involves a quadratic
form leading to high computation cost, and the performance
evaluation and threshold computations are also mathematically
less tractable. In [7], a linear fusion rule is proposed for a
soft decision scheme which optimizes a modified deflection
coefficient (MDC) that characterizes the probability distribu-
tion function of the global test statistic at the fusion center.
This approach has less computational complexity, is more
tractable, and achieves performance comparable to the LRT-
based fusion. Soft decision schemes can outperform hard
decision schemes in terms of detection accuracy, but the
weights for soft fusion must be chosen appropriately, and the
computational and communication overhead is much higher.
Thus, both hard decision and soft decision schemes may be
appropriate for spectrum sensing in various scenarios.

In this paper, we develop online hard and soft decision
schemes for collaborative spectrum sensing based on the
HBMM and associated online parameter estimation algo-
rithms. In conventional collaborative sensing schemes, param-
eters such as the decision thresholds and weights for soft
linear combining are determined offline, based on training
data. Our online approach automatically adjusts the thresholds
and weights to the appropriate values based on the real-
time observation data and thus can adapt to changes in the
wireless environment. Compared to the prior collaborative
sensing methods that do not employ a model for the temporal
dynamics of the PU, the proposed schemes provide superior
spectrum detection performance, especially in low signal-to-
noise ratio environments. Our approach relies on the online
parameter estimation algorithm presented in [4]. As in [2], [4]
the detector front-end for each SU is assumed to provide aver-
aged energy estimates obtained from received signal strength
measurements, and the channel follows a path loss model with
lognormal shadowing.

The remainder of the paper is organized as follows. In
Section II, we discuss the system model for collaborative
sensing and briefly review the HBMM-based approach for
temporal spectrum sensing by a single SU developed in [2],
[4]. In Section III, we develop HBMM-based hard decision and
soft decision collaborative sensing schemes. In Section IV, we
present numerical results to demonstrate the performance of
the proposed collaboration schemes. In Section V, we provide
concluding remarks.

II. SYSTEM MODEL

A. Collaborative sensing model

We consider a system consisting of one PU transmitting
on a given narrowband channel and Q SUs performing col-
laborative spectrum sensing on the channel. The PU alternates
between active state in which a signal is transmitted and an idle
state in which no signal is transmitted. Meanwhile, each SU
performs spectrum sensing and computes the received energy

from the PU. The state of the PU is represented by a discrete-
time process X = {Xk} such that at time k the state of the
PU is given by the random variable

Xk =

{
1, idle state,
2, active state.

(1)

Let Y (q) = {Y (q)
k } denote the sequence of observable energy

measurements obtained at the output of the front-end for the
qth SU, q = 1, . . . , Q. Assuming a standard path loss plus
lognormal shadowing model, the received signal strength Y (q)

k ,
in units of dBm, can be expressed as follows (cf. [4]):

Y
(q)
k =

{
µ
(q)
1 + ε

(q)
1,dB, Xk = 1,

µ
(q)
2 + ε

(q)
2,dB, Xk = 2,

(2)

where µ(q)
a represents the mean received signal strength of the

qth SU when the PU is in state a ∈ {1, 2} and ε
(q)
a,dB is a

zero-mean Gaussian random variable with standard deviation
σ
(q)
a , which represents lognormal normal shadowing. Let Y =

(Y (1), . . . , Y (Q)) denote the vector process of observables
from the Q SUs.

B. Hidden bivariate Markov model

An HBMM is a trivariate process (Y,X, S), where Y
denotes an observable process with continuous alphabet and
the underlying process, Z = (X,S), is a finite-state bivariate
Markov chain. In [4], HBMM was adopted to model the
temporal spectrum sensing for a single SU. Here, Y is used to
represent the received signal power at an SU and X represents
the state of the PU. The process S is introduced so that the
sojourn time of the process X in each state a ∈ {1, 2} takes
on a discrete-time phase-type distribution.

For a general HBMM, we denote the state-space of X by
X = {1, . . . , d}, the state-space of S by S = {1, . . . , r}, and
we let Z = X× S denote the state-space of Z. The processes
Y and S are assumed to be conditionally independent given
X . Let f(yk; θa) denote the conditional density of Yk given
Xk = a at time k, where θa is a parameter depending on a ∈
X. From (2), f(yk; θa) is a Gaussian density and we set θa =
(µa, σa) to be the mean and standard deviation of this density.
The initial distribution of Z is denoted by a 1×dr row vector
π = [π(a,i) : (a, i) ∈ Z], where π(a,i) = P (Z(1) = (a, i)).
The transition matrix of Z is denoted by a dr × dr matrix
G = [gab(ij) : (a, i), (b, j) ∈ Z], where gab(ij) = P (Z(k) =
(b, j) | Z(k−1) = (a, i)). The parameter of HBMM can be
specified by φ = (θ,G), and the total number of elements in
φ is given by L = 2d + d2r2, so we may also write φ =
[φ` : ` = 1, . . . , L]. We note that when r = 1, the HBMM
reduces to the traditional HMM, where the state sojourn time
distributions are geometric.

C. Online parameter estimation for HBMM

In [4], an online parameter estimation algorithm for the
HBMM was developed, based on a block-recursive parameter
estimation algorithm developed by Rydén [3] and a recursive



Fig. 1. Hard decision scheme.

score function algorithm from Willy [8]. This algorithm oper-
ates on a block of observation data at a time. Let m denote
the block size, ym = {y1, . . . , ym} denote a block of m
observation samples, and let pφ(ym) denote the joint density
of the observation block ym. Let φn denote the nth HBMM
parameter estimate computed by the online algorithm. The
recursive algorithm can be expressed in the following form:

φn+1 = ΠG [φn + γnχ (ym;φn)] , (3)

where {γn} is a coefficient sequence, ΠG denotes a projection
operator mapping the estimate into a compact, convex set
G ⊆ Φ, and χ(ym;φ) is the score function for the observation
block ym, given as follows:

χ(ym;φ) =
∂ log pφ(ym)

∂φ

=
∑

(b,j)∈Z

1

pφ(ym)

∂

∂φ
pφ(ym, zm = (b, j)). (4)

Under some mild assumptions, Rydén proved that for HMMs,
the sequence {φn} converges to a point lying in the set
of Kuhn-Tucker points for minimizing the Kullback-Leibler
divergence defined over G. As discussed in [4], Rydén’s
convergence results carry over to the HBMM.

The score function in (4) can be computed recursively as
follows in terms of a dr×L matrix Hm(ym;φ) whose (v, `)
element is given by

[Hm(ym);φ)]v` =
1

pφ(ym)

∂

∂φ`
pφ(ym, zm = (b, j)), (5)

where (b, j) ∈ Z such that v = b(r − 1) + j and l ∈ L.
The matrix Hm(ym, φ) can be computed recursively, as will
be discussed below. Then the score function can be obtained
from

χ(ym;φ) = 1′Hm(ym;φ), (6)

where 1 denotes a column vector of all ones and ′ denotes
matrix transpose.

III. COLLABORATIVE SENSING SCHEMES

A. Hard decision scheme

In a traditional hard decision fusion scheme, each SU makes
a local decision on the state of the PU, and sends the binary

decision (i.e., a single bit) to a fusion center. The fusion center
makes a final decision using a fusion rule, e.g., the majority
vote. Obviously, the main advantage of the traditional hard
decision scheme is its low bandwidth requirement for the
transmission of the single bit decision by each SU. However,
the local decision made by an individual SU may not always
be reliable, for example, when the received signal at SU
experiences severe shadowing.

Our proposed hard decision fusion scheme is depicted in
Fig. 1. In this scheme, the online HBMM parameter estimation
algorithm of Section II-C is decoupled into two separate
blocks: a transition matrix estimation block and a conditional
density estimation block. The conditional density estimation
block computes estimates for the mean and standard deviation
of the conditional density for the Gaussian variable in (2). The
transition matrix estimation block computes estimates of the
transition matrix of the HBMM based on final decisions fed
back to each SU from the fusion center. The transition matrix
estimates are provided as input to the conditional density
estimation block. The transition matrix estimates are updated
less frequently than the sensing decisions, so a small delay
in the feedback loop from the fusion center to the SUs will
not adversely affect the overall performance of the scheme.
The rationale for the separation of the transition matrix and
output distribution parameter estimation is due to the fact
that estimation of the parameter of the output distribution is
significantly easier than that of the transition matrix.

We consider first the conditional density estimation block
for the qth SU. To simplify notation, we shall drop the
superscript (q) in the following discussion. We shall also reuse
the notation φ to denote the parameter of interest for the
conditional estimation block, given by φ = (θa : a ∈ X).
This parameter can be estimated in a block-recursive manner
using (3), where the score function is a 1 × 2d row vector
given by (6), and Hm(ym;φ) can be computed recursively as
follows (cf. [4]):

Hm(ym;φ) =
1

cm

{
F (ym)′Hm−1(ym−1;φ)

+(I ⊗ ξm−1)
∂

∂φ
[vec F (ym)]′

}
, (7)

where I denotes an identity matrix of order dr, ⊗ denotes the
Kronecker product, the dr × dr matrix F (ym) is given by

F (ym) = [fabij (ym; θb) : (a, i), (b, j) ∈ Z], (8)

with fabij (ym; θb) , gab(ij)f(ym; θb), and vec F (ym) in (7)
denotes the d2r2 × 1 column vector obtained by stacking the
columns of the matrix F (ym) one on top of the other. The
elements of the d2r2× 2d Jacobian matrix ∂[vec F (ym)]′/∂φ
are partial derivatives of fabij (ym; θb), given as follows:

∂fabij (ym; θb)

∂µc
= fabij (ym; θb) ·

ym−µb
σ2
b

1{c=b},

∂fabij (ym; θb)

∂σc
= fabij (ym; θb) ·

(ym − µb)2−σ2
b

σ3
b

1{c=b}, (9)



for c ∈ X, where 1A denotes an indicator function on set A.
The 1× dr row vector ξm and scalar cm are given by

ξm =
1

cm
ξm−1F (ym), cm = ξm−1F (ym)1, (10)

for m = 1, 2, . . ., with the initial condition ξ0 = π.
The transition matrix estimation block at each SU can be

parametrized by φ = [gab(ij) : (a, i), (b, j) ∈ Z]. Since the
observation data comes from the final decisions of the fusion
center, the observable process Y takes values in the state-space
X, i.e., the HBMM reduces to bivariate Markov chain. In this
case, the parameter φ can also be estimated by using (3), (4),
and (7), but with fabij (ym; θb) in (8) given as follows:

fabij (ym; θb) , gab(ij)f(ym; θb) = gab(ij) 1{ym=b}. (11)

In addition, the elements of the d2r2 × d2r2 Jacobian matrix
∂[vec F (y(m))]

′/∂φ for (7) are given as follows:

∂fabij (ym; θb)

∂[gce(ιl)]
= 1{ym=b,(c,ι)=(a,i),(e,l)=(b,j)}, (12)

for (c, ι), (e, l) ∈ Z.
Each SU makes a local decisions based on the observation

data and the estimated conditional density. The mean and
standard deviation for the conditional density are updated
after each new block of observation data. The state detection
scheme for each SU is given by

X̂k =

{
1, if Yk ≤ γh,
2, otherwise,

(13)

where γh is the corresponding decision threshold. For each
SU, the detection probability Pd can be expressed in terms of
the false alarm probability Pfa as follows [7]:

Pd = Q

[
σ1Q

−1(Pfa) + µ1 − µ2

σ2

]
, (14)

where Q(x) = 1√
2π

∫∞
x
e−

u2

2 du denotes the standard Q-
function and the decision threshold is given by

γh = µ1 + σ1Q
−1(Pfa). (15)

The local SU decisions are sent to the fusion center, which
makes a final decision on the state of the PU at time k via a
majority voting rule.

B. Soft decision scheme

In the soft decision scheme shown in Fig. 2, the received
signal strength from the output of the front-end at each SU
is transmitted to the fusion center in each time slot. High
resolution quantization of the data is assumed and hence
quantization noise is ignored here but will be taken into
account in a forthcoming study. Thus, the soft decision scheme
has a much higher communication overhead than the hard
decision scheme, but the fusion center has the potential of
achieving better detection performance given the observable
data from all of the SUs. We adopt the linear combining
approach discussed in [7], which involves assigning a weight
w

(q)
k at time k to each SU q, q = 1, . . . , Q. Define a row

Fig. 2. Soft decision scheme.

vector wk = {w(q)
k : 1, . . . , Q}. The soft decision variable is

given by the weighted sum of the observed samples from the
SUs at time k: Vk = wkY

′
k.

In [7], a heuristic method is proposed to assign the weights,
under the assumption that the parameters of the wireless
channels for each of the SUs are known. In the soft decision
scheme of Fig. 2, the channel parameters are estimated as
part of the procedure for estimating the HBMM. In the
soft decision scheme, only one transition matrix estimation
block is needed because all SUs perform spectrum sensing
for the same PU. A similar argument could be made for
the hard decision scheme, but in Fig. 1 a separate transition
matrix estimation block is assigned to each SU to avoid the
need for the fusion center to send transition matrix estimates
to each SU, which would incur significant communication
overhead. In Fig. 2, the qth conditional density estimation
block computes an estimate of θ(q) = [(µ

(q)
a , σ

(q)
a ) : a = 1, 2].

Let µa = (µ
(q)
a : q = 1, . . . , Q) denote a row vector of mean

signal strengths received by the SUs when the PU is in state a.
Similarly, let Σa = diag([σ

(q)
a ]2 : q = 1, . . . , Q) denote the

covariance matrix for the received signal strengths received by
the SUs when the PU is in state a.

The soft decision scheme is given by

X̂k =

{
1, if wkY

′
k ≤ γs,

2, otherwise,
(16)

where the sequence of weight vectors {wk} and the threshold
γs are determined from the estimated HBMM parameter as
shown below. Since the variables in Y k are Gaussian, the soft
decision variable Vk is conditionally Gaussian with conditional
mean and variance given, respectively, as follows:

E[Vk|Xk = a] = wkµ
′
a, Var[Vk|Xk = a] = wkΣaw

′
k.

The detection probability Pd can be expressed in terms of the
false alarm probability Pfa as follows:

Pd = Q

[
Q−1(Pfa)

√
wkΣ1w′k −wkµ

′√
wkΣ2w′k

]
, (17)

where µ , µ2 − µ1 and the threshold is given by

γs = wkµ
′
1 +Q−1(Pfa)

√
wkΣ1w′k. (18)



It remains to compute the weight vector wk. The modified
deflection coefficient (MDC) defined in [7] is given as follows
in our soft collaboration scheme:

MDC(wk) =
(E[Vk|Xk = 2]− E[Vk|Xk = 1])

2

Var[Vk | Xk = 2]
=

(wkµ
′)2

wkΣ2w′k
.

The MDC is maximized under the unit-norm constraint on the
weight vector, i.e.,

max MDC(wk)

s.t. ‖wk‖22 = 1, (19)

where ‖·‖2 denotes the standard Euclidean norm. The optimal
solution for (19) in our collaboration model can be derived as
in [7] and is given by

wk =
Σ−12 µ′

‖Σ−12 µ′‖2
. (20)

IV. NUMERICAL RESULTS

We have run simulation experiments in MATLAB to eval-
uate the performance of the proposed hard and soft decision
spectrum sensing schemes. For the online parameter estimation
algorithm given in (3), we set γn = γ0n

−ε with γ0 = 0.3 and
ε = 0.35. We set the block size m = 20. The parameter space
G and projection operator ΠG in (3) are the same in [4]. To
improve the convergence speed and stability, a warmup period
is introduced to provide a good initial estimate for the mean
and standard deviation vectors associated with the conditional
density estimation block in both the hard and soft decision
schemes. Given a sequence yn0 of length n0 = 200, we use
the following initialization procedure:

1) Let A1 = {k ∈ {1, . . . , n0} : yk < (max(yn0) +
min(yn0))/2} and A2 = {1, . . . , n0}\A1.

2) The initial estimates θsa = (µsa, σ
s
a) are computed as

follows:

µsa =
1

|Aa|
∑
k∈Aa

yk, σsa =

√
1

|Aa| − 1

∑
k∈Aa

|yk − µsa|2,

(21)

where | · | denotes set cardinality and a ∈ X.
The initial probability vector πs is initialized with a uniform
distribution and the initial transition matrix Gs is generated
randomly.

In our simulation experiments, we considered a collabora-
tion model with three SUs (i.e., Q = 3). For the true parameter
φ0, the state transition matrix G0 is specified by a 20 × 20
transition matrix adopted from [9], such that d = 2 and r = 10.
The true transition matrix was estimated from real spectrum
measurements of a paging channel collected in [10] using the
Baum algorithm. For the estimation blocks we have set d = 2
and r = 10, but a smaller value of r could be used to trade off
accuracy for a reduction in computational complexity. The true
mean and standard deviations of the conditional densities for
three SUs are given in the Table I. Two different scenarios
representing different channel condition for three SUs are
shown in this table.

Fig. 3. ROC plot of hard decision scheme in first scenario.

Fig. 4. ROC plot of hard decision scheme in second scenario.

We evaluated the detection performance of the hard de-
cision scheme by applying T = 6000 observation samples
to obtain an HBMM estimate for each SU. Each receiver
operating characteristic (ROC) curve in Figs. 3 and 4 was then
obtained by applying the state estimator in (13) with 10, 000
new observation samples. The ROC performance for the first
scenario is shown in Fig. 3. From Fig. 3 we find that SU1 and
SU2 have better performance compared to SU3, and the hard
decision scheme can achieve superior performance compared
to that of the individual SUs. The ROC performance for the
second scenario is shown in Fig. 4. From Fig. 4, we find that
the performance of SU2 and SU3 are worse compared to the
performance of SU1, and the performance of hard decision
scheme is inferior to the performance of SU1. The result
agrees with the intuition that hard decision fusion works well
when the majority of SUs have good performance; otherwise,
the performance may be degraded.

We also carried out similar simulation experiments with the
soft decision scheme. First, HBMM parameter estimates for
each SU were obtained by applying T observation samples to
the soft decision scheme of Fig. 2, with T = 200, 600, 6000.
Then each ROC curve was obtained using the state estimator
in (16) by applying 10,000 additional observation samples.
The ROC performance for the first scenario is shown in Fig. 5.



(µ
(1)
1 , σ

(1)
1 ) (µ

(1)
2 , σ

(1)
2 ) (µ

(2)
1 , σ

(2)
1 ) (µ

(2)
2 , σ

(2)
2 ) (µ

(3)
1 , σ

(3)
1 ) (µ

(3)
2 , σ

(3)
2 )

Scenario 1 (-105.00,6.32) (-88.00,8.94) (-100.00,5.91) (-86.00,8.36) (-103.00,6.71) (-98.00,8.06)
Scenario 2 (-105.00,6.32) (-88.00,8.94) (-102.00,5.91) (-95.00,8.36) (-103.00,6.71) (-98.00,8.06)

TABLE I
TRUE MEAN AND STANDARD DEVIATION OF CONDITIONAL DENSITIES.

Fig. 5. ROC plot of soft decision scheme in first scenario.

Fig. 6. ROC plot of soft decision scheme in second scenario.

From Fig. 5, we find that the ROC performance of the soft
decision scheme improves when the observation data length
for estimating the HBMM parameter increases from T = 200
to T = 6000 and eventually approaches the performance of
the soft decision scheme when the wireless channel parameters
are known. We also find that the ROC performance for the
soft decision scheme is better than that of the hard decision
scheme. A similar result for the second scenario is shown in
Fig. 6.

V. CONCLUSION

We have developed hard and soft decision schemes for
collaborative spectrum sensing of a cognitive radio channel
based on online parameter estimation of a hidden bivariate
Markov model. The advantage of the proposed approach
lies in its ability to perform well under low signal-to-noise
ratio conditions due to the statistical characterization of the
channel and primary user behavior provided by the model.
The online parameter estimation scheme allows the values
of the hard decision thresholds and the soft decision weights
and thresholds to be adapted dynamically in accordance with
changes in the wireless environment.

In ongoing work, we are investigating extensions to the
proposed model-based collaborative sensing schemes. First,
the soft linear combiner at the fusion center can be replaced
by a nonlinear combiner based on state estimation of the
hidden bivariate Markov model. Such a scheme should achieve
superior detection performance relative to the linear scheme.
Second, the model-based collaborative sensing approach opens
the door for predictive collaborative sensing, wherein future
states of the primary user are predicted using the parameter
estimate for the hidden bivariate Markov model. Such predic-
tive spectrum sensing could lead to more efficient spectrum
utilization and reduced interference to primary users.
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