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Abstract— We propose an adaptive spectrum detection
mechanism for cognitive radios in a dynamic traffic envi-
ronment. Cognitive radios generate secondary calls, which
opportunistically make use of channels left idle by primary
traffic generated by the licensed radios in the system.
Spectrum detection for the cognitive radios is formulated
as a hypothesis testing problem based on the Bayes cri-
terion to minimize average cost. The maximum likelihood
estimates of the prior probabilities for the hypothesis test
are obtained from the dynamics of both traffic types of
traffic using a Markovian model of the system channel
occupancy. The spectrum detection scheme is extended to
incorporate cooperation among multiple secondary users.
Our numerical results suggest that the adaptive spectrum
detection scheme can achieve significantly better error
performance than a static scheme that ignores the prior
probabilities, especially under light primary traffic con-
ditions. Cooperative spectrum detection among multiple
users can further reduce the false alarm and misdetection
probabilities.

I. INTRODUCTION

Cognitive radios have been proposed as the means to
promote the efficient use of the spectrum by exploit-
ing the existence of spectrum holes (i.e., unused spec-
trum) [1], [2]. In cognitive radio (CR) networks, users
equipped with CRs are referred to as secondary users,
who opportunistically share the spectrum resources with
the licensed users of the existing system. The licensed
users are referred to as primary users. By allowing
secondary users to reclaim idle channels, a much higher
spectrum efficiency can be achieved [3].

Recent research on cognitive radio networks has been
done using statistical signal processing, e.g., [4]–[6],
and queuing theory, e.g., [3], [7], as tools for design
and analysis. In [4], a measurement-based model was
proposed to statistically describe the busy and idle
periods of a WLAN. Two different sensing strategies,
energy-based detection and feature-based detection, were
explored to identify spectrum opportunities. In [5], a
sensing-based approach was studied for channel selec-
tion in spectrum-agile communication systems. In [6],
a constrained optimization method was proposed to
estimate the transmission power and position of the pri-
mary user without the prior information of transmission
power. In [3], an analytic model was developed using
a two-dimensional Markov process for the performance
analysis of an opportunistic spectrum sharing system.
A queueing analytic framework was developed in [7]
to study important performance measures for secondary
users in a CR network.

In this paper1, we use techniques from signal detection
theory and queueing theory to develop an adaptive
spectrum mechanism for cognitive radio networks. We
formulate spectrum detection as a hypothesis testing
problem based on Bayes criterion to minimize average
cost. The prior probabilities are estimated according to
the maximum likelihood rule using a queueing theoretic
model of the system occupancy. The spectrum detection
scheme is extended to the case of multiple cooperating
secondary users. Our numerical results show that the
proposed adaptive spectrum detection scheme can per-
form much better than a static scheme with no knowl-
edge of the prior probabilities, particularly under low
primary traffic conditions. Cooperation among multiple
secondary users further improves the error performance.

The remainder of the paper is organized as follows.
Section II describes the system model and the problem
formulation. Section III describes the Bayesian spectrum
detection scheme. Section IV proposed a methodology
for evaluating the prior probabilities for spectrum detec-
tion. Section V extends the spectrum detection mech-
anism to incorporate multiple cooperating secondary
users. Section VI presents numerical results, illustrating
the system performance with respect to the different
metrics over a range of parameter settings. Finally, the
paper is concluded in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system of cognitive radios that are able
to determine the spectrum occupancy over a band of fre-
quency channels via signal strength (SS) measurements.
For each frequency channel, a decision must be made
on whether or not the channel is occupied by a primary
user. Based on its perception of the spectrum occupancy,
a secondary user may opportunistically make use of idle
spectrum without causing harmful interference to the
primary users.

Suppose the licensed spectrum band is divided into N
frequency channels serving the primary users. Secondary
users detect the presence or absence of signals from
primary users to maintain the records of the channel
occupancy status. Spectrum detection is performed by a
secondary user, or by a group of cooperating secondary
users. Alternatively, the spectrum detection scheme may
involve information exchange with an associated base
station. The proposed model is applicable to both infras-
tructured and infrastructureless network architectures.

1This work was supported in part by the U.S. National Science
Foundation under Grant CNS-0520151.



In the proposed system model, a secondary user seeks
to obtain an unused channel to service a secondary call.
When a secondary user detects or is informed by others
of the arrival of a primary call initiated by a primary
user in its current channel, it immediately leaves the
channel and switches to another unused channel, if one
is available, to continue the call. If at that time all
the channels are occupied, the secondary call will be
lost. Primary users operates as if there are no secondary
users in the service area. When a primary call arrives,
it occupies a free channel if one is available; otherwise,
the call is blocked.

In CR networks, the spectrum availability for the
secondary users depends on the spectrum occupancy of
the primary users. A distinct feature of such networks
is that the secondary users have the capability to sense
channel usage and switch between different channels,
but must incur negligible interference on the primary
users. Since the secondary users can cooperate with
one another, we assume that they all have knowledge
of the channel occupancies due to secondary users.
Therefore, each secondary user must be able to decide,
for each frequency channel, whether or not the channel
is occupied by a primary user. We refer to this problem
as the spectrum detection problem.

We propose a spectrum detection mechanism based
on Bayes criterion via the SS measurements taken by
the secondary users equipped with CR technology. The
Bayes hypothesis testing problem is based on two as-
sumptions. The first is that the source outputs are gov-
erned by prior probabilities. These probabilities represent
the observer’s information about the source before the
decision action is made. The second assumption is that
a cost is assigned to each possible course of action [8].

In the binary hypothesis testing, either hypothesis H0

or H1 is true. At the end of each decision interval one of
four actions can be taken: 1) Choose H0 when H0 is true;
2) Choose H1 when H0 is true; 3) Choose H1 when H1

is true; and 4) Choose H0 when H1 is true. We denote
the costs associated with the four courses of action as
C00, C10, C11, and C01, respectively. The first subscript
indicates the hypothesis chosen and the second indicates
that the hypothesis is true. A decision rule should be
designed to minimize the average cost. Typically, the cost
associated with each action is assigned by the designer
in accordance with the specific application. The prior
probabilities, denoted by P (H0) and P (H1), are derived
based on the observer’s information. Hence, as part of
the spectrum detection problem, we must address the
following issue: Given observations over a given time
interval, how can the prior probabilities be estimated in
order to solve the spectrum detection problem?

III. SPECTRUM DETECTION

In this section, we develop the spectrum detection
mechanism based on Bayes criterion, and then solve
for the prior probabilities using queueing-theoretic tech-
niques. We assume that a secondary user periodically

scans the whole spectrum and takes signal strength
(SS) measurements on channel j, 1 ≤ j ≤ N . We
also assume that a secondary user knows the channel
occupancy information of other secondary users, because
the secondary users can exchange information among
themselves, although they cannot communicate with
primary users. Therefore, the decision that must be made
concerning a given channel is whether the channel is idle
or occupied by a primary user. The associated hypothesis
testing problem for a given channel j is formulated as
follows:

H0 : rj = nj ,

H1 : rj = Aj + nj ,

where rj is the received signal strength on channel j
in dB; nj is the shadowing noise, modeled as a zero-
mean Gaussian random variable with variance σ2; and
Aj represents the received signal strength on channel j
due to the transmitted signal power and path loss.

To achieve the minimum average cost, we use the
Bayes criterion and obtain the likelihood ratio Λ(rj) [8]:

Λ(rj) , P (rj |H1)
P (rj |H0)

H1

≷
H0

P (H0)(C10 − C00)
P (H1)(C01 − C11)

, (1)

where P (H0) represents the a priori probability that
channel j is idle, P (H1) is the a priori probability that
channel j is being used by a primary user. The condi-
tional probability density of rj under each hypothesis
follows easily:

P (rj |H0) =
1√
2πσ

exp

(
− r2

j

2σ2

)
,

P (rj |H1) =
1√
2πσ

exp
(
− (rj −Aj)2

2σ2

)
.

Substituting into (1) and taking the logarithm, we
obtain

rj

H1

≷
H0

σ2

Aj

(
ln

P (H0)(C10 − C00)
P (H1)(C01 − C11)

+
A2

j

2σ2

)
, γ0. (2)

Equation (2) provides a decision threshold. The sec-
ondary user simply measures the received SS on chan-
nel j, compares it with the threshold γ0, and then makes
a decision concerning the status of the channel.

In a practical system, the detection performance may
be degraded by the presence of shadow fading and
noise. A secondary user may incorrectly determine that
a primary user is present in a channel when the channel
is in fact idle. Alternatively, a secondary user may
incorrectly determine that a channel is idle when in fact,
the channel is being used by a primary user. The former
event is referred to as a false alarm, and the latter is
a misdetection. The misdetection event usually causes
more harmful impact on the system performance than
the false alarm event, because a misdtection may cause
harmful interference to a primary user.

The false alarm probability, denoted by pf , and misde-
tection probability, denoted by pm, are two performance



parameters for evaluating the above hypothesis testing
problem. By definition, the two performance parameters
can be calculated as follows:

pf =
∫ ∞

γ0

1√
2πσ

e−
r2

j

2σ2 drj = Q
(γ0

σ

)
, (3)

pm =
∫ γ0

−∞

1√
2πσ

e−
(rj−Aj)2

2σ2 drj = Q

(
Aj − γ0

σ

)
.

(4)

The average decision cost, denoted by C, can be deter-
mined as

C = P (H0)(C10pf + C00(1− pf ))
+ P (H1)(C01pm + C11(1− pm)). (5)

If we assume that there is no cost for a correct decision
and the cost for wrong decision is equal to 1, i.e., C00 =
C11 = 0 and C01 = C10 = 1, then the cost C in (5)
becomes the average error probability Pe, defined by

Pe = P (H0)pf + P (H1)pm. (6)

IV. ESTIMATION OF PRIOR PROBABILITIES

In this section, we formulate a system performance
model to estimate the probabilities P (H0) and P (H1).
In many applications, it is difficult to determine the prior
probabilities for a hypothesis testing problem accurately.
By observing the traffic dynamics of the primary users
and secondary users during a certain time period, we can
obtain estimate the prior probabilities, which can cap-
ture the dynamic characteristics of the traffic. This will
ensure that the decision threshold will adapt according
to the traffic dynamics. We will show that an adaptive
spectrum detection mechanism can achieve much better
performance compared to a static scheme that does not
utilize prior knowledge, i.e., P (H0) = P (H1) = 0.5
regardless of the traffic dynamics.

We shall assume that the traffic arrival process of each
type of user is Poisson with rate λ1 for primary calls and
λ2 for secondary calls. The service time for each type of
users is exponentially distributed with parameter µ1 for
the primary calls and µ2 for the secondary calls. Similar
assumptions have been widely used to model call arrivals
in wireless networks, e.g., [9], [10].

We first estimate the parameter µ1. Since a secondary
user equipped with a cognitive radio can monitor the
service time T (i.e., the difference between the arrival
time and departure time) of a primary user at a channel,
and the service time is assumed to be exponentially dis-
tributed with rate µ1, when the secondary user observes
a total of L independent time samples in a certain time
period, T1, T2, · · · , TL, the departure rate µ1 can be
easily estimated through the likelihood function for this
problem:

fT1,··· ,TL;µ1(T1, · · · , TL;µ1) =
L∏

i=1

µ1 exp(−µ1Ti).

By using the maximum likelihood estimation method
[8], the maximum likelihood estimate (MLE) of µ1 is
obtained as

µ̂1 =
1

1
L

∑L
i=1 Ti

. (7)

Since the arrival process of the primary users is Poisson
with rate λ1, the interarrival time of a primary call can
be derived to be exponentially distributed with parameter
λ1. Hence, using the same procedure, the estimate of λ1

can be obtained. Similarly, estimates of λ2 and µ2 are
obtained.

Let X1(t) and X2(t) denote the number of primary
and secondary calls using the channels at time t, respec-
tively. The process (X1(t), X2(t)) is a two-dimensional
Markov process with state space S = {(i, j)|0 ≤ i+j ≤
N}. The the transition rate diagram is for (X1(t), X2(t))
is depicted in Fig. 1 (a) with 0 ≤ i + j < N and in
Fig. 1 (b) with i+ j = N . Let π(i, j) denote the steady-
state probability that the system is in state (i, j). The
system balance equations can then be written as follows:

(λ1+λ2+iµ1+jµ2)πi,j = λ1πi−1,j +λ2πi,j−1+
(i+1)µ1πi+1,j + (j+1)µ2πi,j+1, 0 ≤ i+j < N ;

(λ1+iµ1+jµ2)πi,j = λ1πi−1,j + λ1πi−1,j+1+
λ2πi,j−1, i+j =N, 0 ≤ i ≤ N − 1;

Nµ1πN,0 =λ1πN−1,0+λ1πN−1,1, i=N, j =0. (8)

The above equations contain (N + 1)(N + 2)/2
unknowns, i.e., the probabilities πi,j , 0 ≤ i ≤ N , 0 ≤
j ≤ N − i. But there are only N(N + 1)/2 independent
equations in the above equations. Thus, N + 1 more
equations are needed. Recall that in our model, a primary
call operates as if there is no secondary call in the service
area. Hence, the probabilities πi,0, 0 ≤ i ≤ N , are given
by the M/M/N/N formula, i.e.,

πi,0 = π0,0
(λ1/µ1)i

i!
, 1 ≤ i ≤ N. (9)

The final equation is provided by the normalization
condition:

N∑

i=0

N−i∑

j=0

πi,j = 1. (10)

Equations (8)–(10) are sufficient to evaluate the state
probabilities πi,j . After obtaining the state probabilities,
we can evaluate the mean number of primary calls and
secondary calls, denoted by N1 and N2, respectively, in
the system under steady state:

N1 =
N∑

i=1

N−i∑

j=0

iπi,j , N2 =
N−1∑

i=0

N−i∑

j=1

jπi,j . (11)

From N1 and N2, we can solve for the mean probability
of a channel being occupied by a primary call and the
mean probability of a channel being idle, which are



λ1 λ1λ2λ2 jμ2(j+1)μ2iμ1 (i+1)μ1(a)  0 ≤ i+j < Nλ1 λ1λ2 λ2 jμ2(j+1)μ2 iμ1 (i+1)μ1(b)  i+j = N λ1λ1
Fig. 1. State transition diagrams for the Markov process
(X1(t), X2(t)).

used to approximate the prior probabilities P (H1) and
P (H0), respectively. Thus, we have

P (H1) ≈ N1

N
, P (H0) ≈ 1− N1 + N2

N
. (12)

Note that the above expressions for P (H1) and P (H0)
will change according to the traffic load. Hence, the
proposed spectrum detection mechanism, utilizing these
probabilities, adapts to the dynamic traffic conditions.
For example, when the primary traffic load increases,
according to the above equations, we obtain a lower de-
tection threshold, and hence the misdetection probability
decreases.

V. COOPERATIVE SPECTRUM DETECTION

In Section III, the hypothesis tests are conducted by
a single secondary user, independent of other secondary
users. Now we consider the hypothesis tests under col-
laboration among multiple secondary users. A secondary
user and some of its neighbors synchronously measure
the SS for a channel over a specific time interval and ex-
change information with each other or send results to the
base station depending on different applications. Clearly,
these measurements can be treated independently. As-
sume that M users cooperate to measure the SS in
channel j during a certain time period. The secondary
node making the decision obtains the M independent
measurement samples, calculates the average value, and
then compares it with the detection threshold in order to
make a decision. Since the measurements taken by dif-
ferent secondary users are independent Gaussian random
variables, the average of these variables is a Gaussian

variable r̄j with variance given by

Var(r̄j) = Var

(
1
M

M∑

i=1

rji

)
=

σ2

M
.

The mean of r̄j is zero when channel j is idle and
Aj when channel j is being used by a primary user.
Hence, the likelihood function under each hypothesis can
be written as

P (r̄j |H0) =
(

M

2πσ2

) 1
2

exp

(
−Mr̄2

j

2σ2

)
,

P (r̄j |H1) =
(

M

2πσ2

) 1
2

exp
(
−M(r̄j −Aj)2

2σ2

)
.

The two types of error probabilities, i.e., false alarm
probability p′f and misdetection probability p′m can be
calculated as2:

p′f =
∫ ∞

γ0

P (r̄j |H0)dr̄j = Q

(√
Mγ0

σ

)
, (13)

p′m =
∫ γ0

−∞
P (r̄j |H1)dr̄j = Q

(√
M(Aj − γ0)

σ

)
.

(14)

Clearly, both types of error probabilities are reduced
under cooperative detection, p′f < pf , p′m < pm, and
the average cost is thus reduced.

VI. NUMERICAL RESULTS

In this section, we present numerical results for the
system model in terms of the prior probabilities P (H1)
and P (H0), the mean error probability of detection Pe,
and the two types of error probabilities pf and pm. The
system parameters are set as follows3: N = 12, M = 5,
Aj = 3, σ = 1, µ1 = 20, µ2 = 20, λ2 = 60 or 80, and
λ1 ranges from 10 to 100.

Fig. 2 shows how the prior probabilities vary as
functions of the traffic intensities for both types of traffic.
As should be expected, when the primary call arrival rate
λ1 increases, the probability that the channel is occupied
by primary users, i.e., the probability P (H1), increases,
while the probability that the channel is idle, i.e., P (H0),
decreases. As λ2 increases, P (H0) decreases, but P (H1)
does not change. This is because P (H1) depends only
on the channel occupancy of primary calls and is inde-
pendent of the behavior of the secondary calls.

Fig. 3 compares the mean error probability Pe un-
der the proposed adaptive spectrum detection scheme
with the case where the prior probabilities are assumed
to have the values P (H0) = P (H1) = 0.5. We
observe that the proposed scheme can achieve much
better performance, especially when the primary traffic
load is relatively light. We also observe that in the

2For the purpose of comparison, here we assume that the detection
threshold γ0 is the same under both single user and multiple user
detection.

3Time units are assumed to be dimensionless, but can easily be
mapped to standard units.
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proposed scheme, as λ2 increases, Pe decreases. This
is because we assume that secondary users are mutually
cognizant of the channels that they occupy since they
can exchange information among themselves. As more
secondary calls occupy channels, the size of the decision
space decreases, leading to a smaller value of Pe.

Fig. 4 evaluates the two types error probabilities under
the multiple user detection scheme discussed in Sec-
tion V. We observe that both types of error probabilities,
i.e., pf and pm, are reduced under cooperative detection
with multiple users.

VII. CONCLUSION

We proposed an adaptive spectrum detection mech-
anism for cognitive radio networks in dynamic traffic
environments. The spectrum detection mechanism is for-
mulated as a hypothesis testing problem and developed
based on Bayes criterion to minimize average cost.
To determine the prior probabilities used for spectrum
detection, we estimate the traffic dynamics of both types
of users via the maximum likelihood rule. The traffic
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estimates are applied to a two-dimensional Markov pro-
cess model of the system occupancy to evaluate the
prior probabilities. We also extended the scheme to
leverage cooperation among multiple secondary users.
Our numerical results suggest that the proposed adaptive
spectrum detection scheme can achieve much better per-
formance compared to the case where no knowledge of
prior probabilities is available, especially under light pri-
mary traffic loads. The results also indicate the benefits
of cooperative spectrum detection in terms of reducing
both the false alarm and misdetection probabilities.
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