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or node partitions for large-scale partitioning problems. 
This is the focus of this paper. 

The main modeling approach generalizes a technique 
described in [6] to obtain weights for the edges of a 
graph G where we consider partitioning the netlist into 
k blocks of specified sizes. The edge weights are gen- 

A B S T R A C T  A fast eigenvector technique for obtain- 
ing good initial node partitions of netlists for use in in- 
terchange heuristics is described. The method is based 
on approximating the netlist or hypergraph by a weighted 
graph G and applying the eigenvector technique of Barnes 111 
to partition the graph G into IC blocks of fixed module . 
size. An efficient generalization of the Fiduccia-Mattheyses 
node interchange heuristic is developed to further reduce 
the number of nets connecting k blocks [3]. This node in- 
terchange heuristic is tested on the one resulting netlist 
partition obtained by this new eigenvector approach on 
a variety of small to  large sized benchmark netlist par- 
titioning problems (between 200 to  12,000 modules and 
nets). The test results show that this novel eigenvector- 
node interchange approach yields netlist partitions that 
are competitive with the best netlist partitions obtained 
by using node interchange heuristics alone on many ran- 
dom initial netlist partitions. The running time of this 
method is a small fraction of previous node interchange 
met hods. 

1 Introduction 
In this paper, we present a fast method for obtaining 
an initial netlist partition to which any module or node 
interchange method can be applied. This fundamental 
VLSI circuit layout problem is solved by a novel method 
that approximates the netlist by a graph G with weighted 
edges. We then apply the eigenvector-based approach of 
Barnes [l] to obtain a node partition of G. 

The advantage of developing an eigenvector approach 
to solve the partitioning problem is that the generated 
initial partitions tend to have many nodes placed in the 
‘right blocks’. This is due to observation that eigenvec- 
tor methods are more global approaches for solving large- 
scale VLSI layout problems. Eigenvector approaches have 
been used to  solve many VLSI placement problems [2,4]. 
On the other hand, node interchange methods are greedy 
or local in nature and get easily trapped in local op- 
tima. More important, it has been shown that inter- 
change methods fail to converge to  ‘optimal’ or ‘near op- 
timal’ partitions unless they initially begin from ‘good’ 
partitions [5 ] .  Ideally, one attempts to use an eigenvector 
approach to place most of the nodes in the correct blocks 

erated so that every cut of the resulting graph tightly 
underestimates every netlist cut in the original netlist. 
This translation from a netlist partitioning problem into 
a graph partitioning problem allows us to use the power- 
ful eigenvector techniques for partitioning graphs [l]. 

2 Approximating a Netlist 
It is easy to generate a hypergraph from a given netlist 
by having the node set of the hypergraph correspond to 
the modules in the netlist, and the generalized edges cor- 
respond to  the nets. In the remainder of the paper, we 
will usually discuss the netlist in terms of its equivalent 
hypergraph. 

In this section, we describe how one can approximate 
a hypergraph H by a graph G with weighted edges. The 
node set of G is the same as the node set of H ,  and the 
edge set of E is obtained by replacing each generalized 
edge of H by the edge set of a clique which connects the 
nodes of the generalized edge. In assigning weights to 
the edges of G we attempt to generate the best graph 
underestimation of the hypergraph H. We say G under- 
estimates H if the weight of the edges in G, cut by any 
partition of the nodes is not greater than the number 
of generalized edges of H cut by the same partition. In 
Section 2.1 we discuss how the edge weights can be deter- 
mined. An example of the graph approximation is given 
in Section 3. 
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2.1 Finding Edge Weights 
We generate the edge weights by considering the clique 
obtained by each generalized edge in turn. After consid- 
ering each generalized edge we obtain a graph containing 
multiple edges. (If node i and node j are contained in 
t generalized edges, there will be t (multiple) edges be- 
tween i and j in the new graph.) We generate G by re- 
placing each set of multiple edges by a single edge whose 
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weight is the sum of the weights of the multiple edges. 
If we focus on a particular generalized edge, we wish 

to assign values such that the weight of any cut in the 
clique underestimates any cut in the generalized edge. 
One would expect that when considering a single gener- 
alized edge all edge weights in the corresponding clique 
would have the same weight. In fact this is true, as is 
shown in [6]. Assume for simplicity that each generalized 
edge (net or wire) has a unit weight and that we wish to 
partition the nodes (modules) among k blocks. Let a be 
the value assigned to  each edge of the clique representa- 
tion of a generalized edge connected to c nodes. In order 
to find a graph fit which underestimates a partition of 
the netlist, we must have 0 5 nia 5 1, where ni is the 
number of cut edges in the i f h  distinguishable partition 
of the net into k blocks. There axe only a finite num- 
ber of distinguishable partitions of a net connected to c 
modules. In order to minimize the error in the under- 
estimation of a cut of generalized edge connected to c 
modules, we must choose the maximum value for a. The 
maximum possible value for a is 

For example, in the case of a net connected to four 
modules where these modules are partitioned over two 
blocks, we see that the maximum number of interconnec- 
tions arise if we assign two modules ineach block. This 
implies that there are four interconnections between the 
two blocks. Thus a = $. The best four node (modules) 
approximation of the netlist where the four modules are 
connected to one net is shown in Figure 2. Note that 
equation (1) allows us to calculate a by finding the in- 
verse of the largest number of edges connecting k blocks. 
Clearly, the largest number of edges connecting the nodes 
(modules) in these IC blocks arises when we equipartition 
the number of nodes between the k blocks; that is, we 
assign approximately 

Table 1 shows the calculation of the values a for dif- 
ferent modules and required blocks. Thus we generate 
a graph underestimation by considering the best under- 
estimation of each generalized edge. The details of this 
graph approximation technique is described in [6]. We 
see how this graph can be used to find a partition in the 
Section 3. 

nodes to each block. 

3 Generating Initial Partitions 
Given the graph approximation of the hypergraph H, we 
now find an initial partition of graph G by using the 
eigenvector-based approach due to Barnes [l]. We will 
then use this same-partition for H .  Barnes shows that 
the graph partitioning problem is equivalent to a matrix 
approximation problem. We summarize these results be- 
low. 

Assume that the approximating graph, G, we are con- 
sidering consists of n nodes which are to be partitioned 

into k disjoint blocks of sizes ml 1 m2,> . . . 2 mk. A 
partition can be completely specified by a set of k node 
assignment vectors XI, xz, ' . . , xk, one corresponding to 
each block, which have the form 

where 

1 if node i is in block j 
0 otherwise. xij = 

Let vij be the it" component of the eigenvector cor- 
responding to the j'" largest eigenvalue of the adjacency 
matrix of G. Barnes [l] shows that the solution of the 
following linear transportation problem gives an approx- 
imate solution to the graph partitioning problem. 

The partition given by the solution of the transportation 
problem (2) usually places most of the nodes in the cor- 
rect blocks. This has been empirically verified on many 
graph partitioning problems [6]. 

In the two block case, the transportation problem (2) 
can be further simplified by replacing xi2 by 1 - z;l. Mak- 
ing this substitution and letting z; = zil, the objective 
function becomes 

The transportation problem (2) reduces to the following 
(0 ,  1)-knapsack problem 

Maximize { - -j+} zi 

subject to  C:==, zi = ml,  (4) 
0 5 zi 5 1, i = l , . . . , n  . 

It is well known that the solution to (4) is obtained by 
sorting the objective coefficients in non-increasing order 
and setting si = 1 for the first ml variables in the sorted 
list (all other variables are set to  zero). 

Recall, the weight of any cut in the generated graph 
G underestimates the number of generalized edges cut 
in H by the corresponding node partition. We now find 
the partition using the best graph approximation and the 
method of Barnes described above for the 5 module - 3 
net example shown in Figure 3. Assume that we wish to 
partition the hypergraph into two blocks of nodes, one 



block containing 3 nodes and the other block containing 
2 nodes. The largest two eigenvalues of the adjacency 
matrix A (aij contains the weight of the edge connect- 
ing nodes i and j )  of this graph and the corresponding 
eigenvectors are 

X i  = 1.7368, VI = [.548,.206,.206,.679,.391], 
Xz = .27755, ~2 = [.223, .535, .535, -.164, -.592]. 

Substituting into equation (3) ,  we find that the coeffi- 
cients of the objective function are 

S = [.158, -.259, -.259, .508, .645]. 

The partition by sorting the components in 6 is 

SI = { 1 , 4 , 5 }  
Sz = {2,3}. 

By inspection we see that at least one generalized edge 
must be cut by any partition satisfying the size con- 
straints. Since the partition generated by S1 and Sz cuts 
exactly 1 generalized edge we have obtained the optimal 
solution. 

4 Test Results 
A C code NETPART has been developed on a UNIX en- 
vironment to incorporate the new partitioning method. 
We present initial and promising experimental results 
that are obtained using the eigenvector method and an 
extension of the node interchange heuristic technique of 
Fiduccia and Mattheyses [3] to many networks. All com- 
putational work was done on a MIPS/2000 computer at 
the University of Waterloo. 

The technique and the resulting computer code was 
tested on seven netlist partitioning problems listed in Ta- 
ble 2. Chipl-Chip4 are taken from the work of Fiduccia 
and Mattheyses (31 and Primaryl, Primary2 and In- 
dustry:! are taken from the MCNC gate-array test suite 
benchmarks. These netlists vary in size from 200 to 
12,000 nodes and 200 to 13,000 nets. 

Table 3 shows the results of applying the iterative im- 
provement (interchange) heuristic of Fiduccia and Matthey- 
ses on the bi-partitioning of netlists (networks) [3]. The 
block sizes of the partitions obtained using the heuristic 
are almost equal in size. The second and third columns 
of this table give the results obtained when the partition 
from the eigenvector approach was used as the initial 
partition. The remaining columns give the results from 
using 30 random starting partitions. The fourth and fifth 
columns give the cutset sizes of the best and worst par- 
titions obtained. Finally, the last column gives the total 
CPU time (in seconds) spent in executing the 30 runs. 

Some general observations can be made from the re- 
sults presented in Table 3. The final partitions that are 

generated using the iterative improvement approach of 
Fiduccia and Mattheyses [3] from the initial partition 
generated by this new eigenvector approach compare fa- 
vorably with those obtained using only random starting 
partitions. The total of the execution times for obtaining 
a starting partition using the eigenvector approach and 
then applying iterative improvement is much less (up 
to 30 t imes  faster)  than the time required to perform 
the heuristic from 30 random starting points. For the 
largest netlist that was partitioned -Industry& this new 
approach yields cuts that are 300% better than the cuts 
found for the partitions generated from random starting 
partitions only. Also, the quality of partitions gets better 
as the size of the netlists increases. 

Figure 1: Complete Graph Connecting 4 Modules 
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Figure 2: Best 4 Module Graph Approximation 
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Figure 3: 5 module3 net Example 
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Figure 4: Best 4 Module Graph Approximation 

Name 11 New Method 
Time (sec.) 

0.36 

I 

Random Starts (30) 
Best I Worst I Time (sec.) 
22 I 52 I 15.73 

Table 1 

Calculation of a 
for Different Numbers of Blocks (k) 

1/12 1/13 
1/12 1 /18 

Table 2 
Netlist 

-=-I-= 
I1 

Chip4 
Primaryl 904 
Primary2 3029 
Industry2 12949 

artitia 
Nodes 

300 
274 
199 
244 
833 

3014 
12142 

ling Test Ca 
Node Deeree 
-q-F 
2.82 I 1.15 

3.72 1.55 
1.76 

4 Net Size 

Chip1 11 24 

Primaryl 

0.40 
0.22 
0.37 
2.79 
8.55 

50.93 

15 
6 
8 
97 

468 
1844 

39 
30 
30 
164 
623 

2078 

15.64 
8.65 
10.41 
40.45 
236.41 
1350.00 
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