
A n Efficient Eigenvector-Node Interchange Approach
for Finding Netlist Par t i t ions

Dr. Anthony Vannelli, Dr. Scott W. Hadley and Brian L. Mark

Department of Electrical and Computer Engineering
University of Waterloo, Waterloo, Ontario, CANADA N2L 3G1

or node partitions for large-scale partitioning problems.
This is the focus of this paper.

The main modeling approach generalizes a technique
described in [6] to obtain weights for the edges of a
graph G where we consider partitioning the netlist into
k blocks of specified sizes. The edge weights are gen-

A B S T R A C T A fast eigenvector technique for obtain-
ing good initial node partitions of netlists for use in in-
terchange heuristics is described. The method is based
on approximating the netlist or hypergraph by a weighted
graph G and applying the eigenvector technique of Barnes 111
to partition the graph G into IC blocks of fixed module .
size. An efficient generalization of the Fiduccia-Mattheyses
node interchange heuristic is developed to further reduce
the number of nets connecting k blocks [3]. This node in-
terchange heuristic is tested on the one resulting netlist
partition obtained by this new eigenvector approach on
a variety of small to large sized benchmark netlist par-
titioning problems (between 200 to 12,000 modules and
nets). The test results show that this novel eigenvector-
node interchange approach yields netlist partitions that
are competitive with the best netlist partitions obtained
by using node interchange heuristics alone on many ran-
dom initial netlist partitions. The running time of this
method is a small fraction of previous node interchange
met hods.

1 Introduction
In this paper, we present a fast method for obtaining
an initial netlist partition to which any module or node
interchange method can be applied. This fundamental
VLSI circuit layout problem is solved by a novel method
that approximates the netlist by a graph G with weighted
edges. We then apply the eigenvector-based approach of
Barnes [l] to obtain a node partition of G.

The advantage of developing an eigenvector approach
to solve the partitioning problem is that the generated
initial partitions tend to have many nodes placed in the
‘right blocks’. This is due to observation that eigenvec-
tor methods are more global approaches for solving large-
scale VLSI layout problems. Eigenvector approaches have
been used to solve many VLSI placement problems [2,4].
On the other hand, node interchange methods are greedy
or local in nature and get easily trapped in local op-
tima. More important, it has been shown that inter-
change methods fail to converge to ‘optimal’ or ‘near op-
timal’ partitions unless they initially begin from ‘good’
partitions [5] . Ideally, one attempts to use an eigenvector
approach to place most of the nodes in the correct blocks

erated so that every cut of the resulting graph tightly
underestimates every netlist cut in the original netlist.
This translation from a netlist partitioning problem into
a graph partitioning problem allows us to use the power-
ful eigenvector techniques for partitioning graphs [l].

2 Approximating a Netlist
It is easy to generate a hypergraph from a given netlist
by having the node set of the hypergraph correspond to
the modules in the netlist, and the generalized edges cor-
respond to the nets. In the remainder of the paper, we
will usually discuss the netlist in terms of its equivalent
hypergraph.

In this section, we describe how one can approximate
a hypergraph H by a graph G with weighted edges. The
node set of G is the same as the node set of H , and the
edge set of E is obtained by replacing each generalized
edge of H by the edge set of a clique which connects the
nodes of the generalized edge. In assigning weights to
the edges of G we attempt to generate the best graph
underestimation of the hypergraph H. We say G under-
estimates H if the weight of the edges in G, cut by any
partition of the nodes is not greater than the number
of generalized edges of H cut by the same partition. In
Section 2.1 we discuss how the edge weights can be deter-
mined. An example of the graph approximation is given
in Section 3.

28.2.1
IEEE 1991 CUSTOM INTEGRATED CIRCUITS CONFERENCE

2.1 Finding Edge Weights
We generate the edge weights by considering the clique
obtained by each generalized edge in turn. After consid-
ering each generalized edge we obtain a graph containing
multiple edges. (If node i and node j are contained in
t generalized edges, there will be t (multiple) edges be-
tween i and j in the new graph.) We generate G by re-
placing each set of multiple edges by a single edge whose

CH2994-2/91/0000/0153 $1.00 0 1991 IEEE

weight is the sum of the weights of the multiple edges.
If we focus on a particular generalized edge, we wish

to assign values such that the weight of any cut in the
clique underestimates any cut in the generalized edge.
One would expect that when considering a single gener-
alized edge all edge weights in the corresponding clique
would have the same weight. In fact this is true, as is
shown in [6]. Assume for simplicity that each generalized
edge (net or wire) has a unit weight and that we wish to
partition the nodes (modules) among k blocks. Let a be
the value assigned to each edge of the clique representa-
tion of a generalized edge connected to c nodes. In order
to find a graph fit which underestimates a partition of
the netlist, we must have 0 5 nia 5 1, where ni is the
number of cut edges in the i f h distinguishable partition
of the net into k blocks. There axe only a finite num-
ber of distinguishable partitions of a net connected to c
modules. In order to minimize the error in the under-
estimation of a cut of generalized edge connected to c
modules, we must choose the maximum value for a. The
maximum possible value for a is

For example, in the case of a net connected to four
modules where these modules are partitioned over two
blocks, we see that the maximum number of interconnec-
tions arise if we assign two modules ineach block. This
implies that there are four interconnections between the
two blocks. Thus a = $. The best four node (modules)
approximation of the netlist where the four modules are
connected to one net is shown in Figure 2. Note that
equation (1) allows us to calculate a by finding the in-
verse of the largest number of edges connecting k blocks.
Clearly, the largest number of edges connecting the nodes
(modules) in these IC blocks arises when we equipartition
the number of nodes between the k blocks; that is, we
assign approximately

Table 1 shows the calculation of the values a for dif-
ferent modules and required blocks. Thus we generate
a graph underestimation by considering the best under-
estimation of each generalized edge. The details of this
graph approximation technique is described in [6]. We
see how this graph can be used to find a partition in the
Section 3.

nodes to each block.

3 Generating Initial Partitions
Given the graph approximation of the hypergraph H, we
now find an initial partition of graph G by using the
eigenvector-based approach due to Barnes [l]. We will
then use this same-partition for H . Barnes shows that
the graph partitioning problem is equivalent to a matrix
approximation problem. We summarize these results be-
low.

Assume that the approximating graph, G, we are con-
sidering consists of n nodes which are to be partitioned

into k disjoint blocks of sizes ml 1 m2,> . . . 2 mk. A
partition can be completely specified by a set of k node
assignment vectors XI, xz, ' . . , xk, one corresponding to
each block, which have the form

where

1 if node i is in block j
0 otherwise. xij =

Let vij be the it" component of the eigenvector cor-
responding to the j'" largest eigenvalue of the adjacency
matrix of G. Barnes [l] shows that the solution of the
following linear transportation problem gives an approx-
imate solution to the graph partitioning problem.

The partition given by the solution of the transportation
problem (2) usually places most of the nodes in the cor-
rect blocks. This has been empirically verified on many
graph partitioning problems [6].

In the two block case, the transportation problem (2)
can be further simplified by replacing xi2 by 1 - z;l. Mak-
ing this substitution and letting z; = zil, the objective
function becomes

The transportation problem (2) reduces to the following
(0 , 1)-knapsack problem

Maximize { - -j+} zi

subject to C:==, zi = ml, (4)
0 5 zi 5 1, i = l , . . . , n .

It is well known that the solution to (4) is obtained by
sorting the objective coefficients in non-increasing order
and setting si = 1 for the first ml variables in the sorted
list (all other variables are set to zero).

Recall, the weight of any cut in the generated graph
G underestimates the number of generalized edges cut
in H by the corresponding node partition. We now find
the partition using the best graph approximation and the
method of Barnes described above for the 5 module - 3
net example shown in Figure 3. Assume that we wish to
partition the hypergraph into two blocks of nodes, one

block containing 3 nodes and the other block containing
2 nodes. The largest two eigenvalues of the adjacency
matrix A (aij contains the weight of the edge connect-
ing nodes i and j) of this graph and the corresponding
eigenvectors are

X i = 1.7368, VI = [.548,.206,.206,.679,.391],
Xz = .27755, ~2 = [.223, .535, .535, -.164, -.592].

Substituting into equation (3) , we find that the coeffi-
cients of the objective function are

S = [.158, -.259, -.259, .508, .645].

The partition by sorting the components in 6 is

SI = { 1 , 4 , 5 }
Sz = {2,3}.

By inspection we see that at least one generalized edge
must be cut by any partition satisfying the size con-
straints. Since the partition generated by S1 and Sz cuts
exactly 1 generalized edge we have obtained the optimal
solution.

4 Test Results
A C code NETPART has been developed on a UNIX en-
vironment to incorporate the new partitioning method.
We present initial and promising experimental results
that are obtained using the eigenvector method and an
extension of the node interchange heuristic technique of
Fiduccia and Mattheyses [3] to many networks. All com-
putational work was done on a MIPS/2000 computer at
the University of Waterloo.

The technique and the resulting computer code was
tested on seven netlist partitioning problems listed in Ta-
ble 2. Chipl-Chip4 are taken from the work of Fiduccia
and Mattheyses (31 and Primaryl, Primary2 and In-
dustry:! are taken from the MCNC gate-array test suite
benchmarks. These netlists vary in size from 200 to
12,000 nodes and 200 to 13,000 nets.

Table 3 shows the results of applying the iterative im-
provement (interchange) heuristic of Fiduccia and Matthey-
ses on the bi-partitioning of netlists (networks) [3]. The
block sizes of the partitions obtained using the heuristic
are almost equal in size. The second and third columns
of this table give the results obtained when the partition
from the eigenvector approach was used as the initial
partition. The remaining columns give the results from
using 30 random starting partitions. The fourth and fifth
columns give the cutset sizes of the best and worst par-
titions obtained. Finally, the last column gives the total
CPU time (in seconds) spent in executing the 30 runs.

Some general observations can be made from the re-
sults presented in Table 3. The final partitions that are

generated using the iterative improvement approach of
Fiduccia and Mattheyses [3] from the initial partition
generated by this new eigenvector approach compare fa-
vorably with those obtained using only random starting
partitions. The total of the execution times for obtaining
a starting partition using the eigenvector approach and
then applying iterative improvement is much less (up
to 30 t imes faster) than the time required to perform
the heuristic from 30 random starting points. For the
largest netlist that was partitioned -Industry& this new
approach yields cuts that are 300% better than the cuts
found for the partitions generated from random starting
partitions only. Also, the quality of partitions gets better
as the size of the netlists increases.

Figure 1: Complete Graph Connecting 4 Modules

1
4
-

4

Figure 2: Best 4 Module Graph Approximation

Net #1

I I I I

Net #2 Net #3

Figure 3: 5 module3 net Example

28.2.3

1 - 1
4 4

-
4 1

Figure 4: Best 4 Module Graph Approximation

Name 11 New Method
Time (sec.)

0.36

I

Random Starts (30)
Best I Worst I Time (sec.)
22 I 52 I 15.73

Table 1

Calculation of a
for Different Numbers of Blocks (k)

1/12 1/13
1/12 1 /18

Table 2
Netlist

-=-I-=
I1

Chip4
Primaryl 904
Primary2 3029
Industry2 12949

artitia
Nodes

300
274
199
244
833

3014
12142

ling Test Ca
Node Deeree
-q-F
2.82 I 1.15

3.72 1.55
1.76

4 Net Size

Chip1 11 24

Primaryl

0.40
0.22
0.37
2.79
8.55

50.93

15
6
8
97

468
1844

39
30
30
164
623

2078

15.64
8.65
10.41
40.45
236.41
1350.00

References
[l] E.R. Barnes, “An algorithm for partitioning the

nodes of a graph”, SIAM J. on Algebraic and
Discrete Methods, Vol. 3, No.4, pp. 541-550,
1982.

[a] J. P. Blanks, “Near-optimal placement using a
quadratic objective function”, Proceedings of the
Design Automation Conference, 1985.

[3] C.M. Fiduccia and R.M. Mattheyses, “A linear-
time heuristic for improving network partitions”,
Proc. of 19th Design Automation Conference,
pp. 175-1 81, 1982.

[4] K. Hall, “An r-dimensional quadratic placement al-
gorithm”, Management Science, Vol. 17, pp. 219-
229, 1970.

[5] A. Pothen, H. D. Simon and K. P. Liou “Partitioning
sparse matrices with eigenvectors of graphs”, SIAM
J. on Matrix Analysis and Appl., Vol. 11, pp.
430-452, 1990.

[6] A. Vannelli and S.W. Hadley,“A Gomory-Hu cut
tree approach for partitioning netlist,” IEEE Trans
on Circuits and Systems, Vol. 37, No. 9, pp.
1133-1139, 1990.

28.2.4

