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Abstract—Device-to-device (D2D) communications is widely
adopted as the underlay to cellular primary networks. By
reusing the licensed spectrum and directly transmitting to other
nearby devices, D2D users can significantly enhance system
spectrum efficiency. However, D2D communications usually faces
the restrictions of short transmission distance and limited energy
supply. Mutual interference among different devices increases
energy consumption and exacerbates communication quality-of-
service degradation. In this paper, we consider a dense D2D
network where the D2D devices communicate using cooperative
relaying. We propose a hierarchical game framework consisting
of a Stackelberg game to model intra-tier interactions within each
D2D link and a mean field game to model inter-tier interactions
among different D2D links. A finite difference method is used to
derive an optimal power control scheme, and numerical results
are presented to demonstrate the performance of the proposed
hierarchical power control scheme. We also make comparisons
to a proportional power control scheme, where the experimental
result shows clear advantage of the proposed hierarchical scheme.

Index Terms—D2D communications, cooperative relaying,
power control, mean field game, Stackelberg game.

I. INTRODUCTION

In recent years, device-to-device (D2D) communications has
been widely used as the underlay to cellular primary systems
to enhance power and spectrum efficiency [1], [2]. Due to
the proximity between D2D devices, direct communication
is achievable by reusing spectrum licensed to the primary
devices [3]. Yet several challenges remain: 1) Network per-
formance is often limited by the short transmission range of
D2D devices [4]. 2) The mutual interference caused by a large
number of densely deployed D2D devices has a significant
impact [5], [6]. 3) D2D devices are usually powered by
batteries with finite energy supply, which makes power control
a critical issue [7].

Cooperative relaying has been proposed to extend transmis-
sion range and enhance system capacity in D2D networks [8].
Few works have considered power control schemes that can
satisfy the requirements for dense D2D cooperative relaying
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networks. In this paper, we aim to coordinate the interactions
among a large number of D2D devices and control the power
usage. Both inter-tier interactions among different D2D pairs
and intra-tier interactions among different hops for a D2D pair
exist in this scenario [9]. Power control is a dynamic process
that determines the energy consumption of each D2D device,
which also needs to be effectively characterized.

Game theory has been widely adopted to coordinate the
interactions among D2D devices and decide their transmission
strategies [10]. For intra-tier coordination, Stackelberg game
(SG) can be a powerful framework due to its capability of
modeling two interacting rational players [11]. Based on the
Stackelberg game outcomes, we propose to use a mean field
game (MFG) framework to model the inter-tier interactions
between a single rational player and the statistical behavior of
all other players, since the number of D2D devices is large in
a dense network [12], [13]. The statistical behavior of all D2D
devices can be considered as the mean field which affects the
state of each player.

The contribution of our work is two-fold: 1) We develop
a hierarchical game framework for modeling dense D2D
cooperative relaying networks incorporating Stackelberg game
outcomes into a mean field game. 2) We develop an iterative
finite difference algorithm to derive an optimal power control
policy for D2D links, which takes into account both transmitter
and relay node energy. Our numerical results show that the
proposed hierarchical game scheme significantly outperforms
a proportional power control scheme that does not take into
account intra-tier interactions.

The remainder of the paper is organized as follows. In
Section II, we describe the network model and formulate the
power control problem. In Section III, we propose our Stack-
elberg game model for intra-tier coordination. In Section IV,
we formulate the MFG framework for inter-tier coordination.
In Section V, we develop the finite difference algorithm for
distributed power control. Simulation results are presented in
Section VI and conclusions are given in Section VII.

II. SYSTEM MODEL

We consider a dense D2D network macrocell in which a
large number of D2D pairs are deployed and share uplink
spectrum resources of macro user equipments (MUEs). Each



D2D pair employs cooperative relaying to increase its trans-
mission range. A macrocell base station can communicate with
all the MUE:s in the network. Each D2D transmitter aims to
transmit to its corresponding receiver using a relay node, and
the numbers of D2D pairs and relay nodes are both N. At
most one relay is used, as a larger number of relays introduces
significant overhead without much performance benefit.

We assume full frequency reuse for the D2D transmitters
and relay nodes when they do not interfere with each other.
To satisfy such demand, two MUEs provide their channels to
allow D2D transmitters and relay nodes to transmit. Therefore,
D2D transmitters will only cause interference to relay nodes,
and the relay nodes will only cause interference to D2D
receivers. Decode-and-forward (DF) relaying is adopted in
this work. We use DI, D? and R; to denote the i-th D2D
transmitter, D2D receiver and relay node, respectively. We
assume a Rayleigh channel model in this work, and the
additive noise follows a complex Gaussian distribution. At
time ¢, the inter-tier interference powers Ip ;(t) and Ip ;(t)
at R; and DI are given by
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IRi()=) _paj()garj.i(t), Ipi()=) _prj(t)grai(t), (1)
j=1 j=1
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where pq,;(t), pr;(t) are the transmit powers of D} and Rj,

respectively, and gg, ;i (t), grq,j,i(t) denote the channel gains

from D]T to R; and from R; to DZ, respectively. The signal

to interference-plus-noise ratio (SINR) at R; and at Dﬁ can

be written as
Pa,i(t)gdr.ii(t) Pri(t)grd,ii(t)
i(t) = PLERIIAED oy () = PRIl
YR, ( ) IR,z(t) +O'2 YD, ( ) ID,z(t) +O'2 ( )

respectively, where gq,; i(t), grd,i,;(t) are the channel gains
between DzT and R;, and between R; and DlB, respectively,
and o2 is the additive channel noise power.

We assume that the D2D transmitter and relay node have the
same maximum available energy E\,.x, and the power control
policy is conducted over a time period [0, 7. The system uses
time division multiplexing (TDM). The power control policy
is defined as a sequence of transmit powers for both the D2D
transmitter and relay node in each time slot, i.e., at time ¢, the
power control policy is a pair (P;,(t), P/,.(t)). The power
control problem impacts the dynamics of device energy and
can be formulated under a differential game framework [14].

We assume that the D2D transmitter and the relay node
have the same maximum available energy F.x at ¢ = 0.
Therefore, the energy of DY, E,;(t) and R;, E4;(t) satisfy
0 < Eg;(t), Eri(t) < Emax during transmission. The energy
dynamics can be written as

dEd7i(t) = —pdﬂ‘(t)dt, dETﬂ‘(t) = —pr)i(t>dt. (3)

i

The state process of the i-th D2D pair is then given by
si(t) = [Ea,i(t), Eri(t)). )

The cost function is the optimization objective over [0, 7]
with respect to both SINR performance and transmit power.

Each D2D pair interacts with other D2D pairs while deciding
its own power control policy to minimize the cost. According
to the assumptions, we aim to find an optimal control policy
for D2D transmitter and relay node power. We assume an
SINR threshold -y, for both D2D receiver and relay node.
The cost function of the ¢-th D2D pair is defined as

ci(t) = [vp.i(t) — ven)® + [Yr,i () — ven)® + Bpai(t), (5)

where the coefficient [ is introduced to balance the squared
SINR difference and the transmit power. The differential
game aims to coordinate inter-tier interactions among different
D2D pairs, while the Stackelberg game coordinates intra-tier
interactions within a D2D pair.

III. STACKELBERG GAME ANALYSIS

The Stackelberg game models two rational players as a
leader-follower pair and the interactions between them as
a trade relationship [11], [15]. In DF transmission, a relay
node will select an appropriate transmit power to forward
the signal to the next hop. The D2D transmitter is willing
to pay some price to the relay node in DF and the relay node
can gain some revenue by helping to establish the link. For
each D2D pair, we model the relay node as the leader and
D2D transmitter as the follower. The leader announces the
unit price for its transmit power, and the follower reacts to
the leader by deciding the amount of transmit power it would
like to buy and makes a payment. The leader and follower
attempt to maximize their own utilities simultaneously. The
Stackelberg game Nash equilibrium (SGNE) is achieved if
neither the leader nor the follower can achieve higher utility
by making unilateral changes to its own transmission strategy.

We assume that the transmit power py ;(t) of D7 is known
a priori. The follower aims to gain as much benefit as possible
at the least possible expense. Consider the bottleneck in
cooperative relaying, the i-th follower utility is given by

1
Ur.i(t) =5 min {logy(1 + 7r.i(%)),logy (1 + 7p.i(t))}
— O4Pr i (t)a (6)

where «; is the unit price for relay node transmit power,
Ur,;(t) is related to the link capacity of the D2D pair, and
—a;pr;(t) denotes the expense paid for relay transmit power.
The larger «; is, the less willing the follower is to buy relay
transmit power, which leads to a link capacity decrease. As
for the leader, the relay node can benefit by selling its transmit
power. The ¢-th leader utility function can be defined as [16]

Ur.i(t) = (o — ao)pri(t), (N

where aq is a constant which denotes the unit cost of relay
transmit power. The leader can make profits when «; is higher
than the cost and relay transmit power is greater than zero. The
leader and follower aim to maximize their utilities as follows:

max Up,(t) subject to: p,;(t) > 0, (8)
{pr,i(t)}
max Ug(t) subject to: a; > . )
{ai}



The price «; charged by the leader and the relay transmit
power p,.;(t) the follower would like to buy constitute a strat-
egy pair (a;,pri(t)). Based on the definition of Stackelberg
game, the proposed strategy pair is also the SGNE if neither
the leader nor the follower can make more profits by making
unilateral changes to its own strategy, i.e.,

Ur,i(a, pri(t), t) > Upi(ai,p,,;(t), 1), (10)
Ur,i(ai,pri(t),t) > Uri(ag, pri(t), ). (11)

The SGNE can be solved by backward induction, i.e.,
the analysis of follower strategy is carried out first, then
the analysis of leader strategy is carried out based on fol-
lower outcomes to derive tlzlve optimal price. To simplify

2
notations, we define C := (3 Prg 9rg it )i
’ (Z;V:Lj#i Pd,j9dr,j,i+02)grd,ii’

S f’;d;g’mﬂ = and rewrite & max = 725 If the leader
sets the price too high, the follower will not buy its power and
this leads to an insufficient outcome. Therefore, by setting the
optimal power estimate as non-negative, the price is upper
bounded by ¢ max = f?ﬂ. On the other hand, as long as its
revenue can cover the cost, the leader can always profit from
forwarding the signal. Based on the arguments, the SGNE can

be characterized as follows!:

1) @i max > ap: The optimal price &; is searched within
[0, i max), and the optimal transmit power is always
positive. Let p,; = ﬁ — . Based on the
relaying bottleneck in (6), we have two cases:

e pri < Cpg;: The second hop is the bottle-
neck and the follower chooses p,; as the op-
timal transmit power. Therefore, the SGNE is

@D 1 1
2In2’ V2agDnz D
e pri > Cpg,: The first hop is the bottleneck and
the follower utility becomes % log,(1 + vri(t)) —
a;pr;(t). Thus, the optimal transmit power is C'pg,;.
The leader utility becomes Up, ; = (a; — ag)Cpa,i
and the optimal price is as ; max. The SGNE is
(L Cpq )
2In2’ i)e
2) aymax < ap: The relay sets its power to 0 as it does
not profit from transmission and the optimal price is .
Thus, the SGNE is given by (ayg,0).

IV. MEAN FIELD GAME FOR POWER CONTROL

In D2D cooperative relaying, each player y determines
an optimal power control profile Q7 (¢) to minimize its cost
function in (5) over [0,7]. According to Stackelberg game
analysis, the relay transmit power can be uniquely determined
if the D2D transmit power and channel parameters are known.
The optimal power control profile can be written as

T
Qi (t) = arg minE[/ ci(pa,i(t), Py, —;)dt + ci(T)] (12)
Pa,i(t) 0

where E[-] denotes expectation and pj; ; denotes the transmit
power of all D2D links except the i-th link. The objective is

'Due to space limitations, we omit the detailed proofs.

to determine the optimal power control path over [0, 7] that
minimizes the cost function. Meanwhile, we define a value
function as follows:

T

u;i(t, s;(t)) = min E{/ ci(®)dt +u; (T, s;(T))|, (13)
Ppa,i(t) t

where w;(t,s;(t)) is the value at time ¢ and achieves

u; (T, s;(T)) when t = T. In the MFG, the Nash equilibrium

exists and yields the power control profile (12) if and only if

the constraints (3) and (4) hold (see [13]).

The mean field is defined as the statistical distribution of
the proposed state process in the limiting regime where the
number of players goes to infinity. Given the state process
si(t) = [Ea,i(t), Eri(t)] in (4), the corresponding mean field
m(s,t) is the probability that a certain state s;(t) is likely
to appear at time ¢, i.e., m(s,t) = A}im + Zi\;l fi(si(t), s),
where f;(s;(t),s) equals 1 if s;(¢) —% and 0 otherwise. To
derive the mean field given above, mean field approximation is
applied to the interference received by the relay node and D2D
receiver. When N is sufficiently large, (1) can be rewritten as

Iri(t)=(N=1)pa(t)gar,i(t), Ip,i(t) = (N=1)pr(t)Grd,j.i(t)

where  p4(t),p.(t) are known test powers and
Gdr,ji(t), Gra,j,i(t) are the mean channel gains. We set
the test power equal to Eypax /T for all D2D transmitters and
relay nodes to obtain the mean channel gain estimates. The
powers received by R; and DI, denoted by pfi(t),pgi(t),
are approximated by

pri(t) &= Pa(t)gar,i,i(t) + (N — 1)pa(t)gar,j.i(t)
pgli’,i(t) ~ Z_)T(t)grd,i,i(t) + (N - 1)ﬁ7'(t)grd,j,i (t)

The mean field approximation of the channels gains can
then be obtained by solving (14) and (15) for ga ;,:(t) and
Grd,j,i(t), respectively.

Since each D2D pair aims to decide the appropri-
ate transmission strategy by itself, the Stackelberg game
outcomes need to be derived using mean field approx-
imation as well. By substituting (14) and (15) into
the expressions for C' and D, we obtain the approx-
(PF ;&) —br(t)gra,i,i(€)+0°)gar,i,i (t) D

(PF,(#)=Pa(t)gar,i,i €)+02)gra,i,i(t)’
p(};t(t)—pf:(i(’tlj;f»z),i,i(t)+02. The SGNE (&;(t), pri(t)) is chosen

from the following estimates (see Section III):

{(\/ oD ! —1> (D Cpa ) (v 0)}

21n2’\/m D)’ \2In2’ )T ’
(16)

where &;(t),p,;(t) are the optimal price and relay transmit

power under mean field approximation, respectively. Hence,

the estimated SINR received by R; and D are given by

Pa,i(t)gar,ii(t)

() = pa(t)garii(t) + 02

o z(t) ~— ﬁr,i_(t)grd,i,i(t) 7

’ Pa; (t) —Dr (t)grd,i,i (t) +0?

(14)
5)

imations C =~

~

Vr,i(t) =~ a7

(18)



respectively. Then the cost function (5) is approximated by

&i(t) = [(p.i(t) — ven)® + (Fr.i () — ven)* + Bpa,i(t). (19)

The MFG can be formulated as a dynamic coupled sys-
tem which consists of two coupled differential equations
called Hamilton-Jacobi-Bellman (HJB) and Fokker-Plank-
Kolmogorov (FPK) given as follows [13]:

HIB: —0wu(ts)= m%r;[c(t) + 9;s(t) - Vul(t, s)],
pa(t

om(t,s) + V(m(t,s) - Os(t)) =0,

where s denotes the system state. The Nash equilibrium (i.e.,
the power control profile) of the proposed MFG can be derived
by jointly solving the HJB backward from 7" to 0 and the
FPK forward from 0 to 7. The value u(¢,s) and the mean
field m(¢,s) are the analytical solutions for HIB and FPK,
respectively. The mean field equilibrium (MFE) is denoted by
a stable pair (u*(t, s), m*(t, s)).

V. DISTRIBUTED POWER CONTROL SCHEME

(20)

FPK : 2y

The search space is discretized into a grid, where the three
axes are time 7', D2D transmitter energy F,, and relay node
energy E,. We assume that T € [0, Thax)» Ea € [0, Emaxls
E, € [0, Eyax), and the step sizes in the three dimensions
are 5t = Tmax/X’ 6Ed = max/Ya and 5ET = max/Z’
respectively, where X,Y,Z denote the numbers of grids in
each dimension. The solution to the FPK equation evolves in
the three-dimensional space, while the optimal control path can
be derived by solving the coupled HIB and FPK equations.

By substituting s(¢) from (4) into (21), we obtain

Oym(t, s)+V gym(t, s)Ea(t)+Ve,m(t, s) E.(t) =0,

where E4(t), E-(t) denote the remaining energy in the D2D
transmitter and the relay node, respectively. This equation
can be iteratively solved by applying the Lax-Friedrichs
scheme [17]. We define M (i, j,k), Py(i,j,k), P-(i,5,k) as
the mean field, D2D transmitter power level and relay node
power level on the (i, 7, k)th grid in the discretized search
space, respectively. Here, i € {0,...,X}, j € {0,...,Y},
and k € {0,...,Z} are indices corresponding to T', E4, and
E,., respectively. The mean field update is given by

(22)

1
M(i+1, 5, k)= i[M(i,j—i—L k)+M(i,j—1,k)+M(i, j, k+1)

Ot
25,

7M(7Jv]71> k)Pd(Z,jfla k)]+

r (64, k=1)]. (23)

If we consider the dynamics of the value function u(t, s)
in HIB and use the optimal path of the mean field m(¢, s) in
FPK as an equality constraint, the problem can be framed as

min

T
E{/ ci(t)dt + ci(T)]

Pd,i(t) 0

s.t. Oym(t, s)+Vg,m(t, s)Eq(t)+VE,m(t,

LM (i, j, k+1)Py(i, 4, k+1)
20,
—M(i, 5, k—1)P,

$) B, (t) =0.
(24)

Since the FPK equation is regarded as an equality con-
straint, the proposed optimization problem can be solved by
introducing a Lagrange multiplier to the objective function.
Assuming \(i, j, k) is the Lagrange multiplier at the (i, j, k)th
grid, C(i, 7, k) is the cost function at the (i, j, k)th grid. The
discretized Lagrangian L yields

X+1Y+1Z+1

L(i,j, k) = 60,08, Y Y Y [M(i,j,k)C(i, j, k)
i=1 j=1 k=1
+ A(4,7,k)(I + J + K)], where (25)

1 1
-1 [M(m,j,k) — S (MG, j+1,K) + M(i, j—1,k)
t

1
205,

K= —[M(i,j,k+1)P:(i,j,k + 1)
20g,

Thus, the optimal D2D transmit power can be derived from

% = 0 at each grid point (7,7, k). The discretized
equation for % =0is
OL(i,j, k) . o M(i, j, k)
— =\ 1L,k)— X —LE)||———=
8Pd(l,j,k) [ (27] + ) ) (Z’j ) )] 25Ed
M(i, j, k) OP:(i, j, k) - 0C(i, 4, k)
M k)—————%=0, (29
25, 0Pt 0| MO om0

where the power P,(3, j, k) can be solved and P, (i, j,k) can
be derived subsequently. Similarly, the Lagrangian multiplier
(%, J, k) can be updated by solving 31@((1 oJ, k)) = 0. As the HIB
function is solved backward in time, we can derive A\(i—1, j, k)
in each iteration as follows:

1
5[A(i,j +1,k) + A(i,5 — 1,k)

o [Pali,j. k)  Pp(i,j,k
+A(i,j,k+1>+A(z}j,k—1)]—5 d(§; )+ ((;Ej |
. :

[)‘(27]+17k)_)‘( .7 )] (StC(Z,j,k)} (30)

Algorithm 1 performs updates according to Egs. (23),
(29), and (30) with an overall computational complexity of
O(XY Z) per iteration. The mean field distribution is initial-
ized at t = 0, while the Lagrangian and the power distribution
are initialized at ¢ = Ti,ax. The mean field M (i, j, k) evolves
from 0 to Tiax, while A(, 7, k), Py(, j, k) evolves backward
from Tiax to 0. The algorithm stops when the mean field
distributions converge under some criterion.

VI. NUMERICAL RESULTS

We consider a D2D network in which the D2D links are
randomly and uniformly deployed within a cell of radius R =
50 m. The distance of each D2D hop is randomly chosen in
the interval [10 m,20 m]. The bandwidth of each hop is set
to 20 MHz and the background noise to 2 x 1072 W, as the
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Fig. 1. Mean field distributions for each parameter space slice: (a) T =
Tmax =58, (b) Er = Emax =0.11,(c) Eg = Emax = 0.1 1.

noise spectral density is —174 dBm/Hz. The total number of
D2D links is 50 and T,,,x = 5 s. The maximum energy of
the D2D transmitter and relay node is 0.1 J and the path loss
exponent is 4. We set X =Y = Z = 20 in the discretized
parameter space and oy = 0.2 as the unit power cost.

A. Power Control Performance Study

We consider the following scenarios: (a) fixed time T =
Thax = 9 s; (b) fixed D2D transmitter energy Fy = Fpax =
0.1 J; (c) fixed relay node energy E, = E,,x = 0.1 J. The
mean field distributions are shown in Fig. 1 and the D2D
transmit power distributions are shown in Fig. 2. In Fig. 1,
the mean field in case (a) converges at 7' = 5 to a random
distribution, as the relay node transmit power is affected by
the random distributed channel parameters. For cases (b) and
(c), the mean field distributions converge to O in the energy
state space at T' = 5, showing that the D2D transmitter and
the relay node consumed their energy during the power control
process. Similarly, for the power distributions in Fig. 2, it can
be seen that the energy states of both the D2D transmitter and
the relay node also affect the distributions of transmit power.

Algorithm 1 Distributed Power Control Scheme
1: Imitialize: M (0, :,:), M(X +1,:,:), Ps(X +1,:,:)
2: repeat
3: fori=1:1:X,Vje{l,.,Y},Vke{l,..,Z} do
Update M (i + 1, j, k) using Eq. (23)  // Forward
end for
M@E+1,j+1,k+1)=0
if Py(i,j + 1,k) = 0 then
M(i+1,5+1,k+1) = M(i,5, k)
9: end if
10: Vi, normalize M (3,:,:)
11: fori=X+1:-1:1,Vj€{l,....Y},Vke{l,...Z} do

® 0k

12: Update \(i — 1,7, k) using Eq. (30)  // Backward
13: end for

14:  forVie {1,..,X},Vje{l,.,Y},Vke{l,..,Z} do
15: Update Py(i, 7, k) using Eq. (29) // Backward

16: end for

17: for vie {1,....X},Vj e {1,..,.Y},Vk €{1,...,Z}, do
18: Update P.(i,3,k),C (4,7, k)

19: end for

20: until Convergence criterion is met
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Fig. 2. Power distributions for each parameter space slice: (a) 7' = Tmax =
5s, (b) Er = Emax = 0.1 J, (¢) Eg = Emax = 0.1 J.
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Fig. 3. Power distributions at 7" = 1,2,3,4: (a) T = 1; (b) T = 2; (¢)
T=3,(d)T=4.

To demonstrate the convergence process of the power con-
trol policy, we depict the transmit power distributions in time
slots T' =1, 2, 3,4, as shown in Fig. 3. The power distribution
converges to the zero state in the transmitter energy dimension
as time grows, which shows that the transmitter consumed its
remaining energy during the power control process.

Finally, we plot the cross-sections of the distributions at
different energy states to show the randomness of the distri-
butions. We study the following cases: (a) the distributions at
time slot 7" = 3; (b) the distributions at time slot 7" = 4; (c)
the distributions at time slot 7' = 5. The corresponding cross-
sections at each time slot are depicted in Fig. 4, while the
cross-sections of power distributions are shown in Fig. 5. The
randomness of the channel parameters mainly affects the mean
field distributions. Fig. 5 shows that the power distributions
over different energy states appear to be more uniform. Thus,
the power control policy yields a stable outcome.
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Fig. 5. Cross-sections of D2D transmitter power distributions at different
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B. Hierarchical Game vs. Proportional Power Control

We compare the proposed hierarchical scheme and a scheme
in which the relay node power is proportional to the D2D
transmitter power (i.e., P. = aPj,a € (0,1]) at each time
instant such that the devices will not run out of battery during
the power control process. As shown in Table I, the follower
(D2D transmitter) utility in the hierarchical game slightly
outperforms that in proportional power control. Meanwhile,
the relay node benefits significantly from adopting intra-tier
coordination in the hierarchical game compared to propor-
tional power control. As « decreases, both the leader and
the follower see a decrease in their utilities. Clearly, the
hierarchical game achieves much better overall performance.

TABLE I
HIERARCHICAL GAME VS. PROPORTIONAL POWER CONTROL UTILITIES

of a dense D2D cooperative relaying network. Based on this
framework, we proposed a distributed power control policy
which incorporates the Lax-Friedrichs finite method to jointly
solve the coupled HIB and FPK equations. Our numerical
results characterized the mean field and power distributions
over the parameter space, which showed the effectiveness of
the power control policy. The proposed hierarchical scheme
also outperforms a proportional power control policy in both
leader and follower utilities.
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