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Abstract—To protect primary users from interference
caused by secondary users (SUs) in a cognitive radio
network, a geographic area called an exclusion zone can
be defined in which SUs are prohibited from transmitting
using a specified spectrum band. We propose a Gaussian
Random Field Model (GRFM) framework for determining
an exclusion zone with the desired properties in practi-
cal scenarios where analytical specifications may not be
available. Based on the GRFM, we derive the radius of a
disk determining the exclusion zone, assuming that the SUs
are distributed geographically over a planar coverage area.
Using measurement data obtained from SUs, the GRFM
is applied to approximate the equivalent received signal
power and aggregate interference at specified locations.
Simulation results show that the GRFM approximation
yields an accurate characterization of the exclusion zone.1

I. INTRODUCTION

A cognitive radio network consists of primary users
(PUs), who have priority to access a licensed spectrum
band, and secondary users (SUs), who may utilize the
same spectrum under some predefined access rules [1]–
[3]. The PUs form a primary system that requires a cer-
tain level of communication quality guarantee. The SUs,
mostly mobile devices, may constitute a large population
within the radio cognitive network. Accordingly, the
secondary system generates a high demand for available
spectrum resources. Spectrum measurement studies show
that spectrum resources are often highly underutilized
by the primary system [1]. Dynamic spectrum sharing is
seen as an approach to improving spectrum utilization
by allowing SUs to sense the spectrum and make use
of spectrum holes. Since the activities of SUs may
cause interference to the primary system, access rules are
needed to allow SUs to dynamically access the spectrum
while maintaining the interference to the primary system
below a certain threshold [1]–[3].

If the SUs are sufficiently far from the PUs, the
interference to the primary system can be maintained
at an acceptable level. The areas in which SUs may
reuse the spectrum are referred to as spatial holes. From
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the perspective of the primary system, protection from
interference by SUs can be achieved by deactivating SUs
when they enter a neighboring region. Such a region
is referred to as an exclusion zone. The concept of
exclusion zone has been widely adopted in scenarios
such as ad hoc networks [4], [5] and heterogeneous
networks [6]–[8]. In order to be effective, the boundary
of the exclusion zone needs to be carefully identified.

Recent approaches to determining exclusion zone
boundaries have involved theoretical analysis by fixing
the parameter settings of the primary and secondary sys-
tems [1]–[4]. Under the assumption of omnidirectional
antennas for the primary and secondary transmitters,
the exclusion zone has the geometry of a disk [1], [2],
[4], [9]–[11]. By applying performance constraints, for
example, an aggregate interference constraint or SINR
constraint, the radius of the disk can be derived. In
practical scenarios, the characteristics of the cognitive
radio network are time-varying, such that the exclusion
zone is dynamic itself. Thus, alternative measurement-
based approaches are needed to effectively characterize
the exclusion zone in real-time.

In this paper, we propose a framework for approximat-
ing an exclusion zone based on Gaussian Random Field
Models (GRFMs). As an efficient tool for characterizing
an exclusion zone, GRFMs have the following useful
features: 1) the exclusion zone can be considered as a
2-dimensional spatial function, and 2) the SUs can act as
spatial samplers. Numerical results for exclusion zones
derived from GRFMs constructed from SU samples
compare favorably to results derived from the theoretical
analysis in [1]. The rest of the paper is organized as
follows. In Section II, we describe the assumed system
model for a cognitive radio network. In Section III,
we develop the GRFM approximation for determining
received signal power, aggregate interference, and exclu-
sion zones. In Section IV, we present numerical results
for GRFM approximations of received signal power
and aggregate interference, along with comparisons to
theoretical results from [1]. Concluding remarks are
given in Section V.978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



Fig. 1. Geometry of cognitive network.

II. SYSTEM MODEL

A. Exclusion Zone and Cognitive Band

We consider a simple model of a cognitive radio net-
work, similar to the model adopted in [1], consisting of a
single primary transmitter, at least one primary receiver,
and multiple SUs equipped with cognitive radios (see
Fig. 1). The primary transmitter is assumed to be located
in the center, while the primary receivers are located
within a disk of radius R0 meters, which defines the
exclusion zone. Furthermore, SUs should be at least ε
meters away from any of the primary receivers to ensure
that the aggregate interference to these receivers does not
become harmful. This guard band isolates the exclusion
zone from the SUs. The SUs are distributed within an
annular area, referred to as the cognitive band, with inner
radius R0 + ε and outer radius R.

B. Aggregate Interference

The outage constraint must hold for the worst case
in which a primary receiver is located on the border of
the exclusion zone and the guard band. This primary
receiver is closest to the cognitive band and receives the
maximum amount of interference power from the SUs.
For simplicity, we assume that the receivers do not adopt
multiuser detection. Thus, the aggregate interference to
a given primary receiver, denoted as I0, comes from the
transmit power of the SUs. We adopt the simple path-
loss channel model used in [1] given by

h(d) =
A

dα/2
, (1)

where A is a frequency-dependent amplitude, d is the
distance between the transmitter and receiver, and α is
the path-loss exponent. For simplicity, we shall normal-
ize A to 1. In addition to path-loss, our system model
accounts for the presence of shadowing noise.

We assume that the SUs are uniformly distributed
over the geographical area covered by the cognitive
radio network, with density λ, while all the SUs may
operate concurrently. The network model proposed in [1]
assumes that the cognitive band around the exclusion
zone is a continuous medium that transmits the signal.

Furthermore, the aggregated interference is not defined
over the entire cognitive band. However, the cognitive
band in a practical network model consists of a finite
number of SUs. The aggregate interference received at
the primary receiver has the following form:

I0 =

N∑
i=1

Psu · |h(di,P )|2, (2)

where N is the total number of SUs, Psu is the transmit
power of each SU, and di,P is the geographical distance
from the ith SU to the primary receiver.

III. GRFM FRAMEWORK

A. Overview of Gaussian random field model

A GRFM can be viewed as a function predictor that
applies a Gaussian random field to determine values of
the function at some desired points in the parameter
space where the actual function values are unknown or
otherwise hard to derive. The inputs of a GRFM are
the coordinates of a set of sample points as well as
their corresponding function values. Let the function to
be predicted be f(x) within a d-dimensional parameter
space. We would like to predict the function value f(x∗)
at a desired point x∗. Under the GRFM, the predicted
value is modeled as a Gaussian random variable with
mean µ and variance σ2.

Calculation of the predicted value requires the key
concept of correlation. Assume we have two arbitrary
sample points xi and xj in the parameter space. In-
tuitively, xi,xj are highly correlated when they are
sufficiently close to each other. Therefore, a Gaussian
correlation function between xi and xj is defined as
follows:

Corr(xi,xj) = exp

(
−

d∑
l=1

θl|xil − xjl|2
)
, (3)

where θl is the correlation parameter in the lth dimension
which determines the rate of change in the correlation
as xi approaches xj in dimension l. If the function
parameter space is isotropic, θl will be equal to some
constant for l = 1, . . . , d; otherwise, the θl values will
be mutually different. Formulas to determine θl can be
found in [12].

More generally, given a set of n sample points
x1, · · · ,xn and the corresponding output function values
y1, · · · , yn, we define the correlation matrix R by

Rij = Corr(xi,xj), i, j = 1, · · · , n, (4)

where Rij is the (i, j)th entry of matrix R. The likeli-
hood function L of the observed data is given by

L= 1

[(2πσ2)n|R|]1/2
exp

(
− (y − µ1)TR−1(y − µ1)

2σ2

)
,

(5)



where 1 is a column vector of ones, y = col(y1, · · · , yn)
is the column vector of all outputs, and the superscript T

denotes matrix transpose. By setting its first order deriva-
tive to 0, i.e., ∂L

∂µ = 0, in maximizing the likelihood
function (5), optimal estimates of the output mean and
variance can be derived as follows:

µ̂ =
1TR−1y

1TR−11
, σ̂2 =

1

n
(y − 1µ̂)

T
R−1(y − 1µ̂)).

(6)

By applying the GRFM, the prediction of the function
value ŷ(x∗) at the desired point x∗ yields

ŷ(x∗) = µ̂+ rTR−1(y − 1µ̂), (7)

where r = col [Corr(x∗,x1), · · · ,Corr(x∗,xn)] is a
column vector containing Gaussian correlation coeffi-
cients between the desired point x∗ and all sample
points x1, · · · ,xn. Furthermore, the uncertainty of the
prediction, denoted by the predicted variance of the
function value at x∗, is given by

σ̂2(x∗) = σ̂2

[
1− rTR−1r +

(1− rTR−1r)2

1TR−11

]
. (8)

which is the best linear unbiased predictor [12].
GRFM-based estimation can be regarded as a stochas-

tic learning process using a group of training data
from the set of sampling points. The predictive distri-
bution of the function value is Gaussian, i.e., f(x∗) ∼
N (ŷ(x∗), σ̂2(x∗)). The quality of the model and its
computational cost are determined by the training data as
well as the distribution of the sample points. Intuitively,
a larger number of sampling points results in a more
accurate model. However, a larger number of samples
requires more computational resources, which may con-
flict with real-time requirements.

B. Estimation of Exclusion Zone

To estimate the coverage of the exclusion zone, a
straightforward way is to investigate its radius under the
outage constraint. Since we consider only the shadowing
at the receivers and disregard the additive noise, the
received SINR is actually the SIR. Therefore, the outage
probability constraint of the primary receiver can be
expressed as

P(SIRpr ≤ Ith) ≤ β, (9)

where Ith is the threshold of SIR, SIRpr is the actual SIR
at the receiver, and β is a predefined probability thresh-
old, respectively. In theoretical analysis, the received
signal power and aggregate interference power can be
directly derived from their corresponding closed-form
expressions, and the outage probability of the primary
receiver can be consequently calculated given Ith. By
comparing the outage probability with its threshold β,
the radius of the exclusion zone can be found.

Suppose that Pr and Pi are, respectively, the received
power and aggregate interference at the location of
primary receiver in dB scale. Then the probability that
SIR is less than or equal to the threshold Ith is given by

P(SIRpr ≤ Ith) = P(Pr − Pi ≤ Ith), (10)

Note that Pr and Pi are both Gaussian variables accord-
ing to the GRFM assumptions and the SIR is Gaussian
as well. The mean and variance estimate for SIR are
P̂r − P̂i and σ̂2

i + σ̂2
r , respectively, where P̂r, P̂i, σ̂2

i ,
σ̂2
r are the mean and variance estimates for Pr and Pi,

respectively. Thus, the probability that the SIR is less
than the threshold Ith can be rewritten as

P(SIRpr ≤ Ith) = Q

(
(P̂r − P̂i)− Ith√

σ̂2
i + σ̂2

r

)
. (11)

For any fixed point inside the inner circle of the cognitive
band, this probability can be calculated from (11). Intu-
itively, as the primary receiver gets closer to the center of
the network, the SIR it receives increases and eventually
exceeds the threshold β. Thus, we select a number of
points with various distances from the primary transmit-
ter and approximate their SIR performance. By fixing the
outage probability constraint β, the relationship between
the exclusion zone radius R0 and the SIR threshold Ith
can be derived as

Ith= P̂r(R0)−P̂i(R0)−Q−1(β)
√
σ̂i

2(R0)+σ̂r
2(R0).

(12)

IV. NUMERICAL RESULTS

In this section, we study the performance of the
proposed GRFM through simulation. To effectively char-
acterize the exclusion zone, the equivalent SIR perfor-
mance at different locations in the network needs to be
determined. For the primary receiver, the signal power
comes from the transmitter, and the aggregate interfer-
ence comes from the entire cognitive band. Therefore,
we apply GRFM in both these scenarios. To adopt
GRFM for approximation, we make use of the MATLAB
toolbox DACE [12]. The inputs are the coordinates of
the SUs as well as the observation samples they collect.
The outputs are the mean and variance estimates of the
function value at the desired points.

A. Received Signal Power Approximation

Under the path-loss model in Eq. (1), augmented with
lognormal shadowing, the signal power received by SU i
from the primary transmitter, in dB scale, is given by

PR,dB(i) = PT,dB − 10α log10(di) +WP , (13)

where PT,dB is the power from the primary transmitter
in dB, di is the distance between primary transmitter
and SU i, and the shadowing noise WP is Gaussian
distributed with zero mean and variance σ2

S . The effect
of shadowing noise can be suppressed by measurement



Fig. 2. GRFM approximation for received signal power.

averaging, though it cannot be entirely removed from
the received signal. By averaging using M observation
samples from a given SU, the variance of the shadowing
noise can effectively be reduced by a factor of M , at the
expense of additional computational overhead.

In our simulation model, the 2-dimensional propaga-
tion plane is first divided into small square grids of equal
size 1√

λ
× 1√

λ
and then SUs are generated randomly

within each grid according to a uniform distribution. This
approach balances the need to represent both randomness
and diversity in the locations of the SUs. If the density
of SUs is λ, the width of the grid thus becomes 1√

λ
.

Once the SUs are generated, the inner and outer bound
of the cognitive band are fixed for the simulation. The
simulation parameter settings are summarized as follows:

1) Density of cognitive users: λ = 16/m2;
2) Primary transmit power: PT = 40 dBm;
3) Secondary transmit power: Psu = 0 dBm;
4) Path loss model: A = 1; α = 2;
5) Number of selected SUs: T = 80;
6) Cognitive band radii: Ri = 1.1 m; R = 5 m;
7) Number of measurements: M = 100;
8) Standard deviation of shadowing: σS = 2 dB.

As discussed in Section II-A, Ri = R0 + ε. The
mean number of SUs in the cognitive band is given by
λπ(R2 − R2

i ) = 1, 196. Thus, the selected SUs used
to obtain the GRFM comprise about 80/1196 ≈ 6.7%
of the SUs in the cognitive band. The wireless propa-
gation environment is considered to be homogeneous.
Therefore, it is reasonable to assume that the weight
coefficients in the GRFM satisfy θ1 = θ2. More details
on setting GRFM parameters can be found in [12].

To test the performance of the GRFM, we deploy
a set of test points in the network with mutually dif-
ferent distances to the primary transmitter, and use the
corresponding SUs to approximate the received signal
power at these points. Fig. 2 compares the theoretical
result from [1] to the GRFM approximation. Along the

Fig. 3. GRFM approximation for aggregate interference power.

horizontal axis, dt [m] denotes the distance between a
given desired point and the primary transmitter. Fig. 2
shows the actual power a primary receiver can receive
when it is a distance dt away from the transmitter
and its approximated received power if only the power
measurements of the SUs are given. When dt < 1.1, it
is equivalent to the case that R0 = dt and ε = 1.1− dt.
As dt becomes smaller, the discrepancy between the two
curves becomes larger. When dt is sufficiently small, no
SUs are deployed in the vicinity of the desired points,
so the GRFM provides a less accurate approximation to
the primary transmitter power.

B. Interference Power Approximation

Next, we study the performance of the GRFM in
approximating the aggregate interference power to the
primary receiver in the presence of shadowing noise. Let
N denote the number of SUs. The equivalent aggregate
interference power received by SU i is given by

PI,S(i) = Psu +

N∑
j=1,j 6=i

PI(i, j), (14)

where PI,S(i) is the total equivalent aggregate interfer-
ence power received by SU i, Psu is the SU transmit
power, and PI(i, j) is the interference power from SU j,
all in linear scale. Similar to (13), the interference power
from SU j in dB is given by

PI,dB(i, j) = Psu − 10α log10(dij) +WS,ij , (15)

where dij is the distance between SUs i and j, and WS,ij

represents the lognormal shadowing noise.
The SU transmit power Psu is set to 1 mW (0 dBm),

and the rest of the GRFM parameter settings for this
experiment are the same as in the received signal power
approximation in Section IV-A. Under these settings, we
repeated the GRFM approximation 1,000 times for each
case. The relationship between aggregate interference
power at each sample point and the distance to the



Fig. 4. Relationship between threshold Ith and exclusion zone radius
R0.

primary transmitter is shown in Fig. 3. The aggegate in-
terference in the continuous case was obtained using the
theoretical analysis proposed in [1] in which the expected
interference to the primary receiver is expressed as an
integral over the cognitive band. The actual aggregate
interference (discrete case) was obtained by summing
the transmission power contributions from the finite set
of SUs in the cognitive band. It can be observed that
GRFM approximation curve approximates the actual
aggregate interference curve quite well. When the test
point moves to the center of the network, both the
GRFM approximation and actual aggregated interference
slowly decrease, yet still have an acceptable discrepancy
with the theoretical result in the continuous case. This
is reasonable because all of the parameters adopted in
the continuous and discrete cases are the same. This
result demonstrates the effectiveness of the GRFM in
estimating the actual aggregate interference distribution.

C. Exclusion Zone Approximation

According to the definition of exclusion zone in Sec-
tion III-B, the outage probability is calculated through
the distribution of received signal power and interference
power in the expression of SIR. In the channel model, the
approximated aggregated interference P̂i defined in (11)
not only contains the part that comes directly from the
interference power approximation in Section IV-B, but
also contains the equivalent shadowing that has not been
completely removed from the approximated received sig-
nal power. Assuming that the approximated interference
power is P̂I,S with variance σ̂2

I,S , the mean value and

variance for P̂i become P̂I,S and σ̂2
I,S+

σ2
S

M , respectively,
from properties of Gaussian random variables.

To evaluate the exclusion zone approximation based
on the GRFM, we use the same parameters as adopted
in Section IV-A. Here, three different values of outage
probability constraint β are selected for evaluating the

exclusion zone radius R0, which are 0.05, 0.1 and 0.15,
respectively. The relationship between R0 and the SIR
threshold under different outage requirements is shown
in Fig. 4. We observe that the SIR threshold decreases to
a relative low level (around 13 dB) when the exclusion
zone radius extends to R0 = 1, as the harmful inter-
ference to the primary receiver significantly increases
near the cognitive band. In this experiment, the GRFM
approximation is shown to be effective in determining
the exclusion zone radius and the relationship between
R0 and other parameters in the proposed network model.

V. CONCLUSION

We proposed a framework based on GRFMs to ap-
proximate the coverage of the exclusion zone in cog-
nitive radio networks using observation samples from
the SUs. The negative effect of shadowing can be miti-
gated by measurement averaging. Our simulation results
showed that the GRFM approximation is quite accurate
as long as the desired point for prediction is within
a reasonable range to the SUs. We assumed a simple
disk model of the exclusion zone, but the proposed
GRFM framework could be applied to more complicated
geometries.

REFERENCES

[1] M. Vu, N. Devroye, and V. Tarokh, “On the primary exclusive
region of cognitive networks,” IEEE Trans. Wireless Commun.,
vol. 8, no. 7, pp. 3380–3385, July 2009.

[2] L. Wang and V. Fodor, “On the gain of primary exclusion region
and vertical cooperation in spectrum sharing wireless networks,”
IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3746–3758, Oct.
2012.

[3] U. Tefek and T. J. Lim, “Interference management through
exclusion zones in two-tier cognitive networks,” IEEE Trans.
Wireless Commun., vol. 15, no. 3, pp. 2292–2302, March 2016.

[4] D. Torrieri and M. Valenti, “Exclusion and guard zones in
DS-CDMA ad-hoc networks,” IEEE Trans. Wireless Commun.,
vol. 61, no. 6, pp. 2468–2476, Jun. 2013.

[5] A. Hasan and J. Andrews, “The guard zone in wireless ad hoc
networks,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp.
897–906, Mar. 2007.

[6] C. Jia and T. J. Lim, “Designing femtocell exclusion zones to
minimize power in a heterogeneous network,” in IEEE Globecom,
Austin, TX, Dec. 2014.

[7] A. Mahmud and K. A. Hamdi, “On the co-channel femtocells
exclusion region in fractional frequency reuse macrocells,” in
IEEE WCNC, Istanbul, Turkey, Apr. 2014.

[8] G. George, R. K. Mungara, and A. Lozano, “Optimum exclusion
regions for interference protection in device-to-device wireless
networks,” in 15th WiOpt, Mumbai, India, May 2015.

[9] J. M. Dricot, G. Ferrari, F. Quitin, F. Horlin, and P. D. Don-
cker, “Primary exclusive region and optimality of the link-level
throughput of cognitive terminals,” in IEEE PIMRC, Istanbul,
Turkey, Sep. 2010.

[10] J. M. Dricot, G. Ferrari, F. Horlin, and P. D. Doncker, “Primary
exclusive region and throughput of cognitive dual-polarized net-
works,” in IEEE ICC, Cape Town, South Africa, May 2010.

[11] A. Bagayoko, P. Tortelier, and I. Fijalkow, “Impact of shadow-
ing on the primary exclusive region in cognitive networks,” in
European Wireless Conference, Lucca, Italy, Apr. 2010.

[12] S. N. Lophaven, H. B. Nielsen, and J. Sondergaard, DACE: A
Matlab Kriging Toolbox. Lyngby, Denmark: Technical Univer-
sity of Denmark, 2002.


