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Abstract—Automated geolocation of IP addresses has impor-
tant applications to targeted delivery of local news, advertising
and other content over the Internet. Previous measurement-based
approaches to geolocation employ active probing to measure
delays among a set of landmark nodes with known locations.
The location of a target IP address can be approximated by
that of the nearest landmark, as determined by the delay
measurements. To improve geolocation accuracy, a variation
of this approach uses multilateration with geographic distance
constraints to obtain a continuous location space rather than the
discrete set of landmark locations. Since the previous approaches
are fundamentally deterministic, they can only provide relatively
loose bounds on the true location of an IP address. We develop
a statistical geolocation scheme based on applying kernel density
estimation to delay measurements among a set of landmarks. An
estimate of the target location is then obtained by maximizing
the likelihood of the distances from the target to the landmarks,
given the measured delays. This is achieved by an algorithm
which combines gradient ascent and force-directed methods. We
present experimental results on PlanetLab to demonstrate the
superior accuracy of the proposed geolocation scheme compared
to previous methods.

Index Terms—Geolocation, delay measurements, kernel den-
sity estimation, maximum likelihood estimation, force-directed
algorithm.

I. INTRODUCTION

Geolocation of IP addresses has important applications to
targeted delivery of local news, advertising and other content
over the Internet. One approach to IP geolocation is to
maintain a large distributed database containing mappings of
IP addresses to geographical locations. Many sites rely on
more or less accurate databases to determine the location of a
customer for various reasons:
• determining regional distribution of the clients, local

news delivery, targeted advertising, restriction of content
delivery based on regional policies, etc.;

• prevention/reduction of Internet frauds such as credit card
fraud, identity theft, spam and phishing;

• application to intrusion detection.
Since such databases are often proprietary and manually

updated, their consistency and accuracy are questionable at
best. In addition, with the advent and adoption of IPv6, such
databases become more difficult to update and maintain. More-
over, a large IP geolocation database cannot adapt easily to the
frequent location changes of mobile targets. As an alternative
approach, RFC 1876 proposes to incorporate geographical

information into DNS records (DNS LOC). However, the
implementation of this approach is not currently widespread,
since it requires changes in the DNS records.

Recently there have been efforts to automate the geolo-
cation of IP addresses. Padmanabhan and Subramanian [1]
have investigated three techniques: inferring the geographic
location of an Internet host based on the DNS name of the
host or another nearby node (GeoTrack); clustering the IP
address space into likely collocated clusters (GeoCluster);
and pinging the host, with geolocation of the IP address
performed by correlating ping delays (GeoPing). The latter
approach employs active probes to measure delays among
a set of landmark nodes with known locations. Such delay
measurements can be performed by a distributed network of
servers. Such a network of servers can be self-calibrating and
potentially able to detect when a target IP address has changed
its geographical coordinates significantly. However, inferring
geographical location from Internet delay measurements may
result in large errors due to the nonlinear relationship between
geographical distance and “Internet” distance as determined
from delay measurements.

Given delay measurements among a set of landmark nodes
with known locations, the location of a target IP address can
be approximated by that of the nearest landmark. To improve
geolocation accuracy, a variation of this approach uses multi-
lateration with geographic distance constraints to obtain a con-
tinuous location space rather than the discrete set of landmark
locations. Gueye et al. [2] improved upon GeoPing using an
idea borrowed from sensor networks. Their Constraint-Based
Geolocation (CBG) algorithm uses a multilateration algorithm
to determine the probable location of the targets. Katz-Bassett
et al. [3] proposed Topology Based Geolocation (TBG), which
finds hosts along Internet paths using the traceroute utility
and geolocates hosts simultaneously using CBG. All of these
methods are based on deterministic algorithms, which can have
unacceptable geolocation errors of more than 1000 km.

In this paper, we develop a statistical geolocation scheme
based on applying kernel density estimation to delay mea-
surements obtained among a set of landmarks. An estimate
of the target location is then obtained by maximizing the
likelihood of the distances from the target to the landmarks,
given the measured delays. This is achieved by an algorithm
which combines gradient ascent and force-directed methods.
We present experimental results to demonstrate the superior



accuracy of the proposed geolocation scheme compared to
previous methods.

The remainder of the paper is organized as follows. In Sec-
tion II, we discuss the related work on geolocation schemes,
particularly the Shortest Ping, GeoPing and CBG schemes.
Section III develops a statistical approach to IP geolocation
based on kernel density estimation and maximum likelihood
estimation. Section IV presents the results of our experiments
with datasets obtained from the PlanetLab [4] experimental
network. Finally, section V concludes the paper with a sum-
mary of the main contributions of this work.

II. RELATED WORK

In this section, we discuss and critique three earlier Internet
geolocation schemes which are closest in spirit to our proposed
statistical geolocation approach.

A. Shortest Ping

Shortest Ping (SPing) [1], [3] was one of the earliest
attempts to use Internet measurements to geolocate a target
host. In SPing, a set of hosts, called landmarks, perform net-
work delay measurements by transmitting ICMP ping packets
between each other. When a new target host is encountered, the
landmarks determine their delays to the target. These delays
are compared to the existing measurements.

More precisely, let L denote the index set for landmarks,
i.e., the set of landmarks is given by {Li : i ∈ L}. The
location of each landmark Li, i ∈ L, denoted by (ϕi, λi), is
assumed to be known. Here, ϕi and λi represents the longitude
and latitude, respectively, of landmark Li in units of radians.
Let diτ denote the delay from landmark i to the target τ . In
Shortest Ping, the location estimate for the target is defined as
(φk, λk), where

k = arg min
i∈L

{diτ} . (1)

Since SPing depends only on the minimum RTT delay, an
inaccurate measurement or a high speed link may have a
significant impact on the estimated target location.

B. GeoPing

GeoPing [1] improves over SPing by introducing so-called
passive landmarks in addition to the active landmarks used in
Shortest Ping. Let La and Lp denote the index sets for active
landmarks and passive landmarks, respectively. The index set
for all landmarks is given by L = La ∪ Lp. The active land-
marks indexed by La perform network delay measurements
between each other and to the passive landmarks indexed by
Lp. Let dij denote the measured delay between landmarks Li

and Lj , where i ∈ La, j ∈ La ∪ Lp. In GeoPing, the location
estimate for the target τ is defined as (φk, λk), where

k = arg min
j∈L

{ ∑

i∈La

(dij − diτ )2
}

. (2)

GeoPing is highly sensitive to outliers, since they are based
on the minimum residual sum of squares. Thus, a large

difference in the delay measurement to one target has a large
impact on the Euclidean distance in delay space. In addition,
both SPing and GeoPing estimate the position of the target in
terms of the coordinates of one of the landmarks; therefore,
when the target is relatively far from the “closest” landmark,
the estimation error can be significant. Our proposed statistical
geolocation algorithm is based on moving the estimated posi-
tion in the direction of maximizing the likelihood function for
the majority of the landmarks. Thus, measurements taken with
respect to an individual landmark will have a much smaller
impact on the final result than in SPing or GeoPing.

C. Constraint-Based Geolocation

Gueye et al. [2] proposed an approach to IP geolocation
based on an idea from the field of sensor networks, called
Constraint-based Geolocation (CBG). Their approach is based
on the observation that the packet propagation speed over the
Internet is at most the speed of light through optical fiber cable,
which in turn is about 2/3 of the speed of light. This restriction
induces circle-like bounds on the location of the target. If we
denote the round trip time (RTT) between two hosts by d, an
upper bound for the geographical distance between the two
hosts is given by:

ĝ = c̃ · d, (3)

where c̃ = 2/3 · c and c is the speed of light (3 × 108 m/s).
When the RTT is measured in ms and the geographical
distance is measured in km, c̃ is approximately 100 km/ms;
thus (3) can be written as

d =
1

100
· ĝ. (4)

This line is called the “baseline” in [2] and is illustrated in
Fig. 3. All of the distance-delay measurements are situated
above the baseline.

The distance upper bound provided by the baseline is too
loose to be of any use. To tighten this upper bound, Gueye
et al. [2] fit a so-called “bestline” d = mi · g + bi, to each
active landmark i ∈ La. This bestline is the tightest bound
below the distance-delay pairs. The constraints are: 1) all
the distance-delay pairs should lie above the bestline, 2) the
slope of the bestline should be at least as large as that of the
baseline, and 3) the intercept of the bestline should be positive.
Thus, determining the bestline can be formulated as a linear
programming (LP) problem:

min
mi,bi

∑

j∈L\{i}
dij −migij − bi, subject to:

dij −migij − bi ≥ 0, ∀j 6= i

mi ≥ m

(
=

1
100

)
, bi ≥ 0, i ∈ La.

(5)

For a given target τ , the CBG algorithm calculates the upper
bounds based on the measured delays diτ from each active
landmark Li to the target (see Fig. 1). Thus, the bestline upper
bound is

ĝiτ =
diτ − bi

mi
. (6)
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Fig. 1. Illustration of CBG scheme.

The algorithm draws a circle with radius ĝiτ around each
active landmark i ∈ La. By intersecting these circles, a region
is obtained, where the target should be located. The location
estimate of the target is taken to be the center of this region.

The area of the region is taken as a measure of confidence
of geolocation. The authors claim their method is an improve-
ment over the GeoPing method. However, the CBG method
also has problems, such as large errors when the target is
far from the landmarks, and it completely fails when even
one of the distances is underestimated. The CBG scheme uses
deterministic “upper” bounds imposed on the distances from
the landmarks to the target to estimate the position of the
target, but these upper bounds are not guaranteed to hold.
Thus, in a significant number of cases, the region of confidence
is either the empty set, or does not include the target. In
contrast, our proposed algorithm uses the entire information
given by measurements, by estimating the probability density
function of the distance between landmarks and target, given
the delay. This leads to improved accuracy by capturing the
statistical variation of delays in the Internet.

III. STATISTICAL IP GEOLOCATION

In this section we develop a statistical approach to IP
geolocation. Our approach consists of several steps. First, a
“profile” of each landmark is constructed using the distance-
delay pairs amongst the landmarks, resulting in a scatterplot
for each landmark. Second, the joint probability distribution of
the distance and delay is approximated using bivariate kernel
density estimation. A Gaussian kernel is used for density
estimation. Finally, a force-directed algorithm is used to obtain
an estimate of the target location.

A. Construction of Landmark Profiles

The profile of an active landmark Li, i ∈ La consists of
the set of all distance-delay pair measurements originating
at Li towards the other (active or passive) landmarks Lj ,
where1 j ∈ L\{i}. Our construction of landmark profiles is
similar to that of Gueye et al. [2]. Multiple measurements
are obtained between every pair of landmarks at different

1Here, A\B , A ∩Bc, where Bc denotes the complement of the set B.

Fig. 2. Landmark distribution over the continental U.S.

times, yielding the same distance, but different delays. In
our experimental study, we used 85 servers in the PlanetLab
research network [4]. The server locations are shown in Fig. 2.
We obtained RTT measurements using the ping utility five
times every 15 minutes for a period of one week, yielding up
to M = 282, 240 measurements for each target (in practice,
not all measurements are successful). From the measurements,
we obtained a scatterplot for each active landmark Li, i ∈ La

by taking delay measurements from Li to all other landmarks
(see Fig. 3).

For clarity of presentation, the scatterplot in Fig. 3
shows only the minimum delay measurements between
planet1.cs.stanford.edu and 79 other PlanetLab nodes. The
SPing and GeoPing methods use only minimum delay mea-
surements. The CBG scheme uses the 2.5 percentile of mea-
surements. By contrast, the statistical geolocation scheme
proposed in this paper uses all of the delay measurement data
for statistical analysis.

B. Kernel Density Estimation

Once the profile of each landmark is built, the second step is
the estimation of the joint distribution of (Gi, Di), where Gi

represents the great circle distance between active landmark
Li, i ∈ La and the target τ , and Di is the measured delay
between Li and τ . The joint probability density function of
(Gi, Di) is denoted by fGi,Di(g, d). The sample data to be
collected is represented as follows:

Si =
{

(gij , d
(l)
ij ) : j ∈ La, 1 ≤ l ≤ m

}
, i ∈ La, (7)

where m is the number of delay measurements taken between
a given pair of landmarks Li and Lj . In our experiments, m =
5×4×24×7, since 5 delay measurements from landmark Li

to landmark Lj , j 6= i, were taken once every 15 minutes over
a period of one week. Let M , |Si| denote the total number
of delay measurements taken from a given landmark. For a
set of 85 active landmarks, we have M = 84m = 282, 240.

We apply the following kernel density estimator [5]–[7]:

f̂i,H(g, d)=
1

M det(H)

∑

j∈La\{i}

m∑

l=1

K((g− gij , d− d
(l)
ij )H−1),



where (g, d) is a vector consisting of great circle distance g
and delay d; H is a nonsingular matrix, called the bandwidth
matrix; and K denotes the kernel. In our experimental work,
we use a diagonal bandwidth matrix and a Gaussian kernel:

H =
[

h1 0
0 h2

]
, K(g, d) =

1
2π

e−
1
2 (g2+d2). (8)

Thus, the kernel density estimator becomes

f̂i,H(g, d) =
1

2πh1h2

∑

j∈L\{i}

m∑

l=1

e
− 1

2

[( g−gij
h1

)2
+

(
d−d

(l)
ij

h2

)2]

.

(9)

Several methods are available for choosing the bandwidth
parameters h1 and h2. Popular choices include various rules-
of-thumb, bootstrap methods, plug-in methods, unbiased cross
validation, and biased cross validation. Scott’s rule-of-thumb
is given by [5], [6]

ĥj = M−1/6σ̂j , j ∈ {1, 2}. (10)

Although Scott’s rule-of-thumb choice of bandwidth param-
eters makes normality assumptions of underlying unknown
distribution, we prefer this method due to its low complexity,
i.e., O(M) as opposed to O(M2) for the other methods. This
is especially important as we deal with large data sets (e.g.,
on the order of 250,000 samples).

C. Application of Force-Directed Method

We employ a force-directed algorithm as an approximation
algorithm to maximize the likelihood of the target location
estimate given the delay measurement data. The force-directed
method iteratively applies a force on the target proportional
to the gradient of the estimated conditional distribution of
distance from each landmark to the target given the delay. At
each step of the algorithm, the resultant of the forces from all
landmarks is calculated and then the target location estimate
is moved in accordance with the resultant force. Thus, our
algorithm combines the force-directed method with gradient
ascent optimization. The initial estimate of the target location
can be set as the landmark with the shortest delay to the target.

The gradient ascent steps {ηi} form a decreasing sequence
converging to zero, to ensure the convergence of the force-
directed method. The initial gradient ascent step η0 is chosen
to be such that the target is moved a given distance from its
initial position (e.g., 100 km, which is the magnitude of 108

for the rule-of-thumb bandwidth). The algorithm stops when
the target moved less than a value ε, where ε is chosen in such
a way to achieve a tradeoff between computational overhead
and accuracy requirement.

Since the landmarks and targets are located on the earth,
great circle distances must be considered. We use the WGS-84
ellipsoid [8] as a model for Earth and apply the Vicenty
formulas to compute great circle distances [9]. We have
implemented the direct and inverse Vincenty’s formula in two

functions.

Direct Vincenty Formula:

((ϕ2, λ2), b2) = vfwd((ϕ1, λ1), b1, g), (11)

which calculates the destination point (ϕ2, λ2) and the final
bearing b2 given the starting point (ϕ1, λ1), initial bearing b1,
and the great circle distance g from the starting point to the
destination.
Inverse Vincenty Formula:

(g, b1, b2) = vinv((ϕ1, λ1), (ϕ2, λ2)), (12)

which calculates the great circle distance g, the initial bearing
b1, and the final bearing b2 given the starting point (ϕ1, λ1)
and the destination point (ϕ2, λ2)

Our proposed force-directed steepest ascent algorithm is
summarized as follows:
F1. Start with a guess of the latitude and longitude of the

target (ϕ(0)
τ , λ

(0)
τ ). Initialize k ← 0.

F2. Calculate the distance and final bearing from each land-
mark to the target using the inverse Vincenty formula:

(g(k)
i , b

(k)
i ) ← vinv((ϕi, λi), (ϕ(k)

τ , λ(k)
τ )), i ∈ La.

F3. Execute one step of gradient ascent:

l
(k)
i ←g

(k)
i + ηkf̂ ′Gi|Di

(g(k)
i | diτ ), i ∈ La.

F4. For each i ∈ La calculate the force vector F(k)
i as

follows:
If f̂Gi|Di

(l(k)
i | diτ ) > f̂Gi|Di

(g(k)
i | diτ ) then

|F(k)
i | ← l

(k)
i − g

(k)
i ; bear(F(k)

i ) ← b
(k)
i

Else F(k)
i ← 0.

F5. Calculate the resultant force vector

F = |La|gm(F(k)
i : i ∈ La)

F6. Move the target location estimate in the direction of the
resultant force using the direct Vincenty formula:

(ϕ(k+1)
τ , λ(k+1)

τ )←vfwd((ϕ(k)
τ , λ(k)

τ ), bear(F), |F|)
Increment k by one.
If target estimate moved more than ε then go to F2.
Else STOP

The conditional pdf estimate f̂Gi|Di
(g|d) in F3 and F4 can

easily be obtained from the joint kernel density estimate (9). In
step F4, a force vector F, in geographical coordinates, is rep-
resented as being comprised of a magnitude |F| and a bearing
bear(F). This is similar to the magnitude-phase representation
in the complex plane. Referring to step F5, the operator gm(·)
(geographical mean) computes the centroid of a set of points
on a spherical surface. To compute the geographical mean,
we make use of the built-in Matlab function MEANM. When
the algorithm terminates in Step F6, the estimated location of
the target is given by (ϕ(k)

τ , λ
(k)
τ ). The initial target location in

Step F1 can be obtained by applying a computationally simple
geolocation method such as SPing or GeoPing [1], [3].
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Fig. 3. Scatterplot of distance and delay from planet1.cs.stanford.edu to 79
other PlanetLab nodes across the U.S. (see Fig. 2).
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IV. EXPERIMENTAL RESULTS

We conducted experiments over the PlanetLab network
using 85 landmarks. The distribution of the landmarks over
the continental U.S. is illustrated in Fig. 2. The PlanetLab
database includes information on the latitude and longitude of
each of the PlanetLab nodes. We used the CoMon project of
PlanetLab to retrieve a list of the active nodes, filtered to select
only one node per site. By means of a geocoding webpage
written using JavaScript and the Google Map API, we filtered
out a total of 93 sites located in the continental U.S. We tested
each of these sites, of which only 85 nodes responded to ping
commands (the others had firewall constraints).

We uploaded and executed a Python script in a distributed
manner using the codeploy tool and saved the output in a
log file. The log files were later downloaded and parsed
using another Python script, and the measurement results
were placed in comma separated value (CSV) files. As a
result of our delay measurements over PlanetLab, we obtained
85 scatterplots and kernel density estimates of the joint pdf
of distance and delay from each landmark to the target.
Fig. 4 shows the KDE surface obtained at the PlanetLab node
planet1.cs.stanford.edu. A contour plot of the kernel density
estimate for the same landmark node is illustrated in Fig. 5. For
this landmark, the conditional density of geographical distance
given a 50 ms delay is shown in Fig. 6

The kernel density estimates were applied to the force-
directed algorithm described in Section III-C to obtain the
estimate of the target location. We validated the proposed
geolocation scheme by removing each landmark from the set
of all landmarks, and running our algorithms with the removed
landmark as the target and the remaining landmarks. The initial
target location estimate is the landmark which is closest from
the point of view of RTT delay. The force-directed algorithm
is designed to iteratively push the initial location estimate
towards its true location, based on conditional distributions
of geographical distance given delay. We observed that when
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Fig. 7. Cumulative distribution function of estimation error: statistical
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the initial estimate is far from the real position of the target,
our algorithm improves the estimate dramatically. However,
when the initial estimate is close to the target, not much
improvement is observed. To improve the resolution and
accuracy, one has to increase the number of landmarks.

For comparison, we have implemented and executed the
CBG and SPing algorithms. The CBG algorithm failed three
times, yielding an empty confidence region. We removed
these cases from the CBG statistics. In other five cases the
confidence region did not include the target. By reducing the
large errors, the average error of our statistical approach is
92 km. This is a dramatic improvement compared to 141 km
for CBG and 184 km for SPing. The median error also
decreases to 53 km, in comparison to 73 km for SPing and
78 km for CBG. We note that 77% of the location estimates
from SG estimates were in the 100 km range, compared to
59% for CBG and 57% for SPing. Furthermore, 15% of the
CBG estimates and 19% of the SPing estimations had an error
of 300 km or more, while all but one of the SG estimates
falled within the 300 km mark. Fig. 7 shows plots of the
cumulative distribution function (cdf) of the estimation error
for SPing, CBG, and SG. From this figure, it is clear that the
statistical geolocation scheme is significantly more accurate
than the CBG and SPing.

Table I displays the geolocation error performance of SPing,
CBG, and SG. The error statistics shown in the left-hand
column are the mean error, median error, maximum error,
standard deviation of error, first quartile, and third quartile.
All of the error values shown in the table are in units of km.
In terms of mean error, SG shows a significant improvement
over CBG, which in turn shows a significant improvement
over SPing. The median errors of SPing and CBG are similar,
while SG has a markedly smaller median error. Similarly,
whereas the maximum error values for SPing and CBG are
approximately the same, that of SG is about a factor of two
smaller. Interestingly, the standard deviation of the error is

Error [km] SPing CBG SG
mean 184 141 92
median 73 78 53
maximum 2167 2155 1054
std. dev. 309 176 238
1st quartile 30 28 32
3rd quartile 198 180 99

TABLE I
ACCURACY COMPARISON OF SPING, CBG, AND SG.

smaller for CBG than for SG. The first quartile of the errors
are approximately the same for all three schemes, but SG
clearly outperforms the other two schemes in terms of the
third quartile of error. In summary, the SG scheme appears
to provide significantly higher accuracy than SG and CBG.
There is however, room for improvement, as indicated by
the result for the standard deviation of error. Aspects of the
SG scheme that could be refined further include the kernel
density estimation approach and the force-directed gradient
ascent algorithm.

V. CONCLUSION

We proposed a statistical approach to geolocation of Internet
hosts, based on a the collection of delay measurements among
a set of landmark nodes. In contrast to earlier measurement-
based geolocation schemes, which provide loose deterministic
bounds on the target location, the proposed scheme captures
the statistical variations in Internet delay measurements. Be-
sides the collection of active delay measurements, the key
elements of the approach include kernel density estimation
to obtain an estimate of the joint density function of the
geographical distances and delays between landmarks, and a
force-directed algorithm to move the target location estimate
towards a point that maximizes the likelihood function.

We conducted experiments over PlanetLab using 85 land-
mark nodes. Our results show a significant improvement in
accuracy over the previous approaches, in particular, CBG and
SPing.
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