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A Recursive Algorithm for Wideband Temporal
Spectrum Sensing

Joseph M. Bruno, Member, IEEE, and Brian L. Mark, Senior Member, IEEE

Abstract—Wideband spectrum sensing techniques determine
which portions of a given spectrum band are occupied or idle
in the frequency domain. The idle portions represent spectrum
holes that can potentially be exploited by secondary or unlicensed
users. Existing methods for wideband sensing, however, do not
take into account the temporal activity of the primary or licensed
users within the spectrum band. We propose an algorithm that
identifies primary user activity over a wide spectrum band and
provides a statistical characterization of the primary user signals
in the band. The algorithm applies hidden Markov modeling to a
hierarchically partitioned representation of the spectrum band,
together with a recursive tree search. Different from existing
wideband sensing algorithms, the proposed wideband temporal
sensing method is able to accurately detect spectrum holes even
in the presence of bursting primary user signals. Moreover,
hidden Markov modeling of the primary user signals enables the
accurate detection and prediction of primary user activity over
time. Numerical results demonstrate the significant performance
gain of the proposed algorithm over existing wideband spectrum
sensing algorithms, particularly in the presence of low duty-cycle
primary user signals.

Index Terms—Cognitive radio, spectrum sensing, wideband,
hidden Markov model

I. INTRODUCTION

Due to the rapidly increasing demand for capacity in wire-
less networks, radio frequency (RF) spectrum access becomes
more precious every day. However, it has been shown that
fixed frequency allocations have left large portions of the RF
spectrum underutilized [2]. Cognitive radio aims to increase
utilization of those bands without disruption to the licensed
or primary user [3]. In order to maximize capacity and
minimize service disruptions to the primary user (PU), a cog-
nitive secondary user (SU) must employ sophisticated sensing
techniques to accurately detect or anticipate the presence or
absence of a PU signal in a spectrum band.

Most of the early work on spectrum sensing focused on
a narrowband channel, where the PU signal is assumed to
be either active or idle at all times. Well-known detection
algorithms for narrowband sensing include energy detection,
cyclostationary feature detection, and matched filter detec-
tion [4]. The energy detector is the simplest of the narrowband
detectors and requires no a priori knowledge of the channel,
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but it performs poorly in the case of low signal-to-noise ratio
(SNR). The most sensitive of the listed sensing algorithms is
the matched filter, which requires a priori knowledge of the
the PU waveform, but can detect PU activity at very low SNR.
Cyclostationary feature detection lies between the matched
filter and energy detector in terms of performance at low SNR,
but incurs significant computational cost and long integration
windows. Cyclostationary detector performance is degraded in
the case of low PU duty cycle [5].

In wideband spectrum sensing, several PUs may occupy por-
tions of a wide frequency band, but the center frequency and
bandwidth of each PU channel are assumed to be unknown. A
special case of wideband sensing, often referred to as multi-
band spectrum sensing, operates under the assumption that
the PU channel spectrum parameters are known. Wideband
sensing has been studied in a number of papers under the
assumption that the PU state is either on or off at all times [6]–
[13]. In other words, the temporal dynamics of the PUs are
not taken into account in the prior work on wideband sensing.
The wideband sensing techniques developed in these works are
based on energy detection, edge detection, or cyclostationary
feature detection. To reduce the sampling rate required for
estimating the power spectral density over a wide frequency
band, compressive sensing techniques have been proposed
in [14] and applied to wideband sensing based on edge
detection as in [12].

Temporal spectrum sensing, which takes into account the
dynamic behavior of the PU, has been studied primarily in
the narrowband setting. Given that many modern waveforms
employ some sort of time division multiple access (TDMA),
spectrum sensing algorithms that incorporate a dynamic PU
model, such as [15], are highly desirable. Hidden Markov
models (HMMs) have been proposed to characterize the dy-
namic behavior of the PU and predict future temporal spectrum
holes on a narrowband channel. The underlying process of
the HMM represents the state of the PU, which can be
detected only indirectly through the observable process [16],
[17]. In [16], a finite alphabet HMM is assumed. In [17],
the observable process is conditionally Gaussian given the
underlying state to model the effect of lognormal shadowing
and other channel impairments. The HMM itself is extended to
a hidden bivariate Markov model, which allows for modeling
a much more general class of PU state sojourn time distri-
butions. Modeling of PU activity as a Markov process has
also been extended to the multiband case, where the allocation
of total sensing time among multiple known bands has been
studied [18]. A multichannel MAC (medium access control)
is proposed in [19], where the PU channels are modeled as
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Markov on-off processes. In [18], [19], the PU state is assumed
to be directly observable, such that the channel impairments
are not taken into account.

To our knowledge, there has been very little work on
spectrum sensing jointly in time and over a wide frequency
band. Narrowband or multiband temporal sensing algorithms
require prior knowledge of the locations of the PU channels
within a spectrum band, while wideband sensing algorithms
proposed in the literature assume that the PUs are static, i.e.,
they are on at all times. In this paper, we develop a framework
for wideband temporal sensing, which tracks dynamic PU
signal activity in both time and frequency by segmenting the
spectrum band into smaller subbands. We apply an HMM-
based temporal sensing algorithm to each of the channels,
allowing for detection of PUs with low duty cycle in the
wideband regime. We model the set of subbands as a balanced
binary tree and perform a recursive search for spectrum holes.
Adjacent spectrum holes are merged into a single spectrum
hole. This process is carried out in a recursive manner with
the objective of determining a minimal set of PU channels, of
possibly different bandwidths, that spans all PU signals in the
spectrum band. In effect, our approach reduces the wideband
temporal sensing problem into a multiband sensing problem.

Existing wideband sensing techniques generally compute
the power spectral density for a given spectrum band by
averaging power estimates over a time window. The implicit
assumption is that the power spectral density remains static,
at least for the duration of the averaging window. However,
such wideband sensing algorithms may fail to detect PUs
that change state dynamically over time, and are especially
inadequate in the presence of PUs with low duty cycle. Our
experimental results demonstrate that the proposed scheme for
wideband temporal sensing significantly outperforms existing
wideband sensing approaches, particularly in the presence
of PU signals with low duty cycles. More importantly, the
incumbent techniques for wideband sensing are not able to
fully exploit temporal spectrum holes for dynamic spectrum
access, since they do not model the temporal behavior of
spectrum activity.

The main contribution of this paper is a systematic frame-
work and computationally efficient algorithms for wideband
sensing that explicitly take into account the temporal activity
of dynamic PUs. The proposed wideband temporal sensing
algorithm provides an efficient and practical solution to a
problem that has not previously been addressed in the literature
on spectrum sensing. The primary innovations of our approach
consist of (1) application of hidden Markov modeling to a
partitioned representation of the spectrum band, (2) a recursive
tree search for finding and aggregating spectrum holes to
identify dynamic PU signals in the given spectrum band. The
proposed wideband temporal sensing algorithm results in the
identification of a minimal set of PU channels that spans the
spectrum band, together with HMM parameters characterizing
each of the channels in the set. The HMM parameters can
then be used to perform temporal spectrum sensing of the
identified channels as in [17]. In particular, the statistical
characterization of PUs signals by HMMs (or more generally,
the hidden bivariate Markov models in [17]) enables accurate

detection and prediction of PU activity. This opens the door
for secondary users to exploit spectrum holes occurring both
in time and frequency.

The key technical challenge in extending the narrowband
spectrum sensing algorithm in [17] lies in identifying the un-
known PU channel boundaries (or equivalently, the spectrum
holes), and characterizing each of the identified PU channels
by an HMM parameter in a computationally efficient manner.
This requires an efficient tree search procedure combined with
HMM parameter estimation applied to a large set of subbands,
as well as a fast and accurate method for aggregating the
subbands into spectrum holes. The remainder of the paper is
organized as follows. In Section II, we discuss and evaluate
the performance of two existing wideband spectrum sensing
techniques. In Section III, we introduce a system model for
a dynamic PU under channel fading and noise impairments.
In Section IV, we develop our proposed recursive tree search
algorithm to perform wideband temporal spectrum sensing.
In Section V we describe the simulation that was used to
compare the proposed algorithm to existing algorithms and
present numerical results. Concluding remarks are given in
Section VI.

II. COMPARISON OF WIDEBAND SPECTRUM SENSING
TECHNIQUES

In the wideband spectrum sensing scenario, an SU must
sense an entire band and determine channel boundaries. The
bandwidth that must be sensed can vary from the order of
1 MHz to 1 GHz. Wideband spectrum sensing is required if
the SU cannot leverage any external information about channel
allocation. An example of external channel information is
provided by the television bands in the United States, where 6
MHz channels have been clearly defined by the Federal Com-
munications Commission [20]. An SU can perform wideband
sensing during initialization and then revert to multiband or
narrowband sensing during normal operation.

To evaluate the incumbent wideband sensing techniques, or-
thogonal frequency division multiplexing (OFDM) and Gaus-
sian minimum shift keying (GMSK) are used. OFDM signals
exhibit sharp rectangular band edges, whereas GMSK signals
exhibit gradual sloping band edges. Because these signals
represent extremes in the boundaries between signals, the
performance of the evaluated detectors on other modulations
should fall somewhere between that of OFDM and GMSK.
Not only do they have drastically different band edges, but
GMSK and OFDM are pervasive in modern wireless standards
such as GSM (GMSK), WiFi (OFDM), and LTE (OFDM).

We assume that a channel can take on one of two states: an
idle state, in which the PU does not transmit, and an active
state, in which the PU transmits. We denote idle and active
states by 0 and 1, respectively. For a given channel, the steady-
state probabilities that the PU is idle and active are denoted,
respectively, by π0 and π1. The duty-cycle of the channel
corresponds to π1 stated as a percent value.

A. Wideband Energy Detector
A very simple wideband sensing technique is a wideband

energy detector [21], [22] where the SU estimates the power
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spectral density (PSD) over the entire band and employs an
energy threshold to determine PU activity. Many PSD frames
may be averaged to increase reliability. This simple algorithm
has many limitations. Like all energy detectors in additive
white Gaussian noise (AWGN), this technique has limited
sensitivity, and performance is severely degraded at low SNR.
Furthermore, the sensitivity of the averaged PSD estimate
will be degraded in the case where the PU exhibits dynamic
behavior. If the PU employs a bursting signal or frequency
hopping, idle periods may be averaged together with active
periods, which compromises the estimator’s accuracy.

Figures 1 and 2 qualitatively show the sensing results of
a frequency-domain energy detector for OFDM and GMSK
signals, respectively. Shaded areas represent detected spectrum
holes. All of the signals shown have an SNR of 10 dB, but
for the bursting signals, the magnitude of the PSD estimate
decreases with the duty cycle. This decreased PSD magnitude
degrades the performance of the energy detector for both
modulation schemes.
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Wideband Energy Detection

Fig. 1. Results of a wideband energy detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

Performing a maximum hold operation rather than aver-
aging PSD frames has been proposed for detecting dynamic
PUs [23]. Maximum hold detectors have identical complexity
and memory requirements to averaging detectors with the same
number of frequency bins and sensing duration. However,
maximum hold energy detectors are outperformed by averag-
ing detectors in low SNR [23]. Furthermore, maximum hold
energy detectors can actually cause an increased probability
of false alarm as observation lengths are increased due to
increased likelihood of an abnormally high noise power during
the sensing interval. These two shortfalls make maximum hold
energy detectors inadequate for cognitive radio applications
and motivate the need for a wideband sensing algorithm that
adequately detects dynamic PU activity.
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Fig. 2. Results of a wideband energy detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

B. Wideband Edge Detector

A popular approach to wideband spectrum sensing involves
performing frequency-domain edge detection to determine
channel boundaries. The edge detector proposed in [12] uses
the continuous wavelet transform to decompose edge detection
into multiple resolutions and then multiplies the resolutions
together, which has a beneficial effect of reducing the noise.
While edge detectors do offer an improvement over energy
detectors in terms of performance at low SNR, they come with
several limitations. Most importantly, edge detectors require
that PU signals have sharp transitions in the frequency domain.
This allows them to work well with the rectangular spectra
of signals like OFDM (see Fig. 3) and quadrature amplitude
modulation (QAM) with low excess bandwidth, but edge
detectors tend to perform poorly on signals with gradual slopes
on their band edges, such as QAM with large excess bandwidth
and GMSK.

The performance of an edge detector using the multi-
resolution enhancements from [12] is shown for GMSK in
Fig. 4. The figure shows that wideband edge detectors suffer
from the same shortfall as wideband energy detectors in
that they are also degraded by dynamic behavior of the PU.
Because received signal samples from both idle and active
cycles are averaged into the PU detector, the performance of
the detector deteriorates with decreasing duty cycle of the PU.

C. Compressive Sensing

A class of sensing algorithms known as compressive sens-
ing has been proposed for surveying very wide bandwidths
with sub-Nyquist sampling rates. Because much of the radio
spectrum is underutilized, available bands may be represented
as a sparse dataset, and depending on the sparsity order of the
dataset, the wideband signal may be sensed at a fraction of
the Nyquist rate [24]. To perform sub-Nyquist sampling, the
signal time series is divided into length-M blocks of Nyquist-
rate samples, of which K samples are kept, giving an under-
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Fig. 3. Results of a wideband edge detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.
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Fig. 4. Results of a wideband edge detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

sampling fraction of K/M . Reconstruction of the sparse PSD
from the undersampled data is accomplished by solving for a
linear inverse, which in the sparse case requires a numerical
solution [14]. To select an appropriate undersampling fraction,
the cognitive receiver must have prior knowledge of the PU
sparsity order. An online sparsity estimator has been proposed
in [25] that can quickly determine an undersampling ratio.

Although compressive sensing can be utilized to sense much
wider bandwidths than can be done with traditional analog to
digital conversion hardware, the result of compressive sensing
typically involves a static PSD estimate. For example, in [14],
the estimated sparse PSD is analyzed with the wavelet-based
edge detector proposed in [12]. Since current compressive
sensing methods rely on a static PSD estimate, the presence of
low duty-cycle PU signals can drastically reduce the detector
sensitivity. In [24] it is stated that current compressive sensing

cannot be used to properly handle sparsity in time and space.
Although our proposed sensing algorithm requires sampling
at the Nyquist rate and therefore cannot be used for ultra
wideband sensing, its success does not rely on signal sparsity
in any domain, and it more flexibly detects bursting signals
by leveraging time-domain sensing methods.

III. SYSTEM MODEL

Over a spectrum band of total width B Hz, an unknown
number of PU signals are operating with temporal duty cycles
in the range 0 to 100 percent. Each PU signal has an unknown
center frequency, fc Hz, and bandwidth, W Hz. It is assumed
that PU channels are non-overlapping in frequency. In practice,
the PU channels would typically be separated by guard bands
to avoid interference with each other. The channel over which
the ith PU is observed is assumed to be flat Rayleigh fading
with parameter σf,i combined with additive white Gaussian
noise (AWGN), defined by the circularly symmetric complex
normal distribution C

(
0, σ2

n,i

)
. The mean SNR of the received

signal on channel i, given that the PU is transmitting is

SNRi =
σ2
f,i

σ2
n,i

. (1)

A. PU Traffic Model

A PU may be transmitting or idle at any given time. The
state of the ith PU, denoted by random variable Xi, may
alternate between the idle state Xi = 0, where the PU is
not transmitting, and the busy state Xi = 1, where the PU
is transmitting. The kth PU state is denoted Xi,k. Each PU
is modelled by a discrete-time Markov chain with transition
matrix Gi and initial distribution νi, defined as

Gi = [gi,ab : a, b ∈ {0, 1}] , (2)
gi,ab = P (Xi,k = a,Xi,k+1 = b) , (3)
νi,0 = P (Xi,1 = 0) , vi,1 = P (Xi,1 = 1) . (4)

B. Cognitive Receiver Model

1) Received Wideband Signal: A transmitting PU will
generate a bandpass signal t̃i,k. The transmitted signal for PU
i at any time k is

ti,k = t̃i,k · 1{Xi,k=1}, (5)

where 1A is the indicator function on the set or condition
A. The ith PU signal is multiplied at time k by a fading
signal fi,k ∼ C

(
0, σ2

f,i

)
. All M PU signals are received

simultaneously and added to the noise signal nk ∼ C
(
0, σ2

n,i

)
.

The received wideband signal is represented by a sequence of
samples znwb = {zwb,1, . . . , zwb,n}, where zwb,k, the kth I-Q
sample from the wideband channel, is defined as

zwb,k =

M∑
i=1

ti,kfi,k + nk. (6)
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2) Channelized Received Signal: The SU will divide the
wideband received signal into J narrowband subchannels. Ini-
tially this division must be done arbitrarily, but after wideband
sensing, the set of subchannels should describe all PU statistics
as well as the statistics of the spectrum holes between PU
signals. The jth subband is denoted zj .

3) Energy Detected Signal: For spectrum sensing, the chan-
nelized narrowband signals are processed with an averaging
energy detector, which estimates the power of each sample
and averages Navg samples together. The resulting random
variable for the received energy in subchannel j is denoted by
Yj , and the sequence of energy estimates for subchannel j is
denoted ynj = {yj,1, . . . , yj,n}. The kth sample in the energy
detection sequence, yj,k, is defined as

yj,k =
1

Navg

Navg∑
i=1

|zj,(k−1)Navg+i|
2. (7)

An SU will need to detect slow changes in PU state to properly
leverage spectrum holes, and because of this, we assume that
the probability of a state change occurring during the energy
estimation of a single sample to be minimal. Therefore, we
assume that during an energy detection window the samples of
yj are independent, identically distributed (IID). For relatively
large Navg, Y will approach a normal random variable due
to the Central Limit Theorem. If Yj represents the energy
estimates of a subchannel with PU i, the kth sample from
the received narrowband signal, zj , will be generated by a
random variable with conditional distribution

zj,k ∼

{
C
(
0, σ2

n,i

)
, Xi,k = 0,

C
(

0, σ2
f,i + σ2

n,i

)
, Xi,k = 1.

(8)

The resulting energy estimates, yj,k, will be scaled chi-squared
random variables with 2N degrees of freedom. We will denote
a chi-squared distribution with D degrees of freedom X 2 (D).
The conditional distribution of the energy detector is therefore

yj,k ∼


σ2
n,i

Navg
X 2 (2Navg) , Xi,k = 0,

σ2
f,i + σ2

n,i

Navg
X 2 (2Navg) , Xi,k = 1.

(9)

The mean and variance of a chi-squared distribution with D
degrees of freedom are D and 2D respectively. Assuming that
Navg is sufficiently large, yj,k will be conditionally normal
with distribution

yj,k ∼


N

(
2σ2

n,i,
4σ4

n,i

Navg

)
, Xi,k = 0,

N

2σ2
f,i + 2σ2

n,i,
4
(
σ2
f,i + σ2

n,i

)2
Navg

 , Xi,k = 1.

(10)

IV. RECURSIVE ALGORITHM FOR WIDEBAND TEMPORAL
SENSING

In this section, we propose an approach that extends narrow-
band temporal sensing techniques to the wideband scenario.

Narrowband techniques that use HMMs [26] to model the
dynamic behavior of the PU are leveraged to overcome the
limitations of current wideband spectrum detectors. In partic-
ular, we shall rely on the narrowband sensing approach in [17],
which is based on a generalization of the HMM referred to as
a hidden bivariate Markov model (HBMM). For simplicity, we
shall restrict ourselves to the HMM characterization of a PU
channel, but our approach can straightforwardly accommodate
the HBMM. The proposed wideband search algorithm may
also be adapted to leverage other narrowband sensing tech-
niques for various special purposes. For example, for channels
with high duty cycle but very low SNR, the proposed wideband
algorithm could be adapted to work with a cyclostationary
detector.

A. Wideband Tree Search

In our proposed algorithm for wideband temporal sensing,
the spectrum band is organized as a balanced binary tree,
where each node has two child nodes representing the upper
and lower halves of the band. The band is recursively divided
into smaller pieces as depth increases [27]. A maximum depth
is selected based on a desired resolution for the wideband
sensing algorithm. The depth of the tree is given by d =
dlog2 (W0/Wr)e, where W0 is the bandwidth, and Wr is
the maximum frequency resolution. The resulting number of
channels at the finest resolution, Nc, is given by Nc = 2d. The
frequency resolution Wr must be selected by the implementer,
as a smaller sensing resolution allows finer spectral compo-
nents to be observed, but increases computational complexity
resulting from increased Nc, as shown in Eq. (31). The
division of a band into subbands using a balanced binary tree
is shown in Fig 5.

The algorithm recursively divides a given channel in half
until the desired resolution is reached. An inorder traversal, a
recursive search where child nodes are visited before parent
nodes [27], is performed on the balanced binary tree that is
used to model the spectrum band. At the highest resolution,
each subband or channel is sensed using a narrowband tem-
poral spectrum sensing technique based on hidden Markov
mdoels.

B. Channel Selection

A channelizer must be employed to divide the wideband
channel into 2d subbands, where d is the search tree depth. A
conceptually simple channelizer is a bank of digital down-
converters (DDCs), with one DDC for each subband. A
diagram for a simple DDC is shown in Fig. 6. Given a
sequence {ak}∞k=1, we use the convenient notations ank =
{ak, . . . , an} and an = {a1, . . . , an}. The received wideband
signal can then be represented by a sequence of samples
znwb = {zwb,1, . . . , zwb,n}, where zwb,k denotes the kth I-
Q sample from the wideband channel. When the received
wideband signal znwb is passed into the DDC, it will first be
mixed down by center frequency fc, such that the center of the
band of interest is now at baseband. The baseband signal is
next lowpass filtered with FIR taps h(n) to isolate the band of
interest. Finally, the signal is decimated by rate dec, keeping 1
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Fig. 5. A wideband channel, i.e., a spectrum band with bandwidth W0, organized into a balanced binary tree.

sample out of every dec. The channelized narrowband signal
is denoted zn.

LPF ↓ dec

+

−
fc

znwb zn

Fig. 6. A simple digital downconvertor for signal channelization.

Because all subbands are eventually channelized by the
recursive search, a frequency-domain channelizer using the
fast Fourier transform (FFT) [28], [29] can substantially reduce
the computational cost of the channel selection. Frequency-
domain channelizers have been studied in detail [28], and
while faster computationally, use of a frequency-domain chan-
nelizer would not alter the outcome of the proposed algorithm.
Therefore, for the sake of simpler algorithm description, a
simple filter-and-decimate channelizer was discussed above.
For spectrum sensing, the channelized narrowband signals are
processed with an averaging energy detector, which estimates
the power of each sample and averages Navg samples together.
The received power estimate of the sample zk in linear units,
e.g., mW, is denoted yk, and is calculated as follows:

yk =
1

Navg

Navg∑
i=1

|zk+i|2 . (11)

C. Hidden Markov Modeling for Narrowband Sensing

Although the recursive tree search that we propose can
leverage a variety of narrowband techniques, we are addressing
the specific issue of PU dynamics such as bursting and
frequency hopping. An HMM is used to model the channel dy-
namics, assuming a lognormal shadowing model. In [17], [30],
a more general form of HMM referred to as a hidden bivariate
Markov model (HBMM) is applied to narrowband temporal
spectrum sensing. An extension of the Baum-Welch algorithm
was developed in [17] for estimating the parameter of a

HBMM. The Baum-Welch algorithm is an offline algorithm,
which iteratively produces a sequence of parameter estimates
with increasing likelihood, based on a given an observation
sequence. An online parameter estimation algorithm for the
HBMM was developed in [30]. Since the focus of the present
paper is on wideband sensing, we will restrict ourselves to the
simpler HMM and the standard Baum-Welch algorithm for
parameter estimation.

We use P to denote a generic probability measure and Pφ
to denote a probability measure that depends on a parameter
φ. Similarly, we use p and pφ to denote a probability density
function or probability mass function as appropriate. In the
notation p(xk) = P (Xk = xk), the lowercase symbol xk
on the left-hand side implicitly implies the associated random
variable represented by the uppercase symbol Xk. The HMM,
denoted by (Y,X), consists of an observable sequence of
received signal strengths, Y = {Yk}∞k=1, and an underlying
or hidden state sequence X = {Xk}∞k=1, which is assumed
to be a discrete-time Markov chain. At time k, Yk represents
the averaged received signal power, after processing, in linear
units (mW) and Xk represents the state of the PU, i.e., Xk = 0
when the PU is idle and Xk = 1 when the PU is active.
Assuming a standard path loss plus Rayleigh fading model,
the received signal power Yk can be expressed as follows (cf.
[30]):

Yk =

{
µ0 + ε0, Xk = 0,
µ1 + ε1, Xk = 1,

(12)

where µa represents the mean received signal power when
the PU is in state a ∈ {0, 1}, and εa is a zero-mean
Gaussian random variable with standard deviation σa, which
may represent impairments such as receiver noise, fading, or
shadowing. A similar model was validated empirically in the
context of temporal spectrum sensing of a narrowband channel
in [17]. In this paper, Rayleigh fading was simulated, resulting
in Eq. (10) for Yk.

Let G = [gab : a, b ∈ {0, 1}] denote the transition matrix
of the underlying Markov chain X , where gab denotes the
transition probability from state a to state b. Let ν = [ν0, ν1]
denote the initial state probability distribution, where

ν1 = P (X1 = 0), ν2 = P (X1 = 1).
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The parameter of the HMM is given by φ = (ν,G, µ,R),
where µ = [µ0, µ1] and R = [σ2

0 , σ
2
1 ].

D. Baum-Welch Algorithm and MAP Detector
The Baum-Welch algorithm [31] is applied to obtain an

estimate of the HMM parameter for a given channel, as part
of the recursive tree search. The input to the algorithm is an
initial parameter estimate φs and an observed sequence yn

obtained from the channel. Starting with the initial estimate,
φ̂0 = φs, the ιth iteration (ι ≥ 1) of the algorithm produces a
new estimate φ̂ι with likelihood greater than or equal to that of
φ̂ι−1. Each iteration of the algorithm involves the computation
of forward and backward recursions [26, Section V.A].

Let φ denote the current parameter estimate at the start of
an iteration of the Baum-Welch algorithm. Define a diagonal
matrix

B(yk) = diag{pφ(yk | xk = 0), pφ(yk | xk = 1)}.

We denote the (scaled) forward and backward variables by
ᾱ(xk, y

k) and β̄(ynk+1 | xk), respectively. The forward vector
is defined as a row vector

ᾱk = [ᾱ(xk = 0, yk), ᾱ(xk = 1, yk)],

while the backward vector is defined as a column vector

β̄k = [β̄(ynk+1 | xk = 0), β̄(ynk+1 | xk = 1)]′,

where ′ denotes matrix transpose. Let 1 denote a column
vector of all ones, of appropriate dimension depending on the
context. The forward recursion is given by

ᾱ1 =
νB(y1)

c1
, ᾱk =

ᾱk−1GB(yk)

ck
, k = 2, . . . , n, (13)

where c1 = πB(y1)1, and ck = ᾱk−1GB(yk)1 for k =
1, . . . , n. The forward variables have the following interpreta-
tion: ᾱ(xk, y

k) = p(xk | yk). The backward recursion is given
by

β̄n = 1; β̄n = GB(yn+1)
β̄n+1

cn
, k = n− 1, . . . , 1. (14)

The state conditional probability can be obtained from

pφ(xk | yn) = ᾱ(xk, y
k)β̄(ynk+1 | xk). (15)

The joint state conditional probability can be calculated as
follows:

pφ(xk−1, xk | yn) =

ᾱ(xk−1, y
k−1)β̄(ynk+1 | xk)gxk−1,xk

pφ(yk | xk)∑
xk−1,xk

ᾱ(xk−1, yk−1)β̄(ynk+1 | xk)gxk−1,xk
pφ(yk | xk)

.

(16)

The re-estimation formulas for the new parameter estimate are
given in terms of (15) and (16) as follows:

ĝab =

∑n
k=2 pφ(xk−1 = a, xk = b | yn)∑n

k=2 pφ(xk−1 = a | yn)
,

µ̂a =

∑n
k=1 pφ(xk = a | yn) yn∑n
k=1 pφ(xk = a | yn)

, (17)

σ̂2
a =

∑n
k=1 pφ(xk = a | yn) (yk − µ̂a)2∑n

k=1 pφ(xk = a | yn)
, (18)

where a, b ∈ {0, 1}.
After the Baum-Welch algorithm converges to a final param-

eter estimate φ, the maximum a posteriori (MAP) decisions
may be obtained from the a posteriori state probabilities, as
given in (15), as follows:

x̂k = arg max
xk∈{0,1}

pφ(xk | yn). (19)

Since the MAP decisions take into account the temporal dy-
namics of the PU signal, the MAP detector can be significantly
more accurate than a standard energy detector (cf. [17]). The
MAP detector (19) can be used for online spectrum sensing
of the given channel.

E. Channel Usability and Channel Capacity

A heuristic test based on the HMM parameter estimate for a
channel is performed to determine whether the channel can be
used by the SU. Given the transition matrix G, the stationary
state distribution π = [π0, π1] can be computed from the
equations

π = πG, π1 = 1. (20)

The channel is deemed to be a hole if the probability that the
PU is idle, π0, exceeds a threshold πmin,0 (see Algorithm 1,
line 13). Note that π1 represents the duty cycle of the channel.
If the sensed channel is determined to be a hole, the center
frequency, bandwidth, MAP decisions on the PU state, and
filtered decimated samples of the channel are passed to the
parent node in the tree.

Given an estimate of the HMM parameter for a channel, an
estimate of the SNR for the channel can be obtained. Let µa
denote the mean received signal strength in linear units, e.g.,
mW, for a = 0, 1. The SNR estimate is computed as

SNR =
µ1 − µ0

µ0
. (21)

The capacity of the channel can then be estimated using
the sensed bandwidth, the estimated SNR, and the stationary
distribution of the HMM. The capacity is derived from the
capacity for a single user with availability π0 in a TDMA
system [32, Eq. 15.150]. We have defined π0 as the stationary
probability that the PU is not using a given band. With
these considerations, the capacity in (bits/s/Hz) is computed
as follows:

C = π0 log2 (1 + SNR) . (22)

The proposed estimate for channel capacity does not play a
direct role in our algorithm for wideband temporal sensing, but
is useful for assessing the potential capacity gains achievable
through spectrum sensing.

F. Channel Aggregation

As the algorithm recurses upward through the binary tree
depicted in Fig. 5, the parent nodes combine two lists of
spectrum holes: one from the lower half of the band, and
the other from the upper half of the band. If the highest-
frequency hole from the lower band and the lowest-frequency
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hole from the upper band are adjacent, the two holes can
possibly be combined. The objective of wideband sensing is to
determine a minimal set of narrowband PU channels that spans
the given spectrum band, which can be sensed independently
and shared temporally with SUs during the idle periods of the
PUs. To achieve this objective, the adjacent holes will only
be combined if they are sufficiently correlated in a statistical
sense to be defined shortly. The channel aggregation scheme
proposed in this paper is based on the time-domain cross-
correlation. The rationale behind doing so is that the resulting
narrowband PU channels will be approximately uncorrelated
and may therefore be treated as being independent. This
enables multiband spectrum sensing techniques to be applied
to the set of PU channels obtained via the recursive search
procedure. It is important to note that the PU channels are
treated as independent from the perspective of the receiver.
Thus, in the presence of frequency-selective fading, a single
PU signal could appear to the receiver as two or more
independent PU channels, requiring tracking of additional PU
channels on the receiver side. This would be necessary in
this scenario due to the lack of coherence across the true PU
channel.

The proposed channel aggregation function, while based
on time-domain correlation, must account for dynamic sig-
nals. Two perfectly correlated bursting signals will appear
uncorrelated during idle periods, since white noise signals
are inherently uncorrelated. The MAP detector given by (19)
can be used to determine the periods during which the
PUs are most likely idle for both adjacent channels. Based
on the MAP decisions, a correlation metric between two
adjacent channels can be computed. Let Zlo = {Zlo,k}∞k=1

and Zhi = {Zhi,k}∞k=1 denote the observation sequences for
the lower and higher frequency channels, respectively. The
observed sequences from n-sample realizations are denoted
by znlo and znhi, respectively. The HMM parameter estimates
φlo and φhi are obtained for the two channels using the
Baum-Welch algorithm. Let x̂nlo = {x̂lo,1, . . . , x̂lo,n} and
x̂nhi = {x̂hi,1, . . . , x̂hi,n} denote the corresponding decision
sequences determined according to (19).

The normalized cross-correlation at zero lag between the
sequences znlo and znhi is given by

ρ (znlo, z
n
hi) =

|〈znlo, znhi〉|
‖znlo‖ ‖znhi‖

, (23)

where

〈znlo, znhi〉 =

n∑
k=1

zlo,kz
∗
hi,k, (24)

denotes the Hermitian inner product between znlo and znhi,
z∗ denotes the complex conjugate of z, and ‖·‖ denotes
the standard `2-norm. The normalized cross-correlation is
bounded, i.e.,

0 ≤ ρ (znlo, z
n
hi) ≤ 1. (25)

However, for the purpose of channel aggregation, we require
a correlation metric that takes into account the idle periods
that coincide for the two channels. We denote the indicator
function on the set or condition A by 1A, and the indicator

function for the complement of A by 1Ac . Using this notation,
we define modified observation sequences for the two channels
by zeroing out the samples for which the PU is detected to be
idle on both channels, i.e.,

z̃lo,k = zlo,k · 1{x̂lo,k=x̂hi,k=0}c ,

z̃hi,k = zhi,k · 1{x̂lo,k=x̂hi,k=0}c , (26)

for k = 1, . . . , n. The fraction of observation samples for
which the PU is detected to be idle on both channels is given
by

γ =
1

n

n∑
k=1

1{x̂lo,k=x̂hi,k=0}. (27)

For such samples, the correlation should be assigned the
value 1, indicating perfect correlation. The idle ratio is
bounded, i.e.,

0 ≤ γ ≤ 1. (28)

We then define a modified correlation metric as follows:

ρ̃ = γ + (1− γ)ρ (z̃nlo, z̃
n
hi) . (29)

It is easy to see from Eq. (25) and (28) that 0 ≤ ρ̃ ≤ 1. In
our channel aggregation algorithm, two channels are merged if
their correlation ρ̃, computed using (29), exceeds a threshold
ρ̃min (see Algorithm 2, line 7). When holes are combined, their
MAP decisions must be combined as well. This combination
of decisions is given by

x̂k =

{
0, if x̂lo,k = x̂hi,k = 0,

1, otherwise.
(30)

The PU in the combined channel is determined to be idle at
time k if the PU in both subbands is determined to be idle at
time k. Otherwise, the PU is determined to be active at time
k.

G. Algorithm Descriptions

Parameter Description
Nc Number of channels at the finest sensing resolution
Nt Number of filter taps for the channel selecting LPF
Ns Number of samples in the sensing duration
Ni Number of Baum-Welch iterations

TABLE I
ALGORITHM COMPLEXITY PARAMETERS.

A formal description of the proposed recursive wideband
temporal sensing framework is given in Algorithm 1. The
computational complexity is given by

O (Nc log2Nc ·NtNs +NcNiNs) , (31)

where the various parameters involved are shown in Table I.
The terms of the complexity equation are derived as follows:
Nc log2Nc is the number of nodes in the binary tree [27]
and is therefore the maximum number of narrowband channels
that can be sensed; NtNs is the complexity of the filtering
operation used to select a narrowband channel for sensing.
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Algorithm 1 Wideband temporal sensing algorithm.
1: function RSense(fc, W , Wr, znwb)
2: if W > Wr then
3: Llo = RSense(fc −W/2,W/2,Wr, z

n
wb);

4: Lhi = RSense(fc +W/2,W/2,Wr, z
n
wb);

5: if Lhi and Llo are not empty then
6: L = AggregateCh(Lhi, Llo, z

n
wb);

7: else
8: L = empty list;
9: else

10: h(n) = LPF(W,Nt);
11: dec = Floor(W0/W );
12: zn = DDC(znwb, fc, h(n),dec);
13: yn = EnergyDet(zn);
14: (ν,G, µ,R, x̂n) = BaumEst(yn);
15: π = StatDistr(G);
16: if π1 > πmin,1 then
17: L = list with single entry (fc,W, z

n, x̂n);
18: else
19: L = empty list;
20: return L;

Algorithm 2 Aggregate channels.
1: function AggregateCh(Lhi, Llo, znwb)
2: (flo,c,Wlo, z

n
lo, x̂

n
lo) = LowestCh(Lhi);

3: (fhi,c,Whi, z
n
h , x̂

n
h) = HighestCh(Llo);

4: L = CombineLists(Lhi, Llo);
5: if fhi,c −Whi/2 == flo,c +Wl/2 then
6: ρ = Correlate(n, znlo, x̂

n
lo, z

n
hi, x̂

n
hi);

7: if ρ̃ > ρ̃min then
8: Remove(flo,c,Wlo, z

n
lo, x̂

n
lo) and

9: (fhi,c,Whi, z
n
hi, x̂

n
hi) from L;

10: h(n) = LPF(Wlo +Whi, Nt);
11: dec = Floor(W0/(Wlo +Whi));
12: fc = flo,c +Wlo/4 +Whi/4;
13: zn = DDC(znwb, fc, h(n),dec);
14: x̂n = Merge(x̂nlo, x̂

n
hi);

15: Add (fc,Wlo +Whi, z
n,x̂n)

16: to L;
17: return L;

The term NiNs represents the per-channel complexity of the
Baum-Welch algorithm.

We shall not formally describe any of the other functions
used in Algorithms 1 and 2, but basic descriptions will be
given. The function AggregateCh(Lhi, Llo, z

n
wb), as specified

in Algorithm 2, determines whether two adjacent holes should
be combined. The function Correlate(n, znlo, x̂

n
lo, z

n
hi, x̂

n
hi)

computes the modified correlation metric given by (29).
The function LPF(W ) designs a finite impulse response
(FIR) lowpass filter with bandwidth W . The function
DDC(znwb, fc, h(n),dec) performs channelization as discussed
in Section IV-B. The wideband signal znwb is mixed down
by center frequency fc, lowpass filtered by a FIR filter
with discrete taps h(n), and decimated by dec. The function
EnergyDet(zn) performs energy detection based on the pro-

cessed received power samples given in (11).
The function BaumEst(yn) estimates the parameter of the

PU in the selected narrowband channel with processed re-
ceived power samples, yn, using the Baum-Welch algorithm
as summarized in Section IV-D. The function StatDistr(G)
computes the stationary state distribution corresponding to the
transition matrix G using (20). The functions HighestCh(L)
and LowestCh(L) select the highest-frequency narrowband
channel and the lowest-frequency narrowband channel, re-
spectively, from a list of estimated channel parameters L.
The function CombineLists(L1, L2) merges two lists of es-
timated channel parameters into a single list and sorts the
list in decreasing order of center frequency. The function
Merge(x̂nlo, x̂

n
hi) combines the MAP decisions from the two

channels as in (30).

V. SIMULATION AND NUMERICAL RESULTS

A. Simulation 1: Comparison of Techniques

We tested the wideband energy detector, the wideband edge
detector, and the proposed wideband temporal spectrum detec-
tor against OFDM and GMSK signals with duty cycles varying
among 1.0, 0.5, 0.25, and 0.125. We used an energy detection
averaging window of Navg = 1 samples. We assumed a
minimum duty cycle πmin,1 = 0.1 and a minimum modified
correlation threshold for combining channels of ρ̃min = 0.7.
For each modulation scheme and duty cycle tested, a wideband
capture was generated with signals of random center frequency
and symbol rate over a 10 MHz band. We used a minimum
sensing resolution of 10 kHz, resulting in a search tree depth
of d = 10. The modulated data on the signals was generated
by a uniform random number generator. All of the signals
were received through a simulated AWGN and Rayleigh fading
channel with 10 dB SNR and used the currently tested modu-
lation and duty cycle. A total of 10,000 simulation iterations
were performed for each modulation and duty cycle pair.

Wideband signals were also generated specifically for plot-
ting qualitative results. These wideband signals contained 4
narrowband signals with 1 MHz bandwidth and carrier spacing
of 2 MHz. The four signals have duty cycles of 1.0, 0.5,
0.25, and 0.125 from lowest-frequency to highest-frequency.
All highlighted PSD plots in this paper show the results
of applying a wideband sensing algorithm to one of these
wideband signals, where the shaded areas are the detected
holes and the white areas are the detected signals.

B. Simulation 2: Performance at Varying SNR

To test the performance of the proposed wideband temporal
detector, we tested the detector against OFDM and GMSK
signals with duty cycle of 0.125 and SNR ranging between -20
and 20 dB. We varied the energy detection window size, Navg,
among 1, 10, 100, and 1000 samples. We assumed a minimum
duty cycle πmin,1 = 0.1 and a minimum modified correlation
threshold for combining channels of ρ̃min = 0.7. For each
modulation scheme, a wideband capture was generated with
signals of random center frequency and symbol rate over a
10 MHz band. We used a minimum sensing resolution of
10 kHz, resulting in a search tree depth of d = 10. The
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modulated data on the signals was generated by a uniform
random number generator. All of the signals were received
through a simulated AWGN and Rayleigh fading channel. A
total of 10,000 simulation iterations were performed for each
modulation and energy detection window.

C. Simulation 1 Results: Qualitative Comparison of Tech-
niques

Qualitative results of the proposed wideband temporal sens-
ing algorithm are depicted in Fig. 7 for OFDM and Fig. 8 for
GMSK. Shaded areas represent detected spectrum holes. It
can be seen that the proposed wideband temporal spectrum
detector performed well for all tested duty cycles and both
simulated modulation schemes. The qualitative simulation re-
sults of the proposed spectrum detector can be compared to the
qualitative results from Section II. Comparing Fig. 7 to Figs. 1
and 3 shows that reducing the duty cycle does not degrade the
performance of the proposed detector for OFDM like it does
for wideband energy detection. Similarly, comparing Fig. 8 to
Figs. 2 and 4 shows that the proposed detector is also not
degraded by reduced duty cycles for GMSK. Furthermore,
comparing Fig. 8 to Fig. 4 shows that the smooth band edges
of GMSK do not degrade the performance of the proposed
detector like they do for the wideband energy detector.
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Wideband Temporal Detection

Fig. 7. Results of wideband temporal spectrum detector for OFDM signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

D. Simulation 1 Results: Quantitative Comparison of Tech-
niques

Quantitative sensing results are depicted by ROC (receiver
operating characteristic) curves generated by the simulation.
The probability of true detect, defined as the proportion of
trials in which the detector correctly indentified that an active
PU was transmitting, is plotted against the probability of false
detect, defined as the proportion of trials in which the detector
incorrectly indentified an idle PU to be an active PU. The
ROC curves represent the average detector performance over
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Wideband Temporal Detection

Fig. 8. Results of wideband temporal spectrum detector for GMSK signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

many random wideband captures using the same modulation,
duty cycle, and SNR. Performance of the wideband energy
detector is shown in Fig. 9 for OFDM and Fig. 10 for GMSK.
Performance of the wideband edge detector is shown in Fig. 11
for OFDM and Fig. 12 for GMSK. In the wideband energy
and edge detector results, it can clearly be observed that
detector performance degrades as PU duty cycle decreases.
In the case of GMSK, the performance of the wideband edge
detector is substantially degraded, due to the edge detector’s
hindered ability to detect gradual changes. Performance of the
wideband temporal spectrum detector is shown in Fig. 13 for
OFDM and Fig. 14 for GMSK. It is clear from these results
that the proposed detector’s performance was not significantly
degraded by reduced duty cycles.
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Fig. 9. ROC curve for wideband energy detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.
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Fig. 10. ROC curve for wideband energy detector for GMSK signals with
10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.
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Fig. 11. ROC curve for wideband edge detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

E. Simulation 2 Results

For simulation 2, false alarm and true positive rates were
collected for a variety of thresholds at all tested SNR and
energy detection windows. To impose many ROC curves onto
a single plot, true positive rate at a constant false alarm rate
(CFAR) of 0.01 is shown. In Fig. 15, the true positive rate for
a CFAR of 0.01 is shown for the proposed detector against
OFDM signals with duty cycle of 0.125 and varying SNR. In
Fig. 16, the true positive rate is shown for GMSK signals. As
the energy detection window increases, the sensitivity of the
detector increases. However, increasing energy detector length
increases the likelihood that samples from idle and busy cycles
are averaged together, degrading detector performance.
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Fig. 12. ROC curve for wideband edge detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.
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Fig. 13. ROC curve for wideband temporal spectrum detector for OFDM
signals with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

VI. CONCLUSION

The proposed wideband temporal spectrum sensing frame-
work performed comparably for bursting signals with var-
ious duty cycles to the wideband energy detector applied
to signals with 100% duty cycle. In the case of bursting
signals, the recursive wideband temporal spectrum sensing
algorithm proved to be much more robust than the frequency-
only sensing algorithms. The power of the proposed sensing al-
gorithm comes at the cost of computation time: O(Nc log2Nc)
narrowband sensing operations must be performed, as well
as FIR filtering for channel selection. We suggest that a
cognitive radio would use this wideband sensing algorithm
during initialization and revert to narrowband or multiband
sensing once the set of PU channels for temporal sensing has
been determined. The Baum-Welch algorithm may continue
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Fig. 14. ROC curve for wideband temporal spectrum detector for GMSK
signals with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.
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Fig. 15. CFAR curves for wideband temporal spectrum detector for OFDM
signals with duty cycle of 12.5%, SNR ranging from -20 to 20 dB, and energy
detection window of 1, 10, 100, or 1000 samples.

to be leveraged, in the narrowband or multiband case, both
for refining parameter estimation and prediction of future PU
state. To accommodate time-varying RF environments, an SU
can alternate between wideband temporal sensing for channel
acquisition and multiband sensing for PU tracking.

Several extensions of the proposed wideband temporal spec-
trum sensing algorithm could be explored further. To reduce
overall computation, use of a frequency-domain channelizer
that allows the channel selection operators to share filter
computations and leverages heavily optimized implementa-
tions for the FFT could be investigated. To improve PU
state detection and prediction accuracy for a wider range
of PU behaviors, the HMM could be extended to a hidden
bivariate Markov model [17], which has phase-type, rather
than geometric state sojourn time distributions. In the present
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Fig. 16. CFAR curves for wideband temporal spectrum detector for GMSK
signals with duty cycle of 12.5%, SNR ranging from -20 to 20 dB, and energy
detection window of 1, 10, 100, or 1000 samples.

paper, a simple energy detector was used as a front-end for the
HMM-based parameter estimator and state detector. Even with
the performance gain that could be achieved by extending our
scheme using a hidden bivariate Markov model, detection of
a PU at very low SNR using an energy detector may perform
poorly. For such low SNR scenarios, better performance could
be achieved by means of a matched filter or cyclostationary
detector in conjunction with the recursive channel search.
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