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Abstract—In a wireless system with opportunistic spectrum
sharing, secondary users equipped with cognitive radios attempt
to access radio spectrum that is not being used by the primary
licensed users. On a given frequency channel, a secondary user
can perform spectrum sensing to determine spatial or temporal
opportunities for spectrum reuse. Whereas most prior works
address either spatial or temporal sensing in isolation, we propose
a joint spatial-temporal spectrum sensing scheme, which exploits
information from spatial sensing to improve the performance of
temporal sensing. We quantify the performance benefit of the
joint spatial-temporal scheme over pure spatial sensing and pure
temporal sensing based on counting rule and linear quadratic
detectors. Finally, we analyze a multi-level quantization feedback
scheme that can improve the performance of temporal sensing
based on counting rule detectors.

Index Terms—Dynamic spectrum access, cognitive radio, hy-
pothesis testing, spectrum sensing

I. I NTRODUCTION

In traditional wireless systems, spectrum or frequency is
allocated to licensed users over a geographic area. Within these
constraints, spectrum is considered a scarce resource due to
static spectrum allocation. Recent empirical studies of radio
spectrum usage have shown that licensed spectrum is typically
highly under-utilized [2], [3]. To recapture the so-called“spec-
trum holes,” various schemes for allowing unlicensed or sec-
ondary users to opportunistically access unused spectrum have
been proposed. Opportunistic or dynamic spectrum access is
achieved by cognitive radios that are capable of sensing the
radio environment for spectrum holes and dynamically tuning
to different frequency channels to access them. Such radios
are often calledfrequency-agile or spectrum-agile.

On a given frequency channel, a spectrum hole can be
characterized as spatial or temporal. Aspatial spectrum hole
can be specified in terms of the maximum transmission power
that a secondary user can employ without causing harmful
interference to primary users that are receiving transmissions
from another primary user that is transmitting on the given
channel. Spectrum reuse in this context is similar to frequency
reuse among cochannel cells in a cellular network. Atemporal
spectrum hole is a period of time for which the primary
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transmitter is idle. During such idle periods, a secondary user
may opportunistically transmit on the given channel without
causing harmful interference.

Spatial spectrum sensing is investigated [4], [5], wherein
the maximum interference-free transmit power (MIFTP) of a
given secondary user is estimated based on signal strengths
received by a group of secondary nodes. To calculate the
MIFTP for a secondary node, estimates of both the location
and transmit power of the primary transmitter are estimated
collaboratively by a group of secondary nodes. Using these
estimates, each secondary node determines its approximate
MIFTP, which bounds the size of its spatial spectrum hole.
In [4], [5], the primary transmitters are assumed to transmit
at constant powers. However, this assumption does not allow
secondary users to take advantage of temporal spectrum holes.
In practice, the primary transmitter may alternate between
being active (ON) and idle (OFF).

The problem of detecting when the primary is ON or OFF
is called temporal spectrum sensing. Cooperative temporal
sensing has been studied in [6]–[8]. The decision on the
ON/OFF status of the primary transmitter can be made either
at individual secondary nodes or collaboratively by a group
of secondary nodes. Cooperation among secondary nodes for
temporal sensing can overcome problems posed by low signal-
to-noise ratio (SNR), shadowing, and hidden terminals [8].A
practical solution for cooperative temporal sensing is proposed
in [8], whereby individual secondary nodes make decisions
about the ON/OFF status of the primary transmitter indepen-
dently. A fusion center or centralized controller collectsthe
individual hard decisions made by all secondary nodes and
then makes a final decision on whether the primary is idle or
active. The fusion center is assumed to know the geographic
locations of all cooperating secondary nodes and hence can
estimate the correlations between their observations. However,
the fusion center does not generally have knowledge of the
primary’s location or transmit power. A suboptimal temporal
detector is proposed in [9] based on a linear quadratic (LQ)
detector that uses partial statistical knowledge to improve
detection performance. As discussed in [8], the LQ detector
outperforms a simpler detector based on a counting rule in the
regime of moderate to high correlation among the secondary
nodes.

In this paper, we propose a joint spatial-temporal sensing
scheme for wireless networks with opportunistic spectrum
sharing. We consider the case of a single primary transmitter
that alternates between ON and OFF states. During the ON
state, secondary nodes perform collaborative spatial spectrum
sensing. When the primary transmitter is in the ON state,
the secondary nodes employ spatial spectrum sensing to esti-
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mate the MIFTP (cf. [4]). Estimation of the MIFTP involves
localization of the primary transmitter and estimation of its
transmit power. When the primary transmitter is in the OFF
state, a given secondary user can transmit at maximum power.
Here, spatial spectrum sensing relies on temporal spectrum
sensing in order to determine the ON/OFF state of the primary
transmitter. In a pure spatial sensing scheme, the primary
transmitter is assumed to be ON at all times. Thus, when
the primary is actually OFF for some portion of time, pure
spatial sensing will tend to underestimate the transmit power
of the primary. Temporal sensing information can be used to
trigger spatial sensing activity only during the ON periodsof
the primary transmitter. This will result in a more accurate
estimate of the primary transmitter parameters and hence
improve the accuracy of spatial sensing.

Conversely, localization information for the primary trans-
mitter obtained from spatial spectrum sensing are used to
improve the performance of temporal sensing. Approximate
knowledge of the primary transmitter’s location are used to
intelligently select a subset of the observations from secondary
nodes for temporal sensing. Temporal sensing performance can
be improved in this way because the observation set can be
selected from the secondary nodes so as to minimize the cor-
relations among the observations. Our simulation results show
that the proposed spatial-temporal sensing scheme outperforms
pure temporal sensing based on either a counting rule or LQ
detector.

We also investigate a multi-level quantization detection
strategy for temporal sensing based on the counting rule
in which each secondary node sends anm-bit decision to
the fusion center. Thus, the observations received from the
secondary nodes are quantized to2m levels. Previous works
on temporal spectrum sensing (cf. [6]–[8]) assume that each
secondary node sends only a one-bit decision to the fusion
center where the final decision is made on whether the primary
is ON or OFF. This approach can be useful when there is
very limited communication bandwidth between secondary
nodes and fusion center, but it leads to significantly poorer
performance compared to a centralized approach. A central-
ized fusion center computes the joint likelihood of all soft
observations to obtain the final detection decision. However,
the centralized approach is difficult to implement in practice
because it requires a relatively large communication bandwidth
between the secondary users and the fusion center. Therefore,
the proposed multi-level feedback scheme represents a com-
promise between the distributed one-bit feedback scheme and
the centralized detector.

The remainder of the paper is organized as follows. Sec-
tion II describes the system model for spatial spectrum and
temporal spectrum sensing. Section III develops that joint
spatial-temporal sensing scheme and compares its achievable
capacity relative to pure spatial and pure temporal sensing
schemes. Section IV investigates the performance of temporal
sensing based on the counting rule with multi-level feedback.
Section V presents simulation results. Finally, the paper is
concluded in Section VI.

II. SYSTEM MODEL

We consider a discrete-time system model with a single
primary transmitter andM secondary users equipped with
frequency-agile cognitive radios. The primary transmitter can
be in one of two states: an ON state in which it transmits
with constant powersp, and an OFF state in which it does not
transmit.

A. Spatial Spectrum Sensing

All transmissions are assumed to be omnidirectional and the
signal propagation follows a lognormal shadowing model. We
assume the following path loss model (cf. [10]):

L = 10n log10(d/d0) + L0 [dB], (1)

where d is the distance between transmitting and receiving
antennas in meters,L is the path loss in dB,L0 is the
attenuation at a reference distanced0, L0 = 20 log10(

4π
λ ) and

λ is the wavelength in meters. Accounting for the effect of
shadowing and noise, the received power at nodev due to
nodep can be represented as a lognormal random variable:

Rv = sp − 10n log10(dp,v/d0) +W [dBm], (2)

where n is the path loss factor,sp (dBm) is the transmit
power of nodep at d0, anddi,j denotes the distance between
node i and nodej in meters. Here, we approximate the
sum of the shadowing and noise powers as a lognormally
distributed random variableW ∼ N (0, σ2

W ), whereσ2
W is the

shadowing noise variance. We define the path loss function
g(d) , 10n log10(d/d0). Then the path loss from nodei to
nodej is given by

Li,j , g(di,j , n) +W [dBm].

We shall make use of some concepts related to spatial
spectrum sensing from [4]. Themaximum interference-free
transmit power (MIFTP) of a secondary node is defined as
the maximum transmit power on a given channel such that
the probability of interference to any potential victim node
(i.e., a primary receiver) is less than a prescribed threshold.
The outage probability of a victim nodev with respect to the
transmitterp, is the probability that the received powerRv

from nodep falls below a predetermined detection threshold
rmin: Pout(p, v) , P (Rv < Rmin). The coverage distance
is the maximum distance between nodep and any potential
victim node v such thatPout does not exceed a predefined
thresholdǫcov > 0: dcov(p) , max{dp,v : Pout(p, v) ≤ ǫcov}.
The coverage area of the transmitterp is the disk centered at
nodep with radiusdcov(p).

The received power at nodev from nodea is given by
Iv = sa − g(da,v) +W , wheresa is the transmit power ofa.
The interference probability in the spatial domain with respect
to a given victim nodev is the probability thatIv exceeds a
predefined interference tolerance thresholdimax: Ps(a, v) ,

P (Iv ≥ imax). For a single fixed primary transmitterp and
FAR nodea, the MIFTP is the maximum transmit power of the
FAR node such that the interference probability with respect
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to any potential victim node within the coverage distance from
nodep does not exceed a thresholdǫint > 0:

s∗a , max{sa : Ps(a, v) ≤ ǫint,∀v : dp,v ≤ dcov(p)}.

The worst-case interference probability is given by

Ps(a) , max
v

Ps(a, v) = Q

(

imax − sa + g(d∗a)

σW

)

. (3)

whered∗a , dp,a− dcov(p). An approximation for the MIFTP
based on received signal strength measurements is developed
for the case of a single primary transmitter in [4] and the
case of multiple cochannel primary transmitters in [11], re-
spectively.

To mitigate the effect of shadowing and low SNR, coop-
eration among the secondary nodes is necessary to perform
both spatial and temporal spectrum sensing. We assume that
all secondary nodes have the same detection distance, i.e.,
they are equipped with detectors having the same receiver
sensitivity. The set of secondary nodes that performs temporal
sensing may be different from the set of nodes that performs
spatial sensing. LetS andT denote the sets of nodes that are
involved in spatial sensing and temporal sensing, respectively.
The nodes inS are assumed to be located within a circle
centered at primary transmitter location(xp, yp) with radius
equal to the detection distanceddet(a).

B. Temporal Sensing Model

We adopt a model of temporal spectrum sensing similar to
the one described in [8]. Each node inT makes an independent
decision about the ON/OFF state of the primary transmitter.
The fusion center randomly selects a subsetT̃ ⊂ T of nodes
and requests the ON/OFF decisions from the set of nodes in
T̃ . The main task of the fusion center is to decide whether
the primary transmitter is in the ON or OFF state. We assume
that all secondary nodes use identical energy detectors. Since
the nodes inT are expected to be located relatively close to
each other, the distributions of received power at these nodes
are assumed to be identical and correlated.

Temporal spectrum sensing can be formulated as a binary
hypothesis testing problem in which the fusion center deter-
mines whether or not the current mean received power is
higher than the received power when the primary transmitter
is in the OFF state [8]. We define two hypotheses:H0 is the
hypothesis that the primary is ON and located close to the
secondary nodes, i.e., no spectrum hole exists, andH1 is the
hypothesis that the primary is OFF or far away, i.e., a spectrum
hole exists. Thus, underH1, a secondary node could reuse the
frequency channel without causing interference to the primary
system. Nodei ∈ T performs temporal sensing by computing
an observationYi, obtained by subtracting an estimate of the
sum of the noise and interference power from the received
power.

Let Y = (Yi : i ∈ T̃ ) denote the vector of observations at a
given observation epoch. The hypothesis testing problem can
then be formulated as follows:

H0 : Y ∼ N (α1,Σ), (4)

H1 : Y ∼ N (0, σ2
0I), (5)

with α ≥ µ, whereµ , E[10 log10(1+SNR)] [dB], andSNR
is the signal-to-noise ratio at the secondary nodes at the largest
distance from the primary user or, equivalently, the smallest
mean received signal-to-noise ratio when the primary is ON.
In (4) and (5),N (v,Σ) denotes the multivariate Gaussian
distribution with mean vectorv and covariance matrixΣ and
σ2

0 is the variance of the noise power underH1. The symbols
0 and 1 denote vectors of all zeros and ones, respectively,
and I is the identity matrix of appropriate dimension. The
(i, j) element of the covariance matrixΣ is given byΣij =
σ2

1ρ
dij/Dc wheredij is the distance between nodesi and j

in meters,σ2
1 is the variance of the noise power underH1,

and ρ is the correlation coefficient between secondary nodes
separated by a reference correlation distanceDc in meters.
The parameterα represents the mean power observed under
H0.

The probability of temporal interference with the primary
transmitter is equivalent to the false alarm probabilitypf =
P0(δ = H1), whereδ is the decision rule used by the fusion
center andP0(·) is the probability measure underH0. In
general, the temporal interference probabilityP0(δ = H1)
does not necessarily equal the spatial sensing interference
probability Ps(a) given in (3). The temporal sensing system
is designed such that the probability of temporal interference
is less than or equal to a pre-specified valueκ:

pf = P0(δ = H1) ≤ κ. (6)

The constraint (6) must be satisfied for all values ofα ≥ µ in
(5). Since the prior information about the distribution of the
mean powerα is unknown, the composite binary hypothesis
testing problem given by (4) and (5) is designed under a robust
and universally most powerful detection framework [12]. In
other words, the system is designed such that (6) is satisfied
for the least favorable value ofα, i.e.,α = µ [8]. This results
in a simple Neyman-Pearson hypothesis testing problem:

H0 : Y ∼ N (µ1,Σ),

H1 : Y ∼ N (0, σ2
0I).

The final decisionδ is made at the fusion center, which
has access to only binary-value decisions made individually
by the secondary nodes based on the observation vectorY.
We denote byUi the individual decision made by theith
temporal sensing secondary node, based on the observation
Yi. Correspondingly,U = (Ui : i ∈ T̃ ) denotes the vector of
0-1 hard decisions made by the secondary nodes inT̃ .

Let

L(Yi) ,
p1(Yi)

p0(Yi)
,

denote the likelihood ratio of the observation at nodei ∈
T̃ , wherep0(·) and p1(·) denote, respectively, the posterior
distributions under hypothesesH0 andH1, respectively. Then
the optimal decision at nodei can be represented asUi =
I{ln L(Yi)>τ}, whereIA denotes the indicator function of the
setA. A secondary node decidesH1 if Ui = 1 and otherwise
decidesH0. The thresholdτ is chosen to ensure that (6) is
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satisfied. The fusion center makes a final decision based on
the decision bit vectorU.

Under the so-calledcounting rule, the final decision is made
by comparing the sum

∑

i∈T̃ Ui to a decision threshold. If
the sum

∑

i∈T̃ Ui is greater than the threshold, the fusion
center decidesH1 and otherwise decidesH0. The value of
this threshold is obtained through simulation [8]. When the
observations across all of the nodes are independent and
identically distributed under both hypotheses, the counting rule
detector is optimal, since the joint likelihood ratio of thebits is
a function only type of the number of ones in the received bit
vector U. The counting rule detector is also efficient when
the correlations between the individual observationsYi are
relatively small.

When the observations at the secondary nodes are corre-
lated, the Linear Quadratic (LQ) detector yields a significant
performance gain over the counting rule detector, while still
using only partial statistical knowledge about the correlated
decision variables [8]. The LQ detector is based on the
generalized signal-to-noise ratio or deflection criterion, and
makes use of fourth-order statistics underH1 and second order
statistics underH0. We consider a fusion rule based on a class
of LQ detectors that compare a linear quadratic function of
decision vector to a threshold. The optimal LQ detector is
derived in [9] for an arbitrary noise probability distribution
with finite fourth order moments. When the observations at
the secondary nodes are correlated, the LQ detector provides
a simple fusion rule that yields significant performance gain
over the Counting Rule while still using only partial statistical
knowledge about the correlated decision variables [8].

III. JOINT SPATIAL -TEMPORAL SPECTRUMSENSING

The basic idea of joint spatial-temporal sensing as follows.
A group of secondary nodes cooperatively localizes the pri-
mary transmitter, e.g., using signal strength observations [4].
Concurrently, a (possibly different) set of secondary nodes
performs temporal spectrum sensing using knowledge of the
estimated location and transmit power of the primary trans-
mitter from the spatial sensing process. By performing both
spatial and temporal sensing, a group of secondary nodes
acquires sufficient knowledge to exploit the presence of both
spatial and temporal spectrum holes. In the remainder of this
section, we discuss a model for joint spatial-temporal sensing,
a heuristic for intelligently node selection for temporal sensing,
and capacity expressions for the temporal sensing, spatial
sensing, and joint spatial-temporal sensing schemes.

A. Model

When the primary transmitter is ON, transmitteri transmits
with power equal to its estimated maximum interference-free
transmit powerMIFTPi. Otherwise, when it is OFF, a given
secondary user can transmit with power up to a maximum level
Pm. We assume that the secondary users can coordinate among
themselves by means of a suitable medium access control
(MAC) protocol. Secondary receivers are affected by both
large-scale and small-scale fading. The small-scale fading is
modeled as Rayleigh block fading where the fading coefficient

Hii is constant overNu time slots, withNu being the number
of transmitter-receiver pairs involved in communications. The
shadow fading is modeled by a lognormally distributed random
variable [13].

When a temporal spectrum hole occurs, i.e., when the
primary transmitter is OFF, a given secondary node can
transmit with power up to a maximum levelPm. On the other
hand, when the primary transmitter is ON, the secondary node
can still transmit, but in this case, its transmit power willbe
limited to its MIFTP with respect to the primary transmitter.
The MIFTP estimated by the secondary node depends on the
locations of the secondary node and the primary transmitter,
as well as the power of the primary transmitter. The spatial
information associated with the primary transmitter must be
estimated during the ON state of the primary transmitter.
At the same time, the spatial information concerning the
primary transmitter can be used to improve the performance
of temporal sensing. The availability of more accurate spatial
information can improve the accuracy of temporal sensing,
which in turn can improve the accuracy of the estimated
spatial information. The simulation results presented in Sec-
tion V demonstrate that a significant performance gain can
be achieved by joint spatial-temporal sensing relative to pure
spatial sensing and pure temporal sensing.

B. Node Selection for Temporal Sensing

In joint spatial-temporal sensing, the secondary nodes col-
laboratively perform both spatial and temporal sensing. The
primary transmitter parameters estimated via spatial sensing
are used to improve the accuracy of temporal sensing. Using
the estimated location of the primary transmitter, the fusion
center for detecting temporal spectrum holes can intelligently
choose a subset of the observation data from the secondary
nodes so as to optimize detection performance. We propose
two criteria for node selection: (1) minimum distance from the
primary transmitter; (2) minimum correlation values between
pairs of signal strength observations.

Let T denote the set of secondary nodes involved in
temporal sensing. Then the fusion center fuses the individual
decisions from the “best” subset̃T of T̃ nodes from the
T = |T | nodes in the setT based on one of the two
criteria. We assume that the fusion center has knowledge of
the approximate locations of the nodes inT . In practice, the
nodes inT could send location updates to the fusion center
at regular intervals. We remark that the time-scale for location
updates would be much larger than that of decision-making
for temporal spectrum holes. With knowledge of the locations
of the nodes inT , the fusion center can achieve the first
criterion straightforwardly: Simply let̃T be a subset consisting
of the T̃ secondary nodes inT that are closest to the primary
transmitterp.

The second criterion is generally more difficult to achieve.
Algorithm 1 is a heuristic that attempts to choose a subset of
nodes such that pairs of observations from these nodes have
small correlations (cf. [1]). The heuristic initializes̃T to be
the entire setT and then successively removes nodes from
T̃ until |T̃ | = T̃ . At each step, the node chosen for removal
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from T̃ is chosen by first finding the pair(a, b) of nodes inT̃
that are closest to each other. Thena or b is removed fromT̃
according asa or b is farther from the primary transmitterp,
respectively. The heuristic of Algorithm 1 is applied in the
simulation results discussed in Section V-B.

Algorithm 1 Node selection heuristic for Criterion 2.

1: Input: T , T̃ , di,j , (i, j) ∈ T ∪ {p}; Output: T̃
2: T̃ ← T
3: while |T̃ | > T̃ do
4: (a, b)← arg min(i,j)∈T̃ di,j

5: if da,p < db,p then
6: T̃ ← T̃ − {b}
7: else
8: T̃ ← T̃ − {a}
9: end if

10: end while

C. Achievable capacity

Next, we consider the achievable capacity of the proposed
joint spatial-temporal sensing scheme relative to that of pure
temporal sensing and pure spatial sensing. We adopt the
narrowband spatial capacity model in [14] with the additionof
shadow fading. Assume thatNu pairs of secondary transmit-
ters and receivers are placed within a circular region centered
at the primary transmitter with radius equal toR. The location
of receiver i is assumed to be uniformly distributed over a
circular strip bounded by two concentric circles centered at
transmitteri, of radius dmin and radiusdmax, respectively.
Under this assumption, the distanceDii has the following pdf
(cf. [14]):

fDii
(d) =

2d

d2
max − d

2
min

, d ∈ [dmin, dmax],

i = 1, . . . , Nu. In [14], the number of transmitter-receiver
pairs,Nu, is assumed to be a Poisson random variable, but
for the purposes of this discussion we will assume thatNu is
constant. We further assume a time division multiple access
(TDMA) model wherein each frame containsNu time slots
that are scheduled for user transmissions.

Under pure spatial sensing, transmitteri can transmit to
receiveri with power levelMIFTPi. Hence, the achievable
capacity for theith transmitter-receiver pair is given by

CS,i =B ·E

{

log2

(

1+
MIFTPi(Dii/d0)

−nW

N0B
|Hii|

2

)}

, (7)

where the expectationE[·] is taken with respect to the
transmitter-receiver distanceDii, the shadowing noiseW and
fading coefficientsHii. As in [14], we assume that the channel
gain between transmitteri and receiverj is normalized, i.e.,
E{|H2

ij |} = 1. Therefore, the average capacity under pure
spatial sensing is given byCS = 1

Nu

∑Nu

i=1 CS,i.
Let pon and poff denote the probability that the primary

transmitter is ON and the probability that it is OFF, respec-
tively. Let pd = P1(δ = H1) denote the probability of correct
detection of a temporal spectrum hole, i.e., the probability that

the fusion center correctly decides that the primary transmitter
is OFF given that it is in fact in the OFF state. If the primary
transmitter is OFF and the fusion center makes a correct
detection decision, then secondary nodei can transmit with
power up to a maximum levelPm. Hence, the achievable
capacity under pure temporal sensing for theith transmitter-
receiver pair is given by

CT,i =poffpdB ·E

{

log2

(

1+
Pm(Dii/d0)

−nW

N0B
|Hii|

2

)}

.

(8)

Hence, the average capacity of pure temporal sensing scheme
can be expressed asCT = 1

Nu

∑Nu

i=1 CT,i.
In joint spatial-temporal sensing, a given secondary nodei

achieves the temporal sensing capacityCT,i plus additional
capacity due to spatial sensing when the primary transmitter
is in the ON state. By combining (7) and (8), we can obtain
the achievable capacity of joint spatial-temporal sensingas
follows:

CST,i = CT,i + [poff(1− pd) + pon(1− κ)]CS,i, (9)

whereκ is the probability of temporal interference with the
primary transmitter (cf. (6)). Here, we note that there is no
spatial capacity gain when the secondary node collides tem-
porally with the primary transmitter, i.e., when the secondary
node decides that a temporal hole is present even though the
primary transmitter is actually in the ON state. The average
capacity under joint spatial-temporal sensing is then given by
CST = 1

Nu

∑Nu

i=1 CST,i.

D. Overhead

The overhead of joint spatial-temporal sensing compared to
pure temporal sensing consists of the additional computation
carried out by the fusion center to select the subset of temporal
sensing nodes. After the subset of temporal sensing nodes is
determined by the fusion center, this set will remain unchanged
until the fusion center selects a new subset. In general, the
fusion center selects a new subset of temporal sensing nodes
when the location of the primary transmitter changes. We
assume that the time scale over which the primary transmitter
changes its location is much larger than the time scale of its
ON/OFF durations. Under this assumption, the extra overhead
of joint spatial-temporal sensing compared to temporal sensing
is not significant in practice. Compared to pure spatial sensing,
the overhead of joint spatial-temporal sensing consists ofthe
overhead of the temporal sensing process. The optimal design
of the temporal sensing duration and the associated throughput
of a cognitive radio has been studied in [15].

IV. T EMPORAL SENSING WITH MULTI-BIT FEEDBACK

In the counting rule and LQ detectors, all the temporal
sensing nodes send only a one-bit decision to the fusion center
which fuses all the local hard decisions to arrive at a final
decision. We propose anm-bit feedback approach for counting
rule detector, whereby each node divides its observation region
into 2m quantization levels and sends anm-bit decision to
fusion center.
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A. Centralized Detector

In centralized detection, a subsetT̃ of secondary nodes
sends a set of soft observationsYi, i = 1, 2, ..., |T̃ | to the
fusion center, where a joint likelihood ratio test on the entire
vectorY is performed. The posterior pdfs are given by

fY(y|H0) =
1

(2π)n/2 det(Σ1/2)
e−

1

2
(y−α)∗Σ−1(y−α), (10)

fY(y|H1) =
1

(2π)n/2
exp





|T̃ |
∑

i=1

−y2
i

2σ2
0



 , (11)

wherex∗ denotes the complex conjugate transpose of vector
x. Combining (10) and (11) we obtain the joint log likelihood
ratio of the received vector at the fusion center as follows:

lnL(y)=ln(det Σ1/2)−

|T̃ |
∑

i=1

y2
i

2σ2
0

+
(y−α)∗Σ−1(y−α)

2
.

(12)

The fusion center compares the received log likelihood ratio
with a threshold. The threshold is determined such that the
false alarm probability is below a predetermined constantκ.

B. Multi-level quantization

At node i, the log-likelihood ratiolnL(Yi) of the observa-
tion Yi is computed. The decision rule at each node is specified
as follows:

Ui =







0, if lnL(Yi) ≤ tl,
θi, if tl < lnL(Yi) < tu,
1, if lnL(Yi) ≥ tu,

(13)

where0 < θi < 1 and the region(tl, tu) is called the region
of no confidence. If the log-likelihood ratio of nodei falls
into this region, it transmits a soft decisionθi to the fusion
center. The other two complementary regions to(tl, tu) are
called confidence regions. For a given nodei the value of
θi is quantized using a scalar quantizerQi, which maps the
input variableθi belonging to the interval[0, 1] into the output
variableθij , j = 1, 2, . . . , q whereθi1 = 0 if lnL(Yi) ≤ tl and
θiq = 1 if lnL(Yi) ≥ tu. The number of quantization levels,q,
is constrained by the communication rate of the channel,Ri,
i ∈ T̃ . If mi is the number of assigned bits, the communication
rate satisfies0 ≤ 2mi ≤ Ri, i ∈ T̃ .

We consider a uniform quantizer [16] that divides the closed
interval [0, 1] into q quantization levels, where0 and 1 are
two of the levels. Hence, the open interval(0, 1) is divided
into q − 2 quantization levels with uniform step sizeψ =
1/(q−2). If the value of the log-likelihood function falls within
thejth quantization interval (j = 2, 3, . . . , q−1) the quantized
value is taken to be the middle of that interval. The transfer
characteristic function of the quantizer can be specified as

θi =







θi1 = 0, if lnL(Yi) ≤ t1,
θij , if tj−1 < lnL(Yi) < tj , j=2, . . . , q−1,
θiq = 1, if lnL(Yi) ≥ tq−1,

(14)

where

θij ,

(2j − 1

2

)

ψ, i = 1, 2, . . . T̃ , j = 2, 3, . . . , q, (15)

Fig. 1. Generation of secondary node locations.

t1 = tl and tq−1 = tu. At the fusion center, the decision is
made by comparing the sum of all received observations to a
thresholdτ :

δ =

{

H0, if
∑T̃

i=1 θi < τ,

H1, if
∑T̃

i=1 θi > τ.
(16)

Since the detection metric is discrete-valued,randomization
may be required to achieve equality in the interference prob-
ability constraint [12].Randomization for the counting rule
detector can be implemented by finding two thresholds

τ1 = max{ν : P0(δ = H1|τ = ν) < κ}, (17)

τ2 = min{ν : P0(δ = H1|τ = ν) > κ}, (18)

whereκ is a threshold that limits the probability of interference
for temporal sensing (cf. (6)). LetPt1 and Pt2 denote the
interference probabilities obtained when using thresholds τ1
andτ2, respectively. The thresholdsτ1 andτ2 are chosen with
probabilities1− p andp, respectively, where

p =
κ− Pt1

Pt2 − Pt1
. (19)

The average interference probability is then given by

κ = pPt2 + (1− p)Pt1. (20)

When the observations are independent or the correlations
between observations are small, the counting rule in (16) isop-
timum or near-optimum [16]. However, when the correlations
among the observations are high, the counting rule detector
(16) performs poorly.

V. NUMERICAL RESULTS

In this section, we compare the performance gain of the
joint spatial-temporal sensing scheme with a pure temporaland
spatial sensing schemes via simulation in various scenarios. In
all scenarios, we assume that the transmit power,sp, of the
primary transmitter is unknown. Under joint spatial-temporal
sensing, the secondary nodes collaboratively estimate both sp

and the location of the primary transmitter. The following
parameter settings are used in our simulation experiments:
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Fig. 2. Spatial-temporal sensing vs. temporal sensing withρ = 0.6.

• rmin = −30 dBm, imax = −80 dBm, ǫint = 0.01 and
ǫcov = 0.05;

• σW = 4 dB , sp = 80 dBm, path loss factorn = 3,
σ0 = 1 dB;

• σ1 = 2.1 dB, µ = 3.4 dB .
In the simulation experiments for achievable capacity, addi-
tional parameter settings are given as follows:

• d0 = 1 m, rmin = 10 m, rmax = 100 m, Nu = 50;
• Pm = 90 dBm, poff = pon = 0.5 andB = 1 Hz.
The primary transmitter is located atLp = (5, 5) km. All

secondary nodes are located in a disk of radiusR = 100 km.
The MIFTP values of the secondary nodes range from zero to
60 dBm. The reference distance for temporal sensing nodes
may be different from the reference distance in the disk cen-
tered atLp with radiusR because the temporal sensing nodes
are located very far from the primary transmitter, i.e., where
the received SNR = 0 dB. As shown in Fig. 1, the locations
of |S| = 20 secondary nodes for spatial spectrum sensing
are generated randomly with uniform distribution inside the
circle centered atLp with radius equal toddet(a). All temporal
sensing nodes are placed inside a square with the smallest
possible mean receivedSNR = 0 dB. For the simulation
results shown in Figs. 2-12, 95% confidence intervals were
computed, but they are omitted from the figures to maintain
visual clarity of the plots.

A. High correlation scenario

In the first scenario, we assume the suburban environment
correlation model in [17] withd0 = 1 m, correlation coeffi-
cientρ = 0.6, and correlation distanceDc = 250 m. We place
18 temporal sensing nodes inside the square area indicated in
Fig. 1 with edge length equal toDc/2 = 125 m. Out of the
18 nodes, nine are placed in fixed locations along the edges
of the square, with even spacing. In particular, assume that
the bottom left corner of the square has coordinates(0, 0) and
the length of an edge is2. Then the coordinates of the nine
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Fig. 3. Achievable capacity gain of joint spatial-temporal sensing, spatial
sensing, and temporal sensing withρ = 0.6.

fixed locations are:(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (1, 1),
(1, 2), (2, 1), and (2, 2). This placement of the nine nodes
is the same as that used in [8]. The remaining 9 nodes are
placed inside the square randomly according to a uniform
distribution, i.e., the x and y coordinates for each of these
nodes are drawn randomly from a uniform distribution on
[0, 2]. Because the nodes inside the square have different
SNRs and the correlationρ is relatively large, the fusion
center chooses the decisions from the nine nodes closest to
the primary transmitter based on its estimated location.

Fig. 2 compares the detection performance of several tem-
poral spectrum sensing schemes in this scenario. In both
figures, the horizontal axis shows the probability of inter-
ference, P0(δ = H1). In Fig. 2, the performance of a
single sensor is shown as the solid line. The performance of
pure temporal sensing under the counting rule and the LQ
detectors are shown with circles and diamonds, respectively.
The LQ detector is seen to clearly outperform the counting
rule, which confirms the results in [8]. Performance curves for
joint spatial-temporal sensing using the counting rule andLQ
detectors are shown with triangles and squares, respectively.
The spatial-temporal sensing scheme is carried out using
criterion 1 (see Section III). We see that the spatial-temporal
LQ detector has the best performance over all values ofP0(δ =
H1). We also observe that the spatial-temporal counting rule
detector performs worse than the temporal LQ detectors when
P0(δ = H1) is small and better whenP0(δ = H1) is larger; the
crossover point is approximately0.005. Fig. 2 clearly shows
the benefit of incorporating spatial information into temporal
spectrum sensing.

Fig. 3 compares the average capacity of joint spatial-
temporal sensing vs. pure temporal and pure spatial sensing.
Clearly, the capacity achieved by the joint spatial-temporal
scheme is significantly higher then that of the other schemes.
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nodes over a subset of nodes selected by Algorithm 1 to minimizepairwise
correlations.

In this figure, two performance curves associated with pure
spatial sensing are shown. The curve labelled “spatial sensing”
corresponds to the performance of a pure spatial sensing
scheme when the primary transmitter is ON at all times. In
this case, the secondary cannot benefit from the time intervals
during which the primary transmitter may be OFF. The curve
labelled “spatial sensing 2” shows the performance of a pure
spatial sensing scheme operating in the presence of a primary
transmitter that follows an ON-OFF pattern, but no additional
temporal sensing information is employed. In this case, the
MIFTP calculated by the secondary node varies over time
due to the ON-OFF pattern of the primary transmitter, but
the MIFTP cannot be determined accurately because signal
strength measurements are taken by the secondary node re-
gardless of whether the primary transmitter is ON or OFF.
As a result, the MIFTP computed by a pure spatial sensing
scheme at a given time may underestimate or overestimate
the permissible transmit power. The latter case may result
in harmful interference to primary users, while the former
case may result in inefficient spectrum use. We observe from
Fig. 3 that the capacity performance of “spatial sensing 2”
is significantly poorer than that of the joint temporal-spatial
sensing schemes, though slightly better than that of “spatial
sensing.” Note that the LQ-based detectors perform better than
the counting rule based detectors, which one would expect, due
to the relatively high correlation in this scenario.

B. Moderate correlation scenario

In the second simulation scenario, we setd0 = 100 m,
ρ = 0.3, correlation distanceDc = 300 m. All nodes inT
have almost the same received SNR. In this scenario, we have
|T | = 18 total nodes for temporal sensing, which are located
randomly in the square shown in Fig. 1 according to a uniform
distribution. A subset,̃T of T̃ = 9 nodes is chosen from the
original setT according to one of the two criteria discussed in
Section III. Fig. 5 compares the performance of the following
four joint spatial-temporal detectors: (1) LQ detector under
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Fig. 5. Joint spatial-temporal sensing with different node selection criteria,
ρ = 0.3.
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Fig. 6. Achievable capacity gain of joint spatial-temporal sensing,ρ = 0.3

criterion 1; (2) Counting rule detector under criterion 1; (3)
LQ detector under criterion 2; (4) Counting rule detector under
criterion 2.

In this scenario, the heuristic given as Algorithm 1 in
Section III is used to implement criterion 2 approximately.
Fig. 4 shows that the heuristic succeeds in reducing the average
correlation between two nodes. As expected, the reduction in
average correlation improves as the total number of secondary
nodes increases. From Fig. 5, we observe that when the
correlation is small and the received SNRs are similar, better
performance is achieved with criterion 2, i.e., the nodes are
selected using Algorithm 1. Under criterion 2, the counting
rule detector outperforms the LQ detector because criterion 2
achieves low correlation among the observations, and when
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Fig. 7. Performance of optimum node selection vs. node selection based on
Algorithm 1 with correlation parameterρ = 0.3.

the correlation is small the counting rule detector outperforms
the LQ detector according to [8]. However, under criterion 1,
the LQ detector still outperforms the counting rule detector
because the correlation remains relatively high. In Fig. 6,
capacity gains of the proposed scheme under both criteria are
compared with that of a pure spatial sensing scheme. It can be
seen that the use of criterion 2 achieves the largest capacity
gain over spatial sensing.

In Fig. 7, we compare the performance of Algorithm 1
relative to an optimal selection of nodes. The optimal node
set is found through simulation by searching over all possible
node combinations. There are

(|T |

|T̃ |

)

possible combinations,

where T is the set of all nodes in the square area andT̃
is the selected subset. In our simulations, we set|T | = 9 and
|T̃ | = 5. It can be seen that the performance of achieved by
Algorithm 1 is quite close to that of an optimum node selection
strategy. We remark that finding the optimum node subset is
impractical when the number of combinations

(|T |

|T̃ |

)

is large.

C. Multi-bit feedback scheme

In Fig. 8, we compare the performance of multi-bit counting
rule temporal sensing in terms of detection probability and
capacity vs. single-bit temporal sensing in a low correlation
scenario withρ = 0.2. In this scenario, 9 nodes are uniformly
distributed over the coverage area. In a region where the cor-
relation is low, the multi-bit scheme significantly outperforms
the counting rule detector. However, when the correlation
parameter is high, the multi-bit scheme does not perform
well, as shown in Fig. 9. This is because the detection rule
at the fusion center is based on the counting rule, which
performs well only when the correlation is small. The results
of Fig. 9 also confirm that in a region with high correlation, the
performance of the LQ detector is higher than that of counting
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Fig. 8. Performance of multi-level quantization vs. other hard decision
detection rules,ρ = 0.2.
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Fig. 9. Performance of multi-level quantization vs. other hard decision
detection rules,ρ = 0.6.

rule based detection schemes.
In Fig. 10, we compare the performance of the pure tempo-

ral LQ detector, the pure temporal counting rule detector, and
pure temporal and joint spatial-temporal sensing with multi-
level quantization (m = 2). The correlation parameters are
set as follows:ρ = 0.3, d0 = 100 m, Dc = 300 m. A
total of |T | = 18 nodes perform temporal sensing and are
located randomly in the square shown in Fig. 1 according to a
uniform distribution. A subset,̃T , of 9 nodes is chosen from
the original setT using Algorithm 1, which seeks to minimize
the correlation between nodes. In Fig. 11, we compare the
capacity of the joint spatial-temporal sensing scheme with2-
bit feedback vs. pure temporal and spatial sensing. We see
that the capacity achieved by joint spatial-temporal sensing is
significant higher than that of the pure temporal and spatial
sensing schemes.

Fig. 12, shows the performance of the LQ detector, counting
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Fig. 10. Performance of multi-bit feedback detector vs. LQ andcounting
rule detectors,ρ = 0.3.
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Fig. 11. Capacity gain of joint spatial-temporal sensing with 2-bit feedback.

rule detector, and multi-bit counting rule detector withm = 2
andm = 4 as a function of the correlation parameterρ and
the interference probability constraintP0(δ = H1) = 0.003.
Again, the LQ detector has the best performance whenρ is
large while the counting rule detector and multi-level counting
rule detector perform well whenρ is small. When the corre-
lation is high, increasing the number of bitsm for multi-level
feedback system does not improve the system performance
appreciably.

Note that the performance curves for the counting rule
based detectors decrease monotonically as functions of the
correlation parameterρ. On the other hand the performance
curves for the LQ detector and the centralized detector are non-
monotonic: they first decrease and then increase as functions
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Fig. 12. Comparison of performance of LQ, Counting Rule and multi-
bit feedback detectors as functions of correlation parameter ρ with P0(δ =
H1) = 0.003.

of ρ. This can be explained in terms of two different features
that can be exploited in the hypothesis testing problem given
by (4) and (5). When the correlation parameterρ is small,
the two hypotheses are distinguishable mainly by the mean
values of the observations. In this case, the counting rule based
detectors are expected to perform well. On the other hand,
whenρ is larger, the two hypotheses are more distinguishable
in terms of second-order statistics, which the counting rule
fails to capture. On the other hand, the LQ and centralized
detectors exploit both features; hence, as we observe in the
results, the performance curves first decrease and then increase
asρ increases.

VI. CONCLUSION

We proposed a joint spatial-temporal sensing scheme for op-
portunistic spectrum sharing in cognitive radio networks.The
system model consists of a primary transmitter with unknown
location and transmit power, which alternates between ON and
OFF states, with respect to a given frequency channel. Spa-
tial spectrum sensing is employed to estimate the maximum
interference-free transmit power for a secondary node during
an ON period. Estimates of the primary transmitter’s location
and transmit power obtained in the course of spatial sensing
are used by a fusion center to select a subset of the secondary
nodes to make a temporal sensing decision, i.e., a decision
as to whether the primary is ON or OFF. Three distributed
temporal sensing algorithms were considered: the counting
rule detector, linear quadratic detector and counting rulewith
multi-bit feedback. By incorporating spatial information, we
obtained joint spatial-temporal versions of these detectors. We
derived the achievable capacity for pure temporal sensing,pure
spatial sensing, and joint spatial-temporal sensing.

Our simulation results show that joint spatial-temporal sens-
ing significantly outperform pure temporal sensing in terms
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of probability of spectrum hole detection and capacity gain.
In this paper, we assumed only a single primary transmitter
on a given frequency channel. In ongoing work, we are
investigating joint spatial-temporal sensing in the presence of
multiple cochannel transmitters.
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