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Abstract

A bivariate Markov process comprises a pair of random processes
which are jointly Markov. One of the two processes in that pair is
observable while the other plays the role of an underlying process. We
are interested in three classes of bivariate Markov processes. In the
first and major class of interest, the underlying and observable pro-
cesses are continuous-time with finite alphabet; in the second class,
they are discrete-time with finite alphabet; and in the third class, the
underlying process is continuous-time with uncountably infinite alpha-
bet, and the observable process is continuous-time with countably or
uncountably infinite alphabet. We refer to processes in the first two
classes as bivariate Markov chains. Important examples of continuous-
time bivariate Markov chains include the Markov modulated Poisson
process, and the batch Markovian arrival process. A hidden Markov
model with finite alphabet is an example of a discrete-time bivariate
Markov chain. In the third class we have diffusion processes observed
in Brownian motion, and diffusion processes modulating the rate of



a Poisson process. Bivariate Markov processes play central roles in
the theory and applications of estimation, control, queuing, biomedical
engineering, and reliability. We review properties of bivariate Markov
processes, recursive estimation of their statistics, and recursive and
iterative parameter estimation.
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Introduction

A bivariate Markov process comprises a pair of random processes which
are jointly Markov. One of the two processes is observable, while the
other plays the role of an underlying process. The underlying process
affects the statistical properties of the observable process. Usually, the
observable process is not Markov, but the underlying process is often
conveniently chosen to be Markov. The theory of bivariate Markov
processes does not require either process to be Markov.

The family of bivariate Markov processes is very rich, and has pro-
duced powerful models in many applications. Perhaps the most familiar
bivariate Markov process stems from the hidden Markov model, see,
e.g., [13, 40]. The underlying process of a hidden Markov model is
a discrete-time finite-state Markov chain, and the observable process
comprises a collection of conditionally independent random variables,
e.g., normal, given the underlying Markov chain. Together, the two pro-
cesses form a bivariate Markov process. Another example follows from
the Markov modulated Poisson process, see, e.g., [43, 78, 93]. Here, the
underlying process is a continuous-time finite-state Markov chain, and
the observable process is conditionally Poisson given the underlying
Markov chain. A generalization of this process is given by a Poisson
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process whose rate is modulated by an underlying diffusion process,
see, e.g., [16, 103, 120]. As a final example, we mention the bivariate
Markov process formed by an underlying diffusion process, and the
same process observed in Brownian motion. Here the underlying pro-
cess is a continuous-time continuous-alphabet Markov process. Bivari-
ate Markov processes play central roles in the theory and applications
of estimation, control, queuing, economics, biomedical engineering, and
reliability.

In general, each of the two process components of a bivariate Markov
process may be discrete-time or continuous-time, with finite, count-
ably infinite, or uncountably infinite alphabet. We shall focus on three
classes of bivariate Markov processes. In the first class, the pair of
processes comprising the bivariate Markov process are continuous-time
with finite alphabet; in the second class, they are discrete-time with
finite alphabet; and in the third class, both processes are continuous-
time with a diffusion underlying process and an observable process
with a countably or uncountably infinite alphabet. Our primary focus
in this paper will be on the first class of processes, which we refer
to as continuous-time bivariate Markov chains or simply as bivariate
Markov chains. We shall refer to processes from the second class as
discrete-time bivariate Markov chains. The processes in the third class
are assumed to be diffusion processes observed in Brownian motion, in
a counting process, or in a mixture of Brownian motion and a counting
process. Some of the results reported here for finite alphabet processes,
apply to bivariate Markov processes with countably infinite alphabet,
by resorting to modulo arithmetic.

The theory of wnivariate Markov processes applies to bivariate
Markov processes. Excellent sources for that theory may be found in
Doob [31], Breiman [15] and Todorovic [109]. Application of the the-
ory of univariate Markov processes to bivariate Markov processes, with
the observable and underlying processes playing different roles, is not
straightforward. Research on various forms of bivariate Markov pro-
cesses has been ongoing for more than four decades. The research
has focused on two main interrelated estimation problems, namely,
parameter and signal estimation. In parameter estimation, the max-
imum likelihood approach has dominated the field. Here, identifiability
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of the parameter of the bivariate Markov process was studied; iterative
estimation approaches in the form of the expectation-maximization
(EM) algorithm were developed; and consistency and asymptotic nor-
mality were proven for parameter estimation of some bivariate Markov
chains. Application of the EM approach requires minimum mean square
error recursive estimation of several statistics of the bivariate Markov
chain. In particular, estimation of the number of jumps from one state
to another, and the total sojourn time of the process in each state, in
a given interval, are required. In other applications, estimation of the
state of the underlying process is of primary interest.

In this paper we present some of the fundamentals of the theory
of bivariate Markov processes, and review the various parameter and
signal estimation approaches. Our goals are to provide a comprehen-
sive introduction to bivariate Markov chains, along with the details of
the various estimation algorithms. While proofs are generally omitted,
an interested reader should be able to implement the estimation algo-
rithms for bivariate Markov chains straight out of this paper. Most of
the material in this paper should be accessible to the signal processing
community. It requires some familiarity with Markov chains and the
intricacies of the theory of hidden Markov models. The discussion on
diffusion processes requires some further knowledge in nonlinear esti-
mation theory.

Our presentation in Sections 1 to 7 focuses on continuous-time
bivariate Markov chains with a finite or countably infinite number
of states. In Section 8 we discuss finite alphabet discrete-time bivari-
ate Markov chains. In Section 9 we consider a bivariate Markov chain
observed through Brownian motion. In Section 10, we provide a glimpse
into the fascinating topic of bivariate Markov processes with underly-
ing diffusion processes. Several applications are discussed in Section 11,
and some concluding remarks are given in Section 12.
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Preliminaries

The theory of continuous-time univariate Markov chains applies to
continuous-time bivariate Markov chains. In this section we review
that theory, and state the results as they specialize to continuous-
time bivariate Markov chains. The latter is the main class of processes
reviewed in this paper. Our presentation in this section follows Todor-
ovic [109], and Breiman [15]. We also provide in this section several
important examples of bivariate Markov processes, and discuss their
interrelations. We conclude this section by reviewing a result due to
Van Loan [110], which has turned out to be quite useful in recur-
sive estimation of the statistics and parameter of the bivariate Markov
chain.

Throughout this paper, we use capital letters to denote random
variables and lower case letters to denote their realizations. We also
use the generic notation P(-) for a probability measure and p(-) for
a density. We indicate that a matrix A has non-negative elements by
writing A > 0. This notation should not be interpreted as A being pos-
itive semi-definite. Similarly, A > 0 indicates that all elements of A are
positive.
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2.1 Continuous-time Markov Chains

Let Z = {Z(t),t > 0} denote a continuous-time bivariate Markov chain,
which takes values in a countable state space Z, and is defined on a
given probability space. The bivariate Markov chain comprises a pair
of random processes, say Z = (X,.5), which are jointly Markov. For the
given probability measure P, any positive integer n, any sequence of

time instants tg < t; < --- < t,, and any sequence of states zg, z1,...,2n
in 7Z,
P(Z(tn) = Zn ‘ Z(tnfl) = anl,Z(tn,Q) = Zn—2y-- .,Z(to) = Zo)
= P(Z(ty) = 2| Z(tn-1) = 2n_1). (2.1)

The right hand side (rhs) of (2.1) represents the transition probability of
the bivariate Markov chain. When this transition probability depends
only on t, — t,_1, but not on t,_1, the process is said to be homoge-
neous. Homogeneity of the bivariate Markov chain is assumed through-
out this paper. The transition probability of a homogeneous bivariate
Markov chain is given by P(Z(t) = 21| Z(0) = zp) for any t >0 and
any z1, 29 € Z. We also assume that the bivariate Markov chain is irre-
ducible. This means that the probability of reaching each state from
any other state at some time ¢ > 0 is positive. For a continuous-time
Markov chain, P(Z(t) = z1|Z(0) = 2p), 21 # 20, is either positive or
zero for all ¢ > 0 [51, Theorem 6.10.11].

The process X = {X(t),t > 0} of the bivariate Markov chain is des-
ignated as the observable process, and S = {S(¢),t > 0} is designated
as the underlying process of the bivariate Markov chain. In general, nei-
ther X nor S need be Markov. A jump of the bivariate Markov chain
Z may be due to a jump of X, a jump of S, or a simultaneous jump of
X and S. The state space of X is denoted by X, the state space of S
is denoted by S, and the state space of the bivariate Markov chain is
7Z = X x S. Most of the presentation in this paper focuses on bivariate
Markov chains which take values in a finite state space Z for which we
assume, without loss of generality, that X = {1,...,d} for some finite d,
and that S = {1,...,r} for some finite . Countable state spaces, how-
ever, are encountered in some applications and hence we shall try to
keep the discussion general whenever possible.
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2.1.1 Infinitesimal Generator

The transition matriz of a homogeneous bivariate Markov chain com-
prises the matrix of transition probabilities of the form P(Z(t) = (b,7)
| Z(0) = (a,i)) for all (a,7) and (b,j) in Z and any ¢t > 0. We denote
this matrix by P;. We assume that Py = I, where I denotes an identity
matrix, and that the elements of P; are continuous at ¢ = 0, that is,
limP, = 1. (2.2)
tL0
Such P, is called a standard transition matrix. Clearly, P, is a stochastic
matrix, i.e., it has non-negative entries and each row sums up to one.
Furthermore, P; satisfies the Chapman-Kolmogorov equations given by
P,y = P,P; for t,7 > 0. Using these equations, one can determine the
transition probabilities of the process at any time ¢ > 0, from the tran-
sition probabilities in any small neighborhood of t = 0. Thus, global
properties of P;, and consequently of the Markov chain, are determined
from local properties of P; in the neighborhood of ¢ = 0. We are partic-
ularly interested in continuity and differentiability of P; at ¢t = 0. We
mention, without going into details, that the family {P;,¢ > 0} consti-
tutes a semigroup [109, Eq. 8.37].
Continuity of P; at ¢t = 0 implies that the bivariate Markov chain is
continuous in probability, that is, for any ¢t > 0 and € > 0,
lim P(|Z(1) — Z(t)| >€) =0 (2.3)

T—t

for any initial distribution. This result has several important measure
theoretic implications such as the process being separable and measur-
able on every compact interval [109, Section 8.5]. Roughly speaking,
separability means that probabilities of events of the continuous-time
process in a given time interval, may be calculated over a dense count-
able set of time instants in that interval. Furthermore, continuity in
probability of the process implies that the process has a stochastically
equivalent version with right-continuous sample paths. Thus, references
to the process may be considered as references to its stochastically
equivalent version, and both are denoted indistinguishably as the orig-
inal process Z. Another important consequence of the continuity of
the transition matrix F;, and its Chapman-Kolmogorov equations, is
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that the entries of P; are uniformly continuous on [0,00) for all pairs
of states (a,7) and (b,7) in Z [109, Corollary 8.3.1].

The transition matrix P; is differentiable at ¢ =0 [109, Proposi-
tions 8.3.2-8.3.3]. The derivative of P; at ¢t = 0 is the infinitesimal gen-
erator of the bivariate Markov chain, which is denoted here by G. We
have,

G =lim (P, — 1), (2.4)
tl0 ¢
Suppose that the states {(a,i) € Z} of the bivariate Markov chain
are ordered lexicographically, and let the ((a,i),(b,7)) element of G
be denoted by guy(ij). The generator G = {gas(ij)} has the following
properties:

(1) —00 < gaa(ii) <0,
(ii) 0 < gap(ij) < oo whenever (a,i) # (b,7),
(iii) > 5, 9an(id) < 0 for all (a,i) € Z with equality if
sup{—gaa (i)} < co. (2.5)
(ayi)
Thus, the generator G has non-positive main diagonal elements, non-
negative off-diagonal elements, and each of its rows sums to zero if
(2.5) is satisfied. Under this condition, which is assumed throughout

this paper, we have the following intuitively pleasing interpretation of
the generator [15, p. 333]. For sufficiently small ¢,

P(Z(t) = (b,7)[2(0) = (a,))
_ {gabuj)t +o(t),  (ai) # (b))
1+ gaa(ii)t + o(t), (a,i) = (b,j).

Moreover, under (2.5), the semigroup {P;,t > 0} is differentiable for
all t >0, and {P;,t > 0} satisfies Kolmogorov’s forward and backward
equations,

(2.6)

dp,
- P
dt W@
dP,
L = ap, (2.7)

dt
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respectively, subject to Py =1 [109, Proposition 8.3.4]. The unique
solution of either equation in (2.7) is given by

P, =%t (2.8)

2.1.2 Sample Paths

As we have seen, the Markov chain has a stochastically equivalent sep-
arable version with right-continuous, piecewise constant sample paths
or trajectories. Each jump of the process corresponds to a state tran-
sition, and the process remains in each state for a random duration of
time, called the sojourn time. When the chain enters a state z, and
A7 denotes the sojourn time of the chain in that state, then Ar is
exponentially distributed [109, Lemma 8.7.1],

P(AT>t|Z(0) = 2z) =e M@ >0, (2.9)

with some rate 0 < A\(z) < oo. When A(z) =0, the chain remains in z
forever, and z is an absorbing state. When \(z) = oo, P(AT7 =0|Z(0) =
z) =1, and the chain exits the state z as soon as it enters it. In that
case, z is said to be an instantaneous state. When 0 < A\(z) < oo, P(0 <
AT < 00| Z(0) = z) =1, and the state z is considered stable.

The separable right-continuous version of the Markov chain cannot
have instantaneous states. Hence, if 7,, denotes the time of the nth
jump of the process, then starting from any state z [59, p. 263],

Too = lim 7, =00 a.s. (2.10)
n—oo
In that case, we say that the process does not terminate. If, starting
from any state z, P(Too < 00) > 0, then the chain may jump infinitely
many times on the finite interval [0, 7~ ), in which case, it is said to be
explosive.

A Markov chain is called regular if it satisfies (2.10). Clearly, any
finite-state Markov chain is regular [25, Proposition 1.12]. Recall that
the expected value of the exponentially distributed sojourn time in
a given state, say z, is 1/A\(z). A Markov chain is regular, or non-
explosive, if and only if the expected value of 7, starting from any
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state z, satisfies [109, Proposition 8.7.2]

— 1
;)\(Z(Tn)) =00, a.s. (2.11)

This condition is satisfied when sup,cz A(z) < oo [15, Corollary 15.44],
[109, Eq. 8.7.12].

2.1.3 Pure Jump Processes

A regular bivariate Markov chain is a pure jump process. Such a pro-
cess is also called Markov jump process, or cadlag, which is a French
abbreviation for “right-continuous with left limit.” All sample paths of
a Markov jump process are right-continuous, piecewise constant func-
tions, with a finite number of jumps in any finite interval. A Markov
jump process Z can be written as [59, Eq. 9.27]

Z(t) = Z(0) + i(nl(rn <) (2.12)
n=1

where 7, is the time of the nth jump, ¢, = Z(m,) — Z(1n—) = Z(70) —
Z(7n—1) denotes the size of the nth jump of Z in its two components,
and I (7, < t) is an indicator function which equals one when 7,, <t and
zero otherwise. Given Z(7,—1) = z, the sojourn time A7, = 7, — Th—1
of the process in state z, and the jump (, at time 7,, are independent
random variables, and both are independent of the entire past {Z(t),t <
Tn—1} of the process [109, Lemma 8.7.2]. Each of the random variables
{A7,,(,} has its own conditional distribution, where the conditional
distribution of the sojourn time A, given Z(7,-1) = z, is exponential
with a non-negative finite rate A\(z).

A Markov jump process may be envisioned as a process that starts
in some state zg at some given time, stays in that state for ¢; seconds,
where ¢; is a realization of an exponentially distributed random variable
with parameter \(zp), then jumps to another state z; # zy according to
some transition probability, stays there for an exponentially distributed
duration with parameter A(z;), and so on. The process may be seen as
an amalgam of a discrete-time Markov chain, say {U,,n =0,1,2,...},
and an independent non-homogeneous Poisson process with a rate of
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AU,) at the nth jump. In this analogy, the jumps of the continuous-
time Markov chain are consistent with the jumps of {U,}, and its
sojourn time in U, is the sojourn time of the Poisson process whose
rate is A(Uy,).

The rate A(z) of the conditional exponential distribution of the
sojourn time of the bivariate Markov chain in state z = (a,i) is given
by —gaa(it). The probability that the chain jumps to (b,j) from (a,1)
is given by —ga(27)/gaa(i?) [15, p. 333], [51, Claim 6.9.13-4]. Thus, the
Markov chain is regular if (2.5) is satisfied. This assumption is made
throughout the paper, and hence, all bivariate Markov chains in this
paper are regular.

The stationary distribution of an irreducible bivariate Markov chain
with semigroup {P;} and corresponding generator G satisfies m = w P,
or equivalently, 7G = 0 where 0 is an all zero matrix of appropriate
dimensions [51, Claim 6.9.20].

2.1.4 Strong Markov Property

We next discuss two rather important properties of a continuous-time
Markov chain. A non-negative random variable 7*, which may take
the value oo, is called a stopping time for the Markov chain Z, if for
every t > 0, the occurrence of the event {7* <t} can be determined
from {Z(7),7 <t}. In other words, 7* is a stopping time of Z if the
event {7* <t} is in the o-field F; generated by {Z(7),7 <t}. The
jump points of a Markov jump process Z are stopping times w.r.t. F;
[15, Proposition 15.27]. A Markov chain Z possesses the strong Markov
property if for every stopping time 7, every t > 0, every initial state
in z € Z, and any state z; € Z [15, Definition 15.17],

P(Z(T" + 1) =2|Z(77) = 2,{Z(7),7 <77}
=P(Z(t)=21Z(0) = z). (2.13)
A Markov jump process Z is strong Markov [15, Proposition 15.25].
A stopping time for a Markov process is called a Markov time.
Recall that 7, denotes the time of the nth jump of the bivariate

Markov chain Z, and AT, denotes the sojourn time of the chain in state
Z(Tph-1), for n =1,2,..., where 79 = 0. Define A1y = 0. Recall also that
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{m} are stopping times for Z. The sequence {(A7x, Z (7)), k =0,1,...}
forms a Markov renewal process [109, Proposition 8.7.1]. That is, the
sequence satisfies for n > 1,

P(Ar, <t,Z(1n) = j| (A1, Z(11)),k =0,1,...,n — 1)
= P(A1, <t,Z(10) = j| Z(T0-1))
= P(Ar <t,Z(n1) = 7| Z(0)). (2.14)

A comprehensive review of Markov renewal theory may be found in [25].
The last two results will play a central role in Section 3 where we
develop the likelihood function of the observable process of the bivariate
Markov chain.

2.1.5 Bivariate Markov Chains with Varying Order G,

It is convenient to order the states {(a,i)} of the bivariate Markov
chain lexicographically, and to organize the generator as a block matrix
G = {Gap;a,b € X} where each Gup = {ga(i7);%,7 € S}. When S con-
tains r states, the order of G, is r for any a,b € X. A somewhat
more general bivariate Markov chain may be defined, by allowing the
matrices {Ggaq,a € X} to have varying orders. We denote the order of
Gaq by 7¢. This condition implies that each observable state is asso-
ciated with a varying number of underlying states. In that case, the
matrices {Ggap,b # a} are rectangular rather than square matrices. Such
bivariate Markov chains occur naturally in some applications as we
shall see in Sections 2.2.1 and 3.6. This model is also of interest in
ion-channel current analysis [27]. The two models can be treated in a
similar manner, and most of the results obtained for one model apply
to the other. To keep the notation simple, we shall proceed with the
bivariate Markov chain for which r, = r for all a’s, and comment on
the alternative model when the results disagree. One such case is con-
cerned with conditions for the underlying chain S to be Markov. When
rq = r, the underlying chain is Markov, if and only if ), G4 = Q for
all a € X and some matrix @ [6]. In that case, @ is the generator of
the underlying Markov chain. A similar condition can be given for the
observable chain X to be Markov. Clearly, this result does not hold for
the model with varying r,.
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2.1.6 Properties of G,

Throughout this paper, we assume that G and {G..} are irre-
ducible. Rather than give the formal definition of an irreducible matrix
[63, Section 10.7], we quote the following result. A square matrix is
irreducible if and only if its associated directed graph is strongly con-
nected [63, Theorem 1, p. 529]. For the matrix Ggq, for example, this
means that for any two states, say i,j € S, there exists a sequence of
intermediate states k1, ko,...,k, such that

gaa(i,kl) : gaa(klka) o 'gaa(knflakn) : gaa(knaj) 7& 0. (215)

Irreducibility of a matrix depends only on the arrangement of the zero
entries within the matrix, and not on the magnitudes or signs of the
remaining entries. A matrix with all non-zero entries is always irre-
ducible. A Markov chain is irreducible if and only if its generator is
irreducible [51, Problem 6.15.15].

Properties of G, are important for establishing the likelihood func-
tion of the observable process of the bivariate Markov chain. Several
properties were studied in [39]. By definition, the matrix G, is diago-
nally dominant, that is, for each i € S,

.
|gaa(ii)‘ > Z gaa(ij)' (2'16)
Jj=1,j#i
Irreducibility of G implies that at least one element in one of the sub-
matrices {Gap,b € X;b # a} must be positive. Furthermore, gqq(ii) < 0
for every i€ S. Thus, (2.16) must hold with strict inequality for
at least one i € S. Together with irreducibility of G, this implies
that Ggq is nonsingular, [63, Theorem 1, p. 375]. Furthermore, from
[63, Theorem 3, p. 531], the matrix —Gg, is an M-matriz. This means
that —G,, is a monotone matrix with non-positive off-diagonal ele-
ments. A monotone matrix is a nonsingular matrix where all elements
of its inverse are non-negative. In fact, from [39, Corollary 1], —G,.l > 0.
From [63, p. 532, Exercise 3|, all eigenvalues of G4, have negative real
parts. We also have that the matrix exponential e“eet > 0 for all ¢ > 0
[39, Lemma 1]. In summary, under the assumption that G and G, are
irreducible, Gy, is non-singular, —G,.! > 0, all eigenvalues of G, have
negative real parts, and e“ee* > 0 for all ¢ > 0.



2.2 Examples of Bivariate Markov Chains 15

2.2 Examples of Bivariate Markov Chains

In this section we specialize the continuous-time bivariate Markov
chain, and show that several commonly used stochastic models are
in fact finite-state bivariate Markov chains. The relations among these
models are addressed in Section 2.3.

2.2.1 Aggregated Markov Chains

An aggregated Markov chain is obtained from a deterministic function
of a Markov chain. The family of aggregated Markov chains is closely
related to the family of bivariate Markov chains. To demonstrate this
relation, suppose that {S(t),t > 0} is a finite-state continuous-time irre-
ducible univariate Markov chain with state space S = {1,2,...,r} and a
given generator. Consider a function u: S — X where X = {1,2,...,d}
for some d < r. When the function is injective then d =r and X =S.
Otherwise, u is an aggregating function for which d < r. Consider the
aggregated Markov chain X (¢) = u(S(t)). The sets {u=*(1),...,u=1(d)}
form a partition of S. If we relabel the states u~!(a) for each a € X as
{1,2,...,7,}, and denote the resulting chain by S(t), then the bivariate
process Z = {(X(t),5(t)),t >0} is an irreducible Markov chain with
transition probability induced by

P(X(t) =b, S(t) = j| X(0) = a, S(0) = i)
_ {P(S(t):j|S(()):i), ifuli) =au(i)=b 1y

0, otherwise.

The generator of this bivariate Markov chain has a block matrix repre-
sentation, where the ath diagonal block is an r, X r, matrix, and the
off-diagonal matrices are not necessarily square matrices. Furthermore,
the underlying chain of this bivariate Markov chain is not Markov.
Conversely, if {Z(t),t > 0} is a bivariate Markov chain as defined in
Section 2.1, we can trivially define a projection function u such that
X(t)=u(Z(t)), and X(t) is a function of a finite-state continuous-
time irreducible Markov chain. The relationship between bivariate and
aggregated Markov chains is useful, since it enables application of
results developed for one form of the process to its other alternative
form.
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As an example, consider a Markov chain S with state space {U1, 72,
3,194,195}, and an aggregating function that maps states {¢1,92} into
state a, and states {U3,94,95} into state b. Now, rename the states
associated with the observable state a as {1,2}, respectively, and the
states associated with the observable state b as {1,2,3}, respectively.
For example, the new state (b,2) of Z is just the old state ¥4 of S.
The probability of a jump from, say state (a,1), to say state (b,2), is
the probability that S jumps from state 9 to state ¥4. If the latter
probability is positive, then the probability of the simultaneous jump
(a,1) — (b,2), of the underlying and observable chains of the equivalent
bivariate Markov chain, is positive as well.

Several authors have studied continuous-time aggregated Markov
chains, including Rudemo [92] who referred to these processes as “par-
tially observed Markov chains,” Colquhoun and Hawkes [27], Rydén
[96], and Larget [64]. These processes are also referred to as “hidden
Markov chains” and “lumped Markov chains.”

2.2.2 Markov Modulated Poisson Process (MMPP)

The MMPP is a doubly stochastic Poisson process [43, 78, 93]. Its
rate at any given time is determined by the state of an underlying
Markov chain, which is assumed to be finite-state, homogeneous, and
irreducible. Given the underlying Markov chain .S, the observable pro-
cess X may be viewed as an non-homogeneous Poisson process, with r
possible rates, that are selected according to a Markovian regime. The
Poisson rates are denoted by {A1,...,A} where \; > 0. The observ-
able process X assumes its values in X = {0,1,...}. The only allowed
transitions of X are from a to a + 1 for any non-negative integer a. It
follows that the process Z = (X,S) is a bivariate Markov chain with
countable alphabet and some generator G which we specify below. The
chains S and X of an MMPP do not jump simultaneously almost surely.
Doubly stochastic Poisson processes, not necessarily with an underly-
ing Markov chain, were originally proposed by Cox [28], and are often
referred to as Cox processes.

Let @ ={g¢;} denote the generator of S, and let A = diag
{A1,...,Ar}. Since a Poisson process is also a Markov chain, we have
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from (2.6), for ¢ sufficiently small, that
P(Z(t) = (b,)] Z(0) = (a,1))
ga,a+1(ij)t+0(t>v b=a+1j#i
(At +o(t))(1 4+ qist + o(t)), b=a+1,7=1

(1 - Nt + O(t))(qijt + O(t)), b=a,j#i
0, otherwise

(2.18)

Since S and X do not jump simultaneously almost surely, we have
from the first line on the rhs of (2.18) that g4 q41(ij) =0 when j # i.
Furthermore, it follows from (2.18) and (2.4), that the generator of the
bivariate Markov chain representing the MMPP is given by the infinite
block Toeplitz matrix

Q-A A

G= Q-A A . (2.19)

There is no loss of generality in assuming that the Poisson events are
counted modulo-2, since the actual count may always be recovered from
the modulo count. When modulo count is used, the observable process
can take only d = 2 values, which we denote here by X = {1,2} to be
consistent with our earlier notation. Since transitions of X from 1 — 2
and from 2 — 1 are completely symmetrical, we must have G12 = Go;.
In addition, we have as before that GG1; = Gos. Thus, the generator of
the MMPP may be considered as given by [37]

G:(QXA QfA) (2.20)

Since each row of G sums up to zero, this generator has at most 72
independent entries.

When r = 2, and one of the Poisson rates equals zero, the MMPP is
referred to as the interrupted Poisson process [93]. MMPPs are common
models in queuing theory, and have been used in applications such
as traffic modeling in computer networks, see [71] and the references
therein.
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2.2.3 Markov Modulated Markov Process (MMMP)

The MMMP is a slight generalization of the MMPP [36, 41]. Its under-
lying process S is a finite-state, homogeneous, irreducible Markov chain
with generator (), and its observable process X is a conditionally non-
homogeneous Markov chain given S. Similarly to the MMPP, X and
S do not jump simultaneously almost surely. When S = i, the genera-
tor of the conditional Markov chain X is given by {g.(i);a,b € X} for
some gqp(i) > 0 when a # b, and gaq(i) < 0 such that >, x gap(i) =0
for any i € S. The pair (X, 5) forms a bivariate Markov chain with gen-
erator G = {Gy;a,b € X}. To specify Gy, define the diagonal matrices
Ay = diag(gap(1),. .., 9ap(r)). We then have

Q + Aaa; b =a
Gap = { Aup, b+a (2.21)

0, otherwise.

For example, an MMMP with d = 3 observable states has the following
generator

Q+ An A2 Ai3
G= Aop Q + Ao Aos . (222)
Az A3z Q + Ass

Important applications of MMMPs are in ion-channel current modeling
(see Section 11.1) and phylogenetics [48, 18, 85].

2.2.4 Batch Markovian Arrival Process (BMAP)

The BMAP is a rather general and very useful model for arrival pro-
cesses in queuing theory [71, 72]. The BMAP generalizes several other
models including the MMPP. It is a bivariate Markov chain for which
the underlying process S is a finite-state, homogeneous, irreducible
Markov chain, and the observable chain X is a counting process. The
observable chain X assumes its values in X ={0,1,...}. This model
allows for batch arrivals. That is, it allows transitions of X from any
non-negative integer a to any integer in {a,a+1,...,a +d—1}. In
contrast, the Poisson process, or the observable process of the MMPP,
allow at most one arrival at each time instant, i.e., d = 2. The generator
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of a BMAP is an infinite block Toeplitz matrix given by

Ay Ay Ay ... Ay,
Ao A1 A2 Adfl
AO Al A2 .
G = A A A (2.23)

where {A4,} are r X r matrices such that the off-diagonal elements of
Ap are non-negative, the main diagonal elements of Ay are non-positive,
A,>0for a=1,...,d — 1, and each row of G sums up to zero. The
generator of the underlying Markov chain S is given by Q = ZZ;(I) Aq.
The observable counting process and the underlying Markov chain may
jump simultaneously. Thus, an underlying state transition may or may
not be associated with a batch arrival. Like the MMPP, this process
may also be represented as a finite-state bivariate Markov chain when
counts are modulo-d.

Being a bivariate Markov chain, the inter-arrival times for a BMAP
are correlated, their distributions are non-exponential, and the batch
sizes are correlated. The non-exponential inter-arrival time property is
shared by the MMPP and the MMMP, and will be discussed in greater
detail in Section 3.6. When d = 2, the BMAP becomes the Markovian
arrival process (MAP). The Poisson process and the MMPP are par-
ticular MAPs and hence particular BMAPs. The versatile Markovian
point process of Neuts is also a BMAP [81]. Many other arrival pro-
cesses are special cases of BMAP. A complete list of such processes may
be found in [72].

2.3 Relations Among Models

In this section we outline some relationships among the various models
presented so far [71]. We list the processes according to their classes as
defined in Section 1.

As we have already pointed out, a hidden Markov model is a
discrete-time bivariate Markov process, with possibly uncountably
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infinite alphabet. The converse relation does not always hold.
A discrete-time bivariate Markov chain does not always have a hidden
Markov model representation for two reasons. First, the random
variables representing the observable process of the bivariate Markov
chain may be conditionally dependent, rather than conditionally
independent as in the hidden Markov model, given the underlying
process. Second, the underlying process of a bivariate Markov chain
need not be Markov. When the underlying chain is Markov, then
a discrete-time bivariate Markov process may be represented as
a switching autoregressive process, see, e.g., [40, Section IV.B.3].
Switching autoregressive processes generalize hidden Markov models
since they allow conditional dependence of the observable random
variables given the underlying Markov chain.

For the class of continuous-time bivariate Markov chains, we have
seen that every aggregated Markov chain has a bivariate chain represen-
tation. Conversely, a function of a bivariate Markov chain is trivially
an aggregated Markov chain. By definition, the Poisson process is a
particular MMPP, the MMPP is a particular MAP, and the MAP is a
particular BMAP. The MMPP is also a particular MMMP.

2.4 Parametrization

The parameter of a bivariate Markov chain comprises the initial dis-
tribution of chain, and either the set of independent entries of its gen-
erator GG in the continuous-time case, or the set of independent entries
of its transition matrix in the discrete-time case. When the station-
ary distribution is used, then this distribution can be excluded from
the parameter of the bivariate Markov chain, since it is a function of
either the generator or the transition matrix of the process. The maxi-
mum number of independent entries of G is dr(dr — 1). That number is
smaller for particular bivariate Markov chains, for example, in the form
of an MMPP or a MAP, due to their doubly symmetrical generators.
For MMPPs it is at most 72, and for MAPs it is at most 22 — 7. In such
cases, we may view GG as a function of some parameter ¢ € ® where ¢
is the parameter set. For example, ¢ may comprise the set of indepen-
dent values of G. Throughout this paper we denote the parameter of the
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bivariate Markov chain by ¢ € ®, the associated probability measure
by Py, an associated density by pg(-), and an expected value w.r.t. Py

by Eg{-}.

2.5 An Auxiliary Result

In this section we present a result from matrix theory, due to Van
Loan [110], which has proven extremely useful in recursive estimation
of the statistics and parameter of a bivariate Markov chain. These top-
ics are discussed in Sections 4 and 5, and 7, respectively. Van Loan’s
result provides an efficient way to evaluate an integral involving matrix
exponentials, from a related larger matrix exponential, without any
numerical integration. Specifically, it was shown in [110, Theorem 1]

that if
Al B
Cc= 2.24
(3 %), (2.21)
where A1, As and By are matrices of appropriate dimensions, and
A, B
Ct 1 1
= - t> 2.2
(g 1) =0 (2.25)

then, for i = 1,2, A; = e4it, and

t
B, :/ eM=9) Blef2s s, (2.26)
0

Thus, the integral in (2.26) may be obtained from evaluation of the
matrix exponential in (2.25). The matrix exponential is usually cal-
culated using Padé approximation which requires on the order of r3
operations for a matrix of order r [79]. This approach for evaluating
the integral in (2.26) is significantly faster than attempting to evaluate
that integral using numeric integration.
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Likelihood Function of Observable Process

In this section we study the likelihood function of the observable process
of a continuous-time bivariate Markov chain and some of its properties.
The likelihood function plays a central role in maximum likelihood esti-
mation of the parameter of the bivariate Markov chain. The expression
for the likelihood function follows from the Markov renewal property of
the bivariate Markov chain. We focus on that property as it applies to
jumps of the observable process rather than to jumps of the bivariate
Markov chain as in Section 2.1.4.

3.1 Markov Renewal Property

Consider a bivariate Markov chain Z = {Z(t),t > 0}, and suppose that
the arbitrary time origin at ¢ = 0 coincides with a jump of the observ-
able process X. This technical assumption is necessary to guarantee
that the first positive sojourn time of the observable process is dis-
tributed like any other sojourn time of that process. For k =0,1,2,...,
let T% denote the time of the k + Ist jump of X. Let X = X (T%),
S = S(TF), and Zp = (X,Sk). For k=1,2,..., let Ty =T% — TF-1
denote the sojourn time of X in state Xj_;. Let Ty = 0. We denote

22
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by t*. t;, and 2 realizations of T%, T}, and Zj, respectively. Note that
{T* Ty} defined here for the jump points of X, differ from the corre-
sponding random variables {7y, A7} defined in Section 2.1.2 for the
jump points of Z.

The jump points of X constitute a subset of the jump points of Z,
and hence are stopping times w.r.t. the sigma-field generated by Z.
Since the bivariate Markov chain is a Markov jump process, it is strong
Markov, see Section 2.1.4. Consequently, the Markov property applies
to the jump points of X, and we have for £k =1,2,...,

Py(Ty <t,Zp = 2| Tp1 = th—1, 231 = 2—1,..., 11 = t1,
1 =21,4y = Zo) = P¢(Tk <t Zp =z | L1 = zk_l). (3.1)

This is the Markov renewal property, which shows that {(T%, Zx)}72,
forms a Markov renewal process, with transition probability given by
the rhs of (3.1). We denote the corresponding density, obtained by
differentiating the rhs of (3.1) w.r.t. ¢, by pg(tr, 2k | 2k—1).

From the chain rule for densities, (3.1) implies that,

n
Ps (20,11, 21, -+, tns 2n) = De(20) H (t, 2k | 2k—1)- (3.2)
Hence,
n
Ps(20,21,- -+ 2n) = Dg(20 H (k| 2k—1) (3.3)

which shows that the sequence of random variables {Zj} forms a
discrete-time Markov chain. The transition probability of {Z;} is given
by Py(T1 < 00,21 = 21| Zy = 29). As a discrete-time Markov chain, it
is also strong Markov [15, Proposition 7.8]. Furthermore, (3.2)—(3.3)
imply that

n

p(b(tl" cstn | 20,215 - '7Zn) = Hp¢(tk | Zkvzk—l)' (34)
k=1

Thus, successive sojourn times {7} } are conditionally independent ran-
dom variables given the sequence of states {Z;}. The distribution of
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each T depends on Z;_1 as well as on Zj. Note that the Markov chain
{Z}}, together with the sequence of conditionally independent random
variables {T}} given {Z}, do not define a hidden Markov model, since
{Z)} is not an underlying process. An exception is given by the MMPP,
since for that bivariate Markov chain, { X} can be inferred from {T}},
and {Si} is Markov [13]. We discuss this aspect of the MMPP in fur-
ther detail in Section 7. The Markov renewal process {(T,Z;)} may
be envisioned as follows. Starting with an initial state zg € Z, the next
state z; is chosen according to the transition probability of {Zy}, and
the process resides in z for a duration 77 that depends on (zg,z1). Then
a new state zo is chosen, and the process resides in z; for a duration
T5 that depends on (z1,22), and so on.

It can be shown that the sequence of successive epoch times {T%}
in which a fixed state a € X is visited is a renewal process [25, Proposi-
tion 1.11]. The inter-arrival times of a renewal process are independent
identically distributed (iid) random variables.

By homogeneity of the bivariate Markov chain, Py(Ty <t,7Z; =
2k | Zk—1 = zk—1) is independent of k. Hence, assuming k = 1, zg = (a, 1),
and z; = (b,7]), for any states (a,7) and (b,7) in Z such that a # b, the
transition probability is given by

Py(Ty <t,Z1 = (b,4) | Zo = (a,i)). (3.5)

The process {X(t),t > 0}, with its staircase sample paths such that
X(t) =X}, for TF <t < TF1 is a semi-Markov process, with state
space X, and semi-Markov kernel given by the family of transition
probabilities of the form in (3.5) for all (a,i) and (b,j) in Z and ¢t >0
25, Eq. 1.13].

The likelihood function of a sample path of the observable process
follows from (3.2) and is given by

p(.%'(T),T € [OatnD = p(ﬁ(x()athxlv"wtn;mn)

= > polz0) [ [ po(tr2e|2—1).  (3.6)

505-)5n k=1

This density can be efficiently evaluated using the notion of a tran-
sition density matrix which is introduced in Section 3.2. A recursion
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for evaluating Eq. (3.6) is detailed in Section 3.4. It will be shown in
Section 3.6, that T} given Xj;_1 has a continuous phase-type distribu-
tion. The family of continuous phase-type distributions is very rich,
and it includes the distributions of sums of iid exponential random
variables, and mixtures of exponential distributions.

3.2 Transition Density Matrices

Let fjb(t;cb) denote the density obtained from differentiation of (3.5)
w.r.t. t. In this section we evaluate this density, and provide a compact
form for the r X r transition density matriz defined by

FOt;0) = {fP(te)ij=1,...1}. (3.7)

The density l-‘}b (t;¢) satisfies a Markov renewal equation. This is an
integral equation, involving the semi-Markov kernel, which has a unique
solution [25].

To evaluate the density fi“jb(t;gi)), note that the first transition of
X from state a at time zero to state b at time ¢, while S(0) = and
S(t) = j, may occur along two routes. First, the bivariate Markov chain
may stay in (a,?) in [0,¢) and then jump to (b,j) at time ¢. Alternatively,
the chain may stay in (a,?) during [0,7) for some 7 < ¢, jump at 7 to
an intermediate state (a,l), and then transit, possibly through several
other intermediate states of S, from (a,l) to (b,j) during [r,t]. This
leads to the following Markov renewal equation [76]:

B0 = [gal)e 0] 20

' Z'e—ga(i)’f gaa(il) ab — 7)dT
+/O [9a(i) ]; PRORL (t —7)dr, (3.8)

where ¢4(7) = —gaa(ii) > 0. Differentiating (3.8) w.r.t. ¢, and solving
the resulting differential equation, yield [27, 87, 76],

f(t:0) = eCatGuy, a#b, t>0. (3.9)
A related useful transition probability is defined as

Fi(t:¢) = Py(T1 > £,5(t) = j| Zo = (a,)). (3.10)
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This is the probability that the underlying chain transits from state ¢
to state j in time ¢, while the observable chain remains in state a past
time t. Using a similar Markov renewal equation, it can be shown that
the transition matrix

Fo(t;0) = {F5(t0)50,5 = 1,...7} (3.11)
satisfies [27, 87, 76],
F(t;¢) = €', £ >0, (3.12)

Properties of Gy, and of e“eat were given in Section 2.1.6.

3.3 Likelihood Function
Let v4,i(¢) = Py(Zo = (a,1)), and define
Va(9) = (Va1(9),va2(d),- - Var(9))
v(¢) = (1(9),..-,va(9)). (3.13)

The row vector v(¢) represents the initial distribution of the bivariate
Markov chain. The likelihood of the observable process follows from
Vgo(®) in (3.13), from the density (3.6), and by using the definition of
the transition density matrix (3.7). This likelihood can be expressed
compactly as [27, 44]
n
P (x(7), 7 € [0,8"]) = vy (¢) {Hf“‘m (tz;¢)} 1 (3.14)
I=1
where 1 denotes a column vector of all ones. Note that the product of
transition density matrices, along with the pre and post vector multipli-
cations, eliminate the dependency on the states { Sk} of the underlying
process, and thus provides the likelihood of the observable process.
The likelihood function of {z(7),7 € [0,T]}, when T does not necessar-
ily correspond to a jump of the observable process, i.e., t" < T < t"t1
for some n, is given by

pg(x(T), 7 €[0,717)

= Vg, (9) {fo“”” (h;tﬁ)} For (T —t";¢)1  (3.15)

=1
where F%n (T — t";¢) is given in (3.12).



3.4 Forward-Backward Recursions 27

3.4 Forward-Backward Recursions

The form of the likelihood function in (3.14) suggests that it can be eval-
uated recursively. In this section, we present forward-backward recur-
sions, which follow from the Markov renewal property of the bivari-
ate Markov chain, as presented in Section 3.1. We need only the for-
ward recursion to evaluate the likelihood function. Both the forward
and backward recursions, however, will be needed in subsequent sec-
tions, and will be used for recursive estimation of various statistics of
the bivariate Markov chain. The forward-backward recursions in this
section are defined similarly to the forward-backward recursions for the
hidden Markov model, see, e.g., [40, Section V-A].

Application of the strong Markov property to {(Tk,Zy)} implies
that

P (20,81, 21,y thy 2k - -y tns Zn)
= pe(20,t1, 215 b1, 2k—1)Pp (thr 2k, - -, s 2n | 26—1).  (3.16)
Summing both sides over all states of the underlying chain gives
P (20,01, T1, . Ly Tl -5 Ty T)
= po(x0t1 21, tho1, 26-1)Pg (trs Ths oty T | 20—1)  (3.17)
Sk—1

The first term of the summand is identified as the forward density, and
is denoted as

Lz(k - 17¢) :p¢(1:07t17$1a"'atk‘—bxk‘—l?sk‘—l - Z) (318)

The second term of the summand is identified as the backward density,
and is denoted as

Rz(ka(z)) :p(b(tkvwkv vy bn, Ty |xk’—1>5k’—1 = Z) (319)
Define the row vector L(k — 1;¢) = (Li(k — 1;¢),...,Ly(k — 1;9)).
From (3.13), L(0;¢) = vg,(¢). From (3.14), for k=1,...,n, we have

the following forward recursion:
k

L(k;¢) = vao(0) [ [ £ (113 0)

=1
= L(k — 1;0) f"* 1" (t); 9). (3.20)
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Next, define the column vector R(k;¢) = col{Ri(k;¢),...,Rr(k;¢)},
with R(n + 1;¢) = 1. From (3.14), we have for k =n,n — 1,...,1, the
following backward recursion:

n

R(k;¢) = [ [ (t:9)1

=k
= [ (ks ) R(k + 1;.9). (3.21)

Now, from (3.17), if Sx_1 =i, then for any k =1,...,n,
pqﬁ(x(];tlaxla-"7tk—laxk—lai>tk7xk7"'7tn7xn)
= Li(k — 1;¢9)Ri(k; ¢). (3:22)

Summing both sides of (3.22) over i gives the likelihood function in
(3.14) as follows:

pe(x(7),7 € [0,8"]) = L(k — 1;0)R(k; $). (3.23)
When k =n + 1, this likelihood is given by L(n;¢)1.

The forward and backward recursions require recursive scaling to
improve their numerical stability [87]. The scaled forward recursion is

given by
L(0;¢) = onc((fﬁ)
where
co = Vao(¢)1

e = Lk — 1;0) f5 1% (t;0)1, k=1,2,...,n. (3.25)

The scaled backward recursion is given by

R(n+1;¢) =1

s )Rk + 10)

R(k; ) o (3.26)

where k=n,n — 1,...,1.
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The scaled and unscaled recursions are related by

= L(k; ¢)
Lk:p) = 2520 _01,...,
(k; ) Toa n
R(k; ) = Rkid)  f_19.. (3.27)

e’
The scale factors can be interpreted as conditional densities. Define
Yo = Xo, and for k=1,2,..., define Y = (T}, X;). The sequence
{Yo,Y1,...,Y,,...} constitutes the observable process of the bivariate
Markov chain. It follows from (3.20)-(3.21) and (3.24)-(3.25), that
co =pg(yo), and for k=1,2,...,n

Ck =P¢(yk\yk717yk727 e 790)- (3.28)

Hence, the likelihood of the observable process is given by

po(a(r),7 €10,")) = co [T e, (3.29)
k=1

and from (3.23), L(k — 1;¢)R(k;¢) = 1 for k = 1,...,n. Finally, we note
that the ith component of the scaled forward density equals the con-
ditional probability P,(Sk =i|z(7),7 € [0,£]). The scaled backward
density does not enjoy such an intuitive interpretation.

3.5 Sampled Bivariate Markov Chain

The sequence {Zy,k=0,1,...}, obtained from sampling the bivariate
Markov chain Z at the jump points of the observable process X, is
referred to as the sampled bivariate Markov chain. Properties of {Zy}
were established in [39]. From (3.5) and (3.9), the transition probability
of the sampled bivariate Markov chain is given by

PuZi = (00) i1 = @) = | [ O Gunat]

]
= [~GolGaplij- (3.30)

The matrix —G;.! > 0, since e“eat > 0 [39, Corollary 1]. The transition
matrix of the sampled bivariate Markov chain is given by the block
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matrix D = {Dg,a,b=1,...,d}, where

~GoGap, b#a
Dy = { 0, e (3.31)

The sampled bivariate Markov chain has one closed set of recurrent,
possibly periodic, states, while the remaining states are transient.
A state (b,j) is recurrent if and only if it corresponds to a non-zero
column of G for some a # b [39, Lemma 3]. When X has two states,
as is the case with the MMPP and the MAP, the recurrent states are
always periodic.

The transition matrix D has a unique stationary distribution with
zero entries for its transient states. The initial distribution v(¢) is the
stationary distribution of the bivariate Markov chain if and only if it
satisfies v(¢) = v(¢)D. The sampled bivariate Markov chain is station-
ary if and only if its initial distribution is the stationary distribution.

We have so far encountered two stationary distributions for the
bivariate Markov chain. The first was introduced in Section 2.1 as
the distribution 7 which satisfies 7(¢)G = 0. The second was intro-
duced in the previous paragraph as the distribution v which satis-
fies v(¢) =v(¢)D. Which distribution should be used to guarantee
stationarity of the bivariate Markov chain depends on the setup of
the problem. Using v(¢) requires that ¢ = 0 coincides with a jump of
the observable process, and it guarantees stationarity of the observ-
able process. This mode of stationarity was termed interval station-
arity in [43]. Using m guarantees stationarity of {Z(t),t >0}, and
t =0 need not correspond to a jump of the observable process. This
mode of stationarity was termed environment stationarity in [43].
The two stationary distributions are related to each other as follows

[43, 76],
v(¢) x (¢p)diag(Gii,-..,Gad)- (3.32)

3.6 Phase-Type Distributions

This section is concerned with the distribution of the sojourn time of
the observable process in any of its states. By homogeneity, this is the
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distribution of T} given Xg. The density of this distribution is given by,

poltr]mo) =Y D> psltr,21]20)ps(s0|0), (3.33)

S0 z1:x1F£T0

and it can be obtained from the transition density matrix in (3.9), and
the initial distribution in (3.13). Following this approach we have for
any a € X [27, 87, 76],

qu(t | CL) = _ﬂaeGaatGaal (334)

where 7, = v,/(v,1). This is a continuous phase-type density with r
phases and parameter (7,,Gqq)-

In this section we focus on continuous phase-type distributions. We
shall discuss the analogous discrete phase-type distributions in Section
8.1. Phase-type distributions were introduced by Neuts [82]. The fam-
ily of continuous phase-type distributions is very rich, and it includes,
as particular cases, the Erlang distribution and the hyper-exponential
distribution. The Erlang distribution is the distribution of a sum of iid
exponential random variables. The hyper-exponential distribution is a
mixture of exponential distributions. The set of continuous phase-type
distributions is dense in the set of distributions on [0,00), see, e.g., [2,
Theorem 4.2], [119, Theorem 5.2]. Thus, any continuous distribution on
[0,00) can be approximated arbitrarily well by continuous phase-type
distributions. Continuous phase-type distributions represent a signifi-
cant departure from the exponential sojourn time distribution charac-
teristics of a Markov chain. Thus, such phase-type distributions may
be used where the exponential distribution is inadequate. By symme-
try, we may conclude that the distribution of the sojourn time of the
underlying process in each of its states is also continuous phase-type.

A phase-type distribution is the distribution of the hitting time of
a single absorbing state of a Markov chain, where all of its remaining
states are transient. The generator of such a Markov chain, with say m
transient states, and one absorbing state, is given by

Ale
G = <0 0) (3.35)
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where A = {a;;} is an m x m matrix with a; <0 and a;; > 0 when
1# 7, and € is an m X 1 non-zero vector with non-negative compo-
nents such that A1 4+ € = 0. This chain may be viewed as a bivariate
Markov chain with two observable states, say {a,b}, such that a is asso-
ciated with the r, = m transient states of the underlying chain, and b
is associated with the r, =1 absorbing state of the underlying chain.
In this bivariate Markov chain, the states {(a,i),i = 1,...,m} are tran-
sient, and state (b,1) is absorbing. This bivariate Markov chain has
a single non-zero transition density matrix from the transient states
to the absorbing state. From (3.9), this transition density matrix is
given by,

F(t0) = et'e (3.36)
for ¢ > 0. Recall that this transition density matrix corresponds to
Py(Ty <t,Z(t) = (b,1)| Z(0) = (a,i)), fori=1,...,m. (3.37)

When the initial state of the bivariate Markov chain is the absorbing
state (b,1), then

Py(Ty < t,2(t) = (b,1)| Z(0) = (b,1)) = 1 (3.38)

for all t > 0, and the corresponding density is the Dirac function §(t).
Let (p,pm+1) denote the initial distribution of the bivariate Markov
chain, where p is an 1 x m vector. The density of the sojourn time T}
to absorption is then given by

Po(t) = pmi16(t) — petAl. (3.39)

This is the continuous phase-type density with parameter (p, A) as was
originally introduced by Neuts [82]. Note that the stationary distri-
bution of (3.35) is given by (0,1), and py(t) = 6(¢) when the chain is
initialized by its stationary distribution.

For a regular bivariate Markov chain (see Section 2.1), the sojourn
time at any state is positive almost surely, and hence (3.34) does not
contain the Dirac function.
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Recursive Non-Causal Estimation

In this section, we present recursions for non-causal conditional mean
estimation of several statistics of a continuous-time bivariate Markov
chain given a sample path {x(7),7 € [0,T]} of the observable process.
In particular, we are interested in estimation of the following statistics:

(i) A function u(-) of the state S(t) of the underlying chain for
t € [0,7].
(ii) The number of jumps of the bivariate Markov chain Z, from
one state to another, in the given interval [0,7].
(iii) The total sojourn time of the bivariate Markov chain Z, in
each of its states, in the given interval [0,7].

We denote by ijb(T) the number of jumps of Z from state (a,i) to
state (b,j) in [0,7], and by D¢(T') the total sojourn time of Z in state
(a,i) during [0,7]. Conditional mean estimation is performed under
the assumption that the true parameter of the bivariate Markov chain
is known, and is assumed to be given by ¢. The conditional mean
estimates are given by

w(S(t)) = Eg{u(S()) [2(7),7 € [0,T]} (4.1)

33
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M(T) = Eg{M{}(T) |a(r),7 € [0,T]} (4.2)
D{(T) = Ey{D{(T) |a(r),7 € 0,77} (4.3)

The general approach to recursive estimation of these statistics was
established by Rydén in [95]. In this approach, the conditional density
required to evaluate each estimate was obtained using Bayes’ rule and
the densities associated with the Markov renewal process {1}, Zj } from
Section 3. We demonstrate the approach for estimating a function of the
state S(t) in Section 4.1. The approach requires forward and backward
recursions, and hence it is a non-causal estimation approach. We will
discuss causal estimation of the same statistics in Section 5. We begin
with non-causal estimation since it requires less computational effort.
It is convenient to update these recursions from one jump point of X
to the next jump point in the forward mode, and from a jump point
of X to the previous jump point in the backward mode. Hence, we
assume that T coincides with a jump point of X, that is, T =t" for
some integer n (see Section 3.1).

The approach was originally applied to MMPPs in [95], and then to
BMAPs in [17, 60]. The approach was subsequently supplemented by
Van Loan’s result (see Section 2.5) in [90], which provided a convenient
and efficient way to implement the required integrals of matrix expo-
nentials. These ideas were applied to MMMPs in [41], and to general
bivariate Markov chains in [76].

4.1 State Estimation

Suppose that u(S(t)) = u; when S(t) =i. The conditional mean esti-
mate of u(S(t)) is given by

a(S(t)) = Zuz Py(S(t) =i|x(r), T €[0,t"]). (4.4)

The conditional probability in (4.4) follows from the conditional proba-
bility Py(Z(t) = (a,i)|x(7),7 € [0,t"]) which was derived in [76, Propo-
sition 5]. Suppose that t* <t < t**1 for some k € {0,1,...,n — 1}, and
that X = a. Let 1; denotes a column vector with a one in its ith com-
ponent and zeros elsewhere. Let / denote a matrix transpose. Using
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Bayes’ rule, (3.20), (3.11), (3.21), (3.29), (3.24), and (3.26), in that
order, we obtain

Py(Z(t) = (a,i) [(7),7 € [0,4"])

— p¢(z(t) = (avi)7$07t1a$17' .. 7tn7xn)
p(f)(x(]vtl?'xlw .. 7tnaxn)

A{wn T oo (ti0) | - For(e — t:0)1,

p¢(x07t17x17 et 7t’l’b7xn)
n
e — ) T (i)t
I=k+2
L(k;0) F™5 (t — t*; 9)1,1;

= i fTpTryr (k1 . _

 pe(Tosti, @, b, ) frERERL (¢ t;0)R(k + 2;¢0)

= L kaxk+l(tk+1 — t,¢)R(k‘ + 2,¢)E(k’¢>ﬁ'xk (t — tk§¢)]
Ck4+1

(45)

Summing the expression in (4.5) over all z; = a € X, and substituting
the result into (4.4), yield the desired conditional mean estimate of

u(S(t)).

4.2 Number of Jumps

The number of jumps of the bivariate Markov chain can be conveniently
expressed in terms of the indicator function

1, Z(t) = (a,i)

ai = . 4.
vai(t) {0, otherwise. (4.6)

The number of jumps from state (a,) to state (b, ) in [0,t"] is given by
M) = Y pailt=)en(t), (4.7)

0<t<tn
where the sum is over the jump points of Z in [0,¢"]. A jump of
the bivariate Markov chain occurs when either the underlying chain
S jumps alone, or when the observable chain X jumps, possibly, simul-
taneously with 5. We treat each of these two scenarios separately.
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In the first scenario, ¢ # j while ¢ = b. For this case, application of
a limit process to (4.7) [1, 3], shows that the conditional mean estimate
of M(t") given {z(7),7 € [0,2"]} can be written as
tn
M (") = | Py(Z(t=) = (a,i), Z(t) = (a,j) |x(7),7 € [0,£"])dt.
0
(4.8)
The conditional probability in (4.8) can be developed along the same
lines as in (4.5). Once this conditional probability is obtained, the inte-
gral is evaluated using Van Loan’s result from Section 2.5. This yields
the following estimate [76, Proposition 3]:

- I”C
M) = |Gaao Y. o (4.9)
]
where k € {0,1,...,n — 1}, the symbol o indicates the Hadamard prod-
uct (or Schur product) [55, Section 7.5], i.e., the entrywise product of

k:xp=a

the two matrices, ¢ is given in (3.25), and
Tip = [eCh+1] 1y (4.10)

is the upper right block of the 2r x 2r matrix exponential of Cjtri1
where

0 Gz
In the second scenario, a # b while ¢ and j may, or may not, be
equal. For this case, the conditional mean of (4.7) is given by
M) = Y Po(Z2( =) = (a,0), Z(t*) = (b,4) |x(r),T € [0,£"]),

k:x=a,
Tpy1=b

(4.12)

where k € {0,1,...,n — 1}. Evaluating the conditional probability as
before, we have [76, Proposition 4]

Mab m_— |G jlé
ij (t") = ab © Z c

k:xp=a, k+1
Tpy1=b

(4.13)

ij
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where

T = R(k + 2;0) L(k; ¢)eFrrentirt, (4.14)

4.3 Total Sojourn Time

The total sojourn time of the bivariate Markov chain in state (a,i)
during [0,¢"] is given by

Di(t") = /0 Pai(T)dT. (4.15)

The conditional mean estimate of D¢ (") given {x(7), € [0,t"]}, is the
integral of the conditional probability of Z(t) = (a,i) given {x(7),T €
[0,¢"]} which is given in (4.5). Using Van Loan’s result, we obtain
[76, Proposition 5]

Aa (4n Illf
AGOER DY o~ (4.16)

k:xp=a i

where k € {0,1,...,n — 1}.

4.4 Computational Load

The computational complexity of the recursions presented in this
section is dominated by the number of arithmetic operations required
to calculate a matrix exponential. From [79], this number is of the order
of r3. It is readily seen that evaluation of the forward recursion (3.24),
or the backward recursion (3.26), requires O(r3) operations per jump
of the observable chain. Evaluation of each of the recursions in this
section requires a similar O(r3) operations per jump of the observable
chain. Hence, the overall computational complexity of the recursions
presented in this section is O(r3) operations per jump of the observ-
able chain.
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Recursive Causal Estimation

In this section we present recursions for causal conditional mean esti-
mation of the state, the number of jumps, and the total sojourn time,
for a continuous-time bivariate Markov chain. We assume, as in Sec-
tion 4, that the true parameter of the bivariate Markov chain is known,
and is given by ¢. Causal recursions allow the estimates to be updated
as the observations become available, without the need to store the
entire data as was the case with the non-causal recursions in Section 4.

A recursion for the state of the bivariate Markov chain was known
since the 1970’s, see [123, 92] who developed such recursion using dif-
ferent approaches. It turns out that recursions for causal estimation of
the number of jumps and the total sojourn time of the bivariate Markov
chain, can be developed by adapting the approach for recursive non-
causal estimation from Section 4. This was done in [75] by using two key
ideas. The first idea is from [128], where the number of jumps and the
state are estimated jointly. This idea is also useful in estimating the total
sojourn time in a similar way. The second idea is from [105], where the
backward density in (3.21) is seen as a function of n and k with a for-
ward mode in n. The approach of [110] for evaluating integrals of matrix
exponentials plays here an important role as in Section 4.

38
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In [37], recursions for causal estimation of the same statistics were
derived for the MMMP and MMPP using the transformation of mea-
sure approach. The principles of that approach are outlined in Sec-
tion 9.1. That approach systematically provides forward recursions in
applicable estimation problems. In that approach, all conditional mean
estimates are derived under a reference probability measure that is
easier to work with than the original probability measure. Specifically,
under the reference measure, the underlying and observable chains, S
and X, respectively, are statistically independent, and the probabil-
ity law of S is the same under both measures. The original measure
must be absolutely continuous w.r.t. the reference measure to guaran-
tee the existence of the Radon-Nikodym derivative for the two mea-
sures. In [37], choosing such a reference measure was possible, since the
underlying and observable chains of the MMMP do not jump simul-
taneously almost surely under the original measure, and also under
the reference measure. For a bivariate Markov chain, the two processes
may jump simultaneously under the original measure but not under
the reference measure due to independence of S and X. Hence, the
original measure cannot be absolutely continuous w.r.t. the reference
measure, and the Radon-Nikodym derivative cannot be constructed.
Thus, the transformation of measure approach could not be extended
to the bivariate Markov chain. The recursions developed in [75] reduce
to those developed in [37] for the MMMP and MMPP versions of the
bivariate Markov chain.

5.1 State Estimation
The conditional mean estimate of the function u(S(t)), given {x(7),7 €
[0,]}, is given by
S(t) =) u; Py(S(t) =il a(r), € [0.1]), (5.1)
i=1
where we have assumed, as in Section 4.1, that u(S(t)) =w; when
S(t) =i. When t* <t < t**1 then from (3.18) and (3.11), we have

[L(k; ) ™ (t — t*:9)]i
L(k; ) Foe(t — th;9)1

Py(S(t) =i|x(r), 7 €[0,t]) = (5.2)
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5.2 Number of Jumps

In this section we detail the recursion for the causal conditional mean
estimate of the number of jumps ijb(tk) given {x(7), € [0,t*]}. Fol-
lowing the state augmentation approach of [128], this estimate is
obtained from the conditional mean estimate of ijb(tk)cpl(tk) given
{x(7),7 € [0,t*]}, where ¢;(t*) is the state indicator function defined by

oilt) = {1’ S0 =1, (5.3)

0, otherwise
and [ € S. Define the 1 x r vector M?}’(tk) whose [th component is
~ ab
given by M@ (t5)pi(tF). Let M, (tF) = Ey{ M2 (t*)|x(r), 7 € [0,¥]}.

)

- ab
The conditional mean estimate of ijb(tk) is obtained from M Z (tF)1.

~ ab
The recursion for M Z (t¥) is given in terms of the matrix exponen-
tial of
Grpa, O

Lk, @

1= (5.4)

T

We use [-]21 to denote the lower left block of the referenced matrix.

In estimating the number of jumps, we distinguish between two
cases as was done in Section 4.2. When ¢ # j while a = b, the recursion
for the number of jumps is given by [75, Proposition 1]

~ 1 -
M (%) = g{M?j(tk—l).ecf‘@fcwfltk
.. J
+ (k-1 = 0)gaa (i) 1i[TF1%]01 } Gy 1y (5.5)

for k > 1, with the initialization M?j(to) =0.In (5.5), I(-) denotes the
indicator function as defined in connection with (2.12), and ¢ is given
in (3.25). When a # b, the recursion for the number of jumps is given
by [75, Proposition 2]
~ ab 1~ ab
M () = MG (el hG,
Ck
+1(xp—1 =a,xp = b)gab(ij)f/(k? — 1)6sz*11k*1tk lilg}
(5.6)

~ ab
for k > 1, with the initialization MZ (to) = 0.
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5.3 Total Sojourn Time

The causal conditional mean estimate of D¢(t¥) given {z(7), € [0,t*]}
is obtained from the conditional mean estimate of DZ(t¥)y;(tF), I €S,
given {z(7),7 € [0,¢*]}. Define the 1 x r vector D¢(t*) whose Ith com-
ponent is D% (%), (t*). Let f)?(tk) = E,{D¢(t")|z(7),7 € [0,t*]}. The
conditional mean estimate of D¢(t¥) is obtained from D (t%)1. The
forward recursion for Dj (t¥) is given by [75, Proposition 2]

. 1 .
Di (1) = —AD; (" erummials
+1(rpq = a)lg[ecifltk]Ql}vakflwk’ (5.7)

for k > 1, and with the initialization b?(to) =0.

5.4 Computational Load

The computational complexity of the forward recursion is dominated by
the computation of the first term in (5.6). It requires O(r?d?) products
of a vector by a matrix which implies a computational complexity of
O(r*d?) per jump of the observable chain.
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Maximum Likelihood Parameter Estimation

The maximum likelihood parameter estimation approach is currently
the method of choice for estimating the parameter of a bivariate Markov
chain. The approach is usually implemented using the EM procedure
[30, 29]. This is an iterative approach in which all available data is
used repeatedly to increase the likelihood of the estimated parameter.
In this section, we first review the identifiability problem, and discuss
asymptotic optimality of the maximum likelihood parameter estima-
tion approach, for discrete-time and continuous-time bivariate Markov
chains. We then detail the EM approach for estimating the parameter
of a continuous-time bivariate Markov chain. The EM approach for esti-
mating the parameter of a discrete-time bivariate Markov chain will be
detailed in Section 8.2. We conclude this section with a short review of
other non-maximum likelihood approaches that have been proposed in
the literature before the area was dominated by the EM approach.

6.1 Identifiability

Two different parameters or representations of a bivariate Markov
chain may lead to the same finite-dimensional distributions of the

42
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observable process. In that case, the representations are said to be
equivalent. This may happen, for example, when the states of the
bivariate Markov chain are permuted. Equivalent representations may
also exist under less obvious conditions. An equivalence class of the
true parameter of the bivariate Markov chain contains all representa-
tions which produce the same finite-dimensional distributions of the
observable process. A bivariate Markov chain is said to be identifiable
if different representations lead to different finite-dimensional distribu-
tions, of some order, of the observable process. When the equivalence
class of the true parameter of the bivariate Markov chain contains
only representations which result from state permutation, then the
process is still considered identifiable. Conditions for identifiability
of continuous-time aggregated Markov chains, and hence of bivariate
Markov chains (see Section 2.2.1), were given in [96, Theorem 2]. These
conditions imply, for example, that an MMPP with an irreducible
underlying Markov chain, and distinct Poisson rates, is identifiable.
Identifiability of continuous-time (and discrete-time) aggregated
Markov chains was also studied by Larget [64]. He developed in [64,
Theorem 2], under some mild regularity conditions, a unique canonical
representation of the process. This representation contains a minimal
parametrization of the equivalence class of the true parameter. Equiv-
alence of aggregated Markov chains may be checked by comparing
their canonical representations. The works of Rydén [96] and Larget
[64] are based on the work of Ito, Amari and Kobayashi [56] who
provided conditions for identifiability of discrete-time aggregated
Markov chains. These may be viewed as hidden Markov models with
finite alphabet, or as discrete-time bivariate Markov chains.

6.2 Optimality

Optimality of a parameter estimator, such as the maximum likelihood
estimator, is usually assessed by its consistency and asymptotic normal-
ity, see, e.g., [21, Chap. 12]. Roughly speaking, an estimator én of the
true parameter ¢, obtained from n observations, is said to be strongly
consistent if ¢En converges almost surely to ¢ as n — oco. The state-
ment is more involved when equivalence classes of the true parameter
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ought to be taken into account, see, e.g., [66, 93]. A consistent estimator
is said to be asymptotically normal if nl/z(qgn — ¢) converges weakly
to the normal distribution with zero mean and covariance given by
the inverse of the Fisher information matrix. Both consistency and
asymptotic normality of bivariate Markov chains are notoriously hard
to prove.

For discrete-time bivariate Markov chains we have the following
result. Strong consistency and asymptotic normality of the maximum
likelihood parameter estimator for a hidden Markov model, with finite-
state underlying Markov chain and finite alphabet observable process,
were first proved in [11, 86].

For discrete-time bivariate Markov processes, in the form of hidden
Markov models, with possibly uncountably infinite alphabet for the
observable process, we have the following results. Strong consistency
of the maximum likelihood parameter estimator for a hidden Markov
model with finite-state underlying Markov chain and continuous-
alphabet observable process, was proved in [66]. Asymptotic normality
of the maximum likelihood parameter estimator for the hidden Markov
model in [66] was proved in [13]|. Strong consistency and asymptotic
normality of the conditional maximum likelihood parameter estimator,
of a possibly non-stationary switching autoregressive process, with an
underlying Markov chain that has a separable compact state space
which is not necessarily finite, was proved in [33]. Conditioning is on
the initial observations, and the initial state of the underlying Markov
chain. For additional results on hidden Markov models in this class,
see [40, Section VL.B], [21, Chap. 12|, and [32], and the references
therein.

For continuous-time bivariate Markov chains, the picture is not as
complete as for the discrete-time bivariate Markov chains. Strong con-
sistency of the maximum likelihood parameter estimator of an MMPP
was proved in [93] by adopting the proof of [66]. Strong consistency of
the conditional maximum likelihood parameter estimator of a bivariate
Markov chain, given the initial observation, was proved in [39] by adopt-
ing the proof of [66, 93]. Asymptotic normality of the maximum likeli-
hood parameter estimator for a bivariate Markov chain has not yet been
proven. Instead, strong consistency and asymptotic normality of an
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alternative parameter estimator for the MMPP, termed the “maximum
split-time likelihood estimator,” were proved by Rydén [94]. This esti-
mator follows from maximization of a likelihood function, derived under
the assumption that the process in consecutive disjoint time intervals
is independent. Numerical results show that this estimator performs
similarly to the maximum likelihood estimator.

6.3 EM Algorithm

The EM algorithm for estimating the parameter of an MMPP was pio-
neered by Rydén [95]. In a closely related work, Asmussen et al. [3]
developed an EM algorithm for estimating the parameter of a continu-
ous phase-type distribution. The approach was subsequently studied in
[90] where some computational aspects were addressed and resulted in a
significant speedup of the procedure. The approach was then extended
to MMMPs in [41], to BMAPs in [17, 60], and to general continuous-
time bivariate Markov chains in [76].

The EM approach is an iterative procedure, for estimating the
parameter of a random process, with the eventual goal of obtaining the
estimate that has the highest possible likelihood value [30]. The proce-
dure begins with some initial estimate of the parameter, and generates
a new estimate with higher likelihood in each iteration. The procedure
is terminated when either a stopping criterion is met, or consecutive
iterations yield the same likelihood. In the latter case, a fixed point is
reached, and the estimated parameter is a stationary point of the likeli-
hood function. Conditions for convergence of the sequence of estimated
parameter values were given in [122]. A possible stopping criterion is
when the relative difference in likelihood values in two consecutive iter-
ations falls below some threshold. Initialization of the EM procedure
is crucially important when the likelihood function has more than one
local maximum. We assume that the EM procedure is applied to a
given sample path of the observable process, z = {z(7),7 € [0,7]}.
We denote the initial parameter estimate by ¢g, and the estimate at
the end of the mth iteration by ¢,, for m =1,2,....

The iterative nature of the EM procedure follows from the fact
that the observable process constitutes only a partial or incomplete
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statistic of the random process. The procedure requires specification of
a complete statistic which facilitates the estimation of the parameter.
For the bivariate Markov chain, the most useful complete statistic com-
prises the entire process {(a:g,SOT )}. In this notation, we have empha-
sized different roles played by the given sample path, xg, and by the
unobserved underlying process SOT . Given the parameter estimate ¢,
a new parameter estimate ¢n,y1 is generated by maximizing the EM
auxiliary function

B, {logps (25,80 ) |44 }, (6.1)

which is the conditional mean of the log-likelihood function of the com-
plete statistic given the observed sample path.

The likelihood function of the complete statistic {(X{,SZ)} follows
from the likelihood function of a continuous-time univariate Markov
chain. The latter likelihood function was derived in [1, Theorem 3.2].
Furthermore, it was shown in [1] that the number of jumps of the chain
from one state to another in the given interval [0,77], and the total
sojourn time in each state in that interval, are sufficient statistics for
estimating the generator of the chain. Each entry of the generator is
estimated as the ratio of the number of jumps between the two states,
and the total sojourn time in the originating state [1, Section 4]. For the
bivariate Markov chain, the EM estimate of each entry of the generator,
is given by the ratio of the conditional mean estimate of the number of
jumps between the two states and the conditional mean estimate of the
total sojourn time in the originating state. These two conditional mean
estimates are calculated from the given sample path of the observed
process using the current estimate of the parameter.

Recall that Miajb(T) denotes the number of jumps of the bivariate
Markov chain from (a,%) to (b,7) in [0,T7], and that D{(T") denotes the
total sojourn time of the bivariate Markov chain in state (a,7) in [0,7T].
Given the parameter estimate ¢,, at the end of the mth iteration, the
estimates of these quantities are given by

MP(T) = Eg, {M{(T)|ag }
D}(T) = Ey, {D{(T) | }- (6.2)

]
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The EM estimate of the entry gq(ij) of the generator of the bivariate
Markov chain at the m + 1st iteration, is given by

M(T)

ey’ (a,i) # (b, 7). (6.3)

gab(ij) =
Since T is usually large, we may content ourselves with the assumption
that T coincides with a jump of the observable process, i.e., T = t" for
some integer n.

The conditional mean estimators in (6.2) can be implemented using
either the recursions from Section 4 for non-causal estimation, or the
recursions from Section 5 for causal estimation. The recursions for
causal estimation, however, are more computationally intensive, and
require per jump of the observable process O(r*d?) operations, com-
pared to O(r®) operations required by the recursions for non-causal
estimation. Since each iteration of the EM algorithm requires the entire
data set, there is no obvious advantage in using causal estimation for
this application. The use of causal estimation of Mi"jb(T) and D$(T)
does not turn the batch EM approach into a recursive parameter esti-
mation approach. The search for a recursive EM approach has a long
history, see, e.g., [108, Eq. 9], [115, Eqgs. 19-21]. Optimality of these
approaches for estimation from incomplete data has not been estab-
lished [98].

6.4 Numerical Results

Numerical results, demonstrating the performance of the EM algorithm
in estimating the parameters of various bivariate Markov chains, were
reported in the literature. We provide a few pointers in this section.
In [95, 90], numerical results were provided for estimating MMPPs.
Results for estimating the parameter of an MMMP were given in [41].
Additional numerical examples, for estimating the parameters of gen-
eral bivariate Markov chains, were worked out in [76]. In all of these
cases, the EM algorithm was implemented using the recursions for non-
causal estimation presented in Section 4. In [60], extensive numeri-
cal evaluation of the EM algorithm was performed, in estimating the
parameter of the BMAP in applications involving Internet protocol
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aggregated traffic modeling. The implementation of the E-step in [60]
did not rely on Van Loan’s [110] result but rather on an alternative
technique termed “randomization.”

6.5 Other Parameter Estimation Approaches

The EM algorithm is not the only approach that has been applied
to bivariate Markov chains. An excellent review of some of these
approaches, as they applied to MMPPs, can be found in [93]. In [78],
the parameter and the underlying Markov chain of an MMPP were
estimated using alternate maximization of the likelihood function of
the underlying and observable chains. In contrast, the EM approach
averages over the underlying chain rather than attempting to estimate
it. Such joint parameter and state estimation is known to be biased, see,
e.g., [19, 107]. Moment based approaches were developed for switched
Poisson processes in [52, 91], and for the MAP in [22]. A switched
Poisson process is an MMPP with two underlying states, i.e., r = 2.
Maximum likelihood parameter estimation of an MMPP using general
optimization procedures were studied in [88, 93]. In [88], the downhill
simplex procedure, which does not require derivatives of the likelihood
function, was employed. In [93], a quasi-Newton multidimensional opti-
mization procedure was applied to maximize the likelihood function of
the MMPP where derivatives were estimated numerically. All of these
approaches, except the more recent one of [22], were compared in [93]
in estimating the parameters of various MMPPs. In [87], the parameter
of a continuous-time aggregated reversible Markov chain was estimated
using the Davisson-Fletcher-Powell approach [73, Section 9.3]. The
required derivatives of the likelihood function were evaluated analyt-
ically, and then implemented by utilizing a spectral representation of
Gaq- By reversibility, all eigenvalues of Gg,, but the 0 eigenvalue, are
negative.
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Recursive Parameter Estimation

As we have seen in Section 6.3, recursive causal estimation of the statis-
tics of the bivariate Markov chain does not facilitate recursive causal
estimation of its parameter using the EM approach.

Recursive parameter estimation for the special bivariate Markov
chain, in the form of an MMPP, was pioneered by Lindgren and Holst in
[69], [53, Eq. 16]. Applying our notation from Section 3.1 to the MMPP,
we use T}, to denote the kth sojourn time of the conditionally Poisson
observable process in the state X;_1, for K =1,2,..., and we let Ty =0
and Xy = 1 to account for the assumed first jump at ¢ = 0. The sampled
MMPP is given by the sequence {Zy = (X, Sk),k =0,1,...}. Since X
counts the number of jumps up to and including the k£ + 1st jump, the
value of X}, can be deduced from the sequence {79, 71,...,T)}. Thus,
when dealing with the MMPP, we can focus on the sequence {(T%, Sk)},
rather than on the sequence {(7}, Zx)}. Recall also that for the MMPP,
the sequence {Si} is Markov.

The recursion proposed in [69] for estimating the parameter ¢
of an MMPP, was motivated by an earlier recursion for estimating
the parameter of a sequence of iid random variables. Suppose that the
observations {7T}} from the MMPP are iid. Then, for k = 1,2,..., the
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recursion is given by
Be=dr + WG] Bl den) (7.1

with some initial estimate qgo, where QASk,l denotes the parameter esti-
mate at the kth jump of the observable process, w(tk;(ik,l) denotes
the score function evaluated at qZ;k_l, and \P(ng_l) denotes the Fisher
information matrix evaluated at ng—l- The score function is the gradi-
ent column vector given by

i= Dylogpy(ty) (7.2)

where 7 denotes the dimension of ¢. The Fisher information matrix is
defined by

V(¢) = Eg{(Th; )¢ (Th: 0) }- (7.3)

It was shown in [113] that this recursion follows from maximization
over ¢, of the second order Taylor series expansion of the EM auxiliary
function

E¢k71{logp¢(t1,. .. ,tk,S[), . ,Sk) ’tl, N ,tk} (74)

around ¢j_1, assuming that the sequence {(T},Sk)} is iid, and the
observed information matrix, given by ¢ (Ty; @)y’ (Ty; ¢), is replaced by
its expected value which constitutes the Fisher information matrix.

For the MMPP, {Si} is a Markov chain, and the random vari-
ables {T}} are conditionally independent given {Sj}. For each k > 1,
T}, depends on Sy as well as on Sk_1, see, Eq. (3.4). This implies
that {1}, Sk} has a hidden Markov model representation [93], and the
sequence {(T},Sk)} is not iid. Hence, in [69], the score function of the
observable process (7.2) was replaced by

= Z Po(Sk—1,5k|t1,...,tk)Dglogpg(ty, sk | sx—1),  (7.5)

Sk—1,5k
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and U(¢) in (7.3) was substituted by the empirical estimate given by
1 k
_— p 2
Y=+ ZE—l Yt i)V (b dia)- (7.6)

Clearly, 0y, depends on the sequence {éo,...,qgk,l} of all past esti-
mates of the parameter. The form of the function in (7.5) was
possibly motivated by the Markov renewal property (3.1). In (7.5),
Pg(Sk—1,5k|t1,...,tx) can be efficiently calculated using the standard
forward recursion of a hidden Markov model, which is given in
Eq. (8.13) of Section 8.2. Evaluation of [@k]*l was done recursively,
from [\i/k_l]_l and @E(tk; ng—l), using the matrix inversion lemma. Thus,
no explicit matrix inversion was required [69].

The function 9(ty;¢) in (7.5) differs from Dylogpg(t | t1, ... te_1),
and hence is not a score function [97]. Rydén [97] showed that (7.1),
together with (7.5) and (7.6), aim at local minimization of the rela-
tive entropy rate between the true probability measure of the MMPP
and the estimated probability measure. Furthermore, if ¢ denotes
the true parameter, and the estimator (ﬁk is strongly consistent, then
K/ 2(g5k+1 — ¢) is asymptotically normal with zero mean and covariance
matrix given by the inverse of limy_, o E¢{1/~)(Tk;¢)1z’(Tk;¢)}.

Recursion (7.1), together with (7.5) and (7.6), was also applied in
[54] for estimating the parameter of a switching autoregressive process
with Markov regime. Such a process is related to a bivariate Markov
chain as we have elaborated on in Section 2.3.

The recursion specified by (7.1) and (7.5) was further studied
in [117]. An explicit recursion for 1(t;¢) in (7.5) was developed, and
the Fisher information matrix ¥(¢) was evaluated under some simpli-
fying assumptions. The /th component of ¥ (t;¢) in (7.5) was shown
to satisfy [117, Eq. 6]

v Lk —1;¢) 0

Yilte; @) = T%[e(Q_A)tkA]l (7.7)

where L(k;¢) is the forward recursion defined in (3.20), ¢, is the scaling
factor defined in (3.25), and e(@=Y!A is a specialization of e“eatGy, for
the MMPP, see Eq. (2.19). An explicit expression for the derivative of
the matrix exponential in (7.7), and its efficient implementation using
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Van Loan’s result [110], were also derived in [117]. In [118], recursions
for the score function (7.2) and for the observed information matrix,
for vectors of observations from an MMPP, were developed.

A vector version of (7.1) may be applied to a bivariate Markov chain,
when vectors of consecutive observations are assumed iid, while the ran-
dom variables within each vector maintain their dependency. This idea
was first proposed in [97] for recursive estimation of the parameter of a
hidden Markov model. The recursion in [97] relies on the score function
alone, while the Fisher information matrix is taken to be proportional
to the identity matrix. Suppose that the recursion in [97] is applied to
the vectors {y,,,m =1,2,...} where ¥,,, = (Y(m—1)n>-->Ymn) 15 @ vec-
tor of n + 1 successive observations. Following each application, the
estimated parameter is projected onto a compact convex subset of the
parameter space ® which contains the true parameter. The projected
estimates undergo further averaging which improves their statistical
properties.

The recursion from [97] can be summarized as follows. Let ¢ (y;¢) =
Dylogpg(y) denote the score function. The projected parameter esti-
mate for the m + 1st vector is given by

ém—i—l = ,PCD((%m + gmw(ym—f—l;ém)) (7'8)

where &, = §ym ™ for some £y > 0 and « € (1/2,1], and Py denotes the
projection. The estimate of the true parameter at the m + 1st vector

is given by
_ 1 mEh
P41 = p——T kzl Pk (7.9)

Asymptotic properties of this recursion, and a numerical study com-
paring its performance with that of the maximum split-time likelihood
estimator [94], for estimating the parameter of a hidden Markov model,
were provided in [97].

A recursion for the score function ¥ (y,,;¢) = Dglogpe(y,,), where
Y,, is a vector of observations from a continuous-time bivariate Markov
chain, can be derived using an approach similar to that of [118].
We demonstrate this recursion for m =1 without loss of generality.
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For k =0,1,...,n, let Yy = (Tk, Xx) denote the kth observation of the
bivariate Markov chain. Let Y’ = {Yp,Y1,...,Y,}, and let yj denote,
as usual, a realization of Yj'. The recursion follows from the gradient
of the forward density pg(yg,sn). For n > 1, this density satisfies the
forward recursion given by,

oW 5n) = D Py 1 50-1)Pp(tns 20 | 2n1), (7.10)
Sn—1
with the initialization of py(yo,so) = pe(20). Applying the differentia-
tion product rule to (7.10), and using (3.24), (3.25) and (3.29), provide
the desired recursion.
Recall that 7 denotes the dimension of ¢. Define the 7 X r matrix
of gradient vectors,

_ 1 {8p¢(y6‘,sn)
[Ti—o Oy

1
k=0

On ()

,l—l,...,f;sn—l,...,r}

Let 0y f*n=1%n(t,,; ¢) denote the r x r matrix of first-order derivatives of
the elements of f*n=1%n(t,:¢) w.r.t. ¢;. Define the 7 X r matrix x(n —
1;¢) whose Ith row is given by L(n — 1;¢) 9f"» % (t,;¢). Then, &, (¢)
satisfies the following recursion

() = B (B (i) +x(n — L)l (712

n

The score function is given by

Dy logps(yp) = 6n(¢)1. (7.13)

The recursion in (7.12) requires the derivative of the transition den-
sity matrix f%(t; ) = e“ae’ Gy, w.r.t. each component ¢; of the param-
eter. The derivative of a matrix exponential follows from the expression
for the differential of that matrix as given in [23]. Consider an 7 X 7
matrix A = {a;;} which is a function of some 7-dimensional parameter
6 ={6,}. For i =1,...,7, let ;A = {Ja;;/06;} denote the r x r matrix
of derivatives of the elements of A w.r.t. 6;. The derivatives of each
of the {a;;} elements w.r.t. each of the {;} elements are given by the
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r2 x 7 Jacobian

VA = [vec(01A),...,vec(0:A)] (7.14)

where vec is the standard vectorization function. The differential of
A is given by the r X r matrix dA = Zlle(@lA)dGl. More compactly,
vec(dA) = VAdA. It was shown in [23, Section 2], using Van Loan’s
result which we presented in Section 2.5, that

vec (deA) = [60]12 vec(dA) (7.15)
where
A I, I
oo (HEh ) -

® denotes a Kronecker product, and [e”] 1o 18 the (1,2) r? x 12 block
matrix of e©. Hence,

Vel = [e“], VA. (7.17)

The derivative of a product of two matrices is given as follows. From
[112, Theorem 1], suppose that the matrices A and B are functions
of the parameter §. Then, the derivative of AB w.r.t. §; is given by
(01A)B + A(0,B).

Numerical results obtained by applying the recursion (7.8)-(7.9),
using (7.12), for recursive estimation of bivariate Markov chains, may
be found in [68].
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Discrete-Time Bivariate Markov Chains

In this section we introduce the discrete-time bivariate Markov chain.
We discuss parameter estimation of this process, and approximation
of the parameter of a continuous-time bivariate Markov chain by an
estimated parameter of a corresponding discrete-time bivariate Markov
chain. The latter process is obtained from sampling of the continuous-
time bivariate Markov chain at fixed intervals, rather than at the jump
points of the observable process as was done in Section 3.1.

8.1 Structure and Properties

A discrete-time bivariate Markov chain comprises a pair of discrete-
time finite-alphabet random processes which are jointly Markov. Each
of the two processes alone need not be Markov. The two processes
may jump simultaneously. The discrete-time bivariate Markov chain is
assumed homogeneous. We keep our notation similar to that used in
the continuous-time case, and thus we denote the process as {Z(t) =
(X(t),S(t)),t =0,1,...}, and assume that it takes values in the same
state space Z. The state pairs {(a,7) € Z} are ordered lexicographically,
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and the transition probability is given by
hap(i5) = Ps(Z(t + 1) = (b,5) [ Z(t) = (a,7)) (8.1)

where ¢ is the parameter of the process, that is, ¢ comprises the ini-
tial distribution of the chain, and the set of independent entries of its
transition matrix. The transition matrix H = {hg(ij)} is written as a
block matrix H = {Hg;a,b € X}, where Hyp = {hap(ij);7,j € S} is an
r X r matrix. The underlying chain S is Markov with transition matrix
Q if and only if ), .« Hy, = Q independently of a. A similar condition
can be given for the observable chain X to be Markov. When H is
irreducible, it has a unique stationary distribution 7 satisfying 7 = 7 H
[51, Theorem 6.9.21]. The process {Z(t)} is stationary if and only if
Py(Z(0) = (a,i)) = mq, for all (a,7) € Z.

Sampling {Z(t),t =0,1,2,...} at the jump points of {X(t),t=
0,1,2,...}, assuming that t = 0 coincides with a jump point of X, results
in a discrete-time Markov renewal process which is denoted here by
{(Ty, Zx),k =0,1,...}. Using our notation from Section 3.1, T, k > 1,
denotes the sojourn time of the chain in state Xj;_1, which corresponds
to the kth jump of X, and Z = (X, Sk). Properties of that process
were discussed in [83], and are summarized below. The transition prob-
ability of the Markov renewal process is given by

W(l;0) = Py(Ty = 1,2y = (b,) | Zo = (a,1)) (8.2)
for [ =1,2,..., and a # b. The transition probability matrix, defined as
o (1;0) ={ Z-‘;-b(l;qﬁ),z',j =1,...,r}, where a # b, is given by,

F(li¢) = Hiy' Hep. (8.3)

The probability mass function of the observable process
{Xo0,X1,...,X,} is given by an expression identical to (3.14)
when T is a jump point of the observable process, there are n jumps
in [0,7], and v4,(¢) is defined analogously to (3.13).

Assume that the matrices H and {Hgq,a € X} are irreducible,
and that the diagonal elements of H are positive. From the Perron-
Frobenius theorem [63, pp. 536-537], the spectral radius of Hg, lies in
(0,1), and hence, from [63, p. 531, Theorem 2], (I — H,,) is an M-
matrix. That is, it is non-singular, and (I — H,,)~! > 0. In fact, under
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the above assumptions, we have from [63, p. 533, Exercise 1], that,

(I — Haa)~ ZHZ 1> (8.4)

The transition probability of the sampled bivariate Markov chain
{Zy,k=0,1,...} is given by

Py(Zy, = (b,5)| Zk—1 = (a,i) Z

= [(I = Haa)™"Hab)ij, (8.5)

and the corresponding transition matrix is given by the block matrix
D ={Dg;a,b € X}, where

- 1
Dab _ {(I Haa) Haba b 75 a

0, b=a. (8.6)

The sampled discrete-time bivariate Markov chain has one closed set
of recurrent, possibly periodic, states, while the remaining states are
transient. The transition matrix D has a unique stationary distribution
with zero entries for its transient states. The sampled discrete-time
bivariate Markov chain is stationary if and only if its initial distribution
v(¢) satisfies v(¢p) = v(¢)D.

The distribution of the sojourn time of the observable process in
each state in X follows from (8.2). Its probability mass function is given

by [83]

po(lla) = v Hig (I — Hyo)l (8.7)
forl =1,2,..., where v, = v,/(v,1) asin (3.34). This is a discrete phase-
type probability mass function with parameter (7, Haq) [82, p. 46]. The

set of discrete phase-type distributions is dense in the set of distribu-
tions on {0,1,2,...} [65, p. 54].

8.2 Parameter Estimation

In this section we denote the observable process of the bivariate Markov
chain Z in [0,¢] by X{ = {X(0),X(1),...,X(t)} for any non-negative
integer t. We denote a realization of X{ by xf = {z¢,z1,...,2}. We also
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use z; = (x4, $¢) to denote a realization of Z(t). Previously, we have used
z; to denote a value of the sampled bivariate Markov chain. This minor
abuse of notation should not cause any problem since we shall not
discuss the sampled bivariate Markov chain in the remaining parts of
this section.

The parameter ¢ of the discrete-time bivariate Markov chain Z, may
be estimated from a realization zf of the observable process, using a
variant of the algorithm developed by Baum and Petrie [11], Baum,
Petrie, Soules, and Weiss [12, 10], and Welch [116]. This algorithm is
commonly referred to as the “Baum-Welch” algorithm. See also [114]
for an application of the algorithm to discrete-time bivariate Markov
chains. This is an easier estimation problem than that encountered
earlier with the continuous-time bivariate Markov chain.

For this discussion, assume that m,; = Py(Z(0) = (a,7)) is any ini-
tial distribution of the chain, not necessarily its stationary distribution.
Let

Mab Z@az 1)ion;(t) (88)

denote the number of transitions of Z from state (a,i) to state (b,7)
in [0,7] where (b, j) is not necessarily different from (a,7). This means
that we allow here self transitions, and hence M%b(T) is not necessarily
the number of jumps of the chain from state (a,i) to a different state
(b,7). The probability mass function of the bivariate Markov chain is
given by

P¢(Z(O) =20,2(1)=2,...,2(T) = ZT)
=7z | [ 11 P i) M), (8.9)
(a,7) (b,)

Applying a standard EM argument to (8.9), assuming ¢, is the param-
eter estimate at the end of the mth iteration, shows that the estimate
of 7, at the m + 1st iteration is given by

A Py, (S(0) = i]zF), zo=a
a,i — " : 1
Ta, {07 otherwise, (8.10)
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and the estimate of hg(ij) at the conclusion of the m + 1st iteration
is given by

hap(if) = =7 (8.11)

where
MENT) = Ey, {MZ(T) |25}
T
= Y P (S(t—-1)=i,50t)=jlzf). (812

t=l:xy_1=a
Tt=b

The probabilities in (8.10) and in (8.12) may be calculated using
the standard forward-backward recursions for hidden Markov models,
see, e.g., [10, 40]. Specifically, for a given parameter ¢, the forward
recursion is given by

F(xp,560) = Py(Xg = x0,5(t) = s¢)
= ZF(ﬂfg_ly5t—1§¢)hxt—1,l‘t(st—175t) (813)
St—1

wheret =1,...,T, and F(z,50;¢) = Ta,,s,- For the backward recursion
we denote X/ = {X(t),X(t +1),...,X(T)}, and the recursion is given
by

B(a] |2-139) = Po(X{ =af | Z(t — 1) = z1)
=Y B(af |20 hay sz (s-1,5)  (8.14)
St
where t =T,...,1, and B(aT, |s;,,;¢) =1. We also have for t =1,
LT,
Py(S(t — 1) = 841, S(t) = s, X§ =)
= F(xé‘l,st_l;qS)B(x{H | 2t;0)ha, 1 20 (St—1,5¢)- (8.15)

This equation may be used for recursive evaluation of the conditional
probability required in (8.12). The forward-backward recursions are
recursively scaled to improve their numerical stability by a procedure
similar to that described in Section 3.3, see, e.g., [40, Section V-A].
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8.3 Approximation by Discrete-Time Bivariate
Markov Chains

The relative simplicity of the parameter estimation problem for
discrete-time bivariate Markov chains, compared to continuous-time
bivariate Markov chains, has motivated some authors to consider
estimation of the generator of a continuous-time bivariate Markov
chain, from an estimate of the transition matrix of a sampled version
of the continuous-time bivariate Markov chain. In this approach, the
continuous-time bivariate Markov chain is first sampled at fixed inter-
vals, irrespectively of the jump points of the observable process, and the
transition matrix of the resulting discrete-time bivariate Markov chain
is estimated using a variant of the Baum-Welch algorithm described
in Section 8.2. We denote the estimated transition matrix by Py(A)
where A denotes the sampling period. Given P¢(A), an estimate of
the generator of the continuous-time bivariate Markov chain, say G, is
obtained by attempting to solve (2.8), rewritten here as,

Py(A) = A, (8.16)

This approach was adopted, for example, in [24] and [114]. In principle,
the solution of (8.16) is given by the matrix logarithm of the transition
matrix estimate normalized by A. But the problem is far more complex
due to the infinite number of branches of the logarithm function.

This approach raises two key questions. First, for a given estimated
transition matrix p¢(A), is it always possible to find a valid generator G
that solves (8.16)7 Second, if a valid solution exists, is it unique? The
first question deals with embeddability of a discrete-time Markov chain
in a continuous-time Markov chain. When a valid solution exists, we
refer to P¢(A) as an embeddable matrix. When the solution is unique,
we say that G is identifiable. As it turns out, the answers to these two
questions are far from trivial. An excellent discussion of the embed-
dability and identifiability problems is given in [102]. We shall follow
the discussion from [102] in this section.
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An intuitive approach, which relies on the Taylor series expansion
of the logarithm function, yields

o Nk—1[F ok
%log]%(A): Ly~ GV R(E) Z 1T (8.17)

When ]5¢(A) has distinct eigenvalues {v;}, this series converges if and
only if |v; — 1| <1 for all i’s. Convergence, however, is not necessar-
ily to a valid generator [102, Example 3]. Conversely, P,(A) may be
compatible with a valid generator, i.e., embeddable, even when the series
does not converge [102, Example 4]. These observations follow from the
fact that the series (8.17) provides only a partial description of the log-
arithm of a matrix. When the eigenvalues of ]5¢(A) satisfy the above
conditions, then (8.17) provides only the principal branch of log Py(A).

Explicit sufficient conditions for a transition matrix to be embed-
dable are known only for matrices of order two [58]. Such conditions
are not useful for bivariate Markov chains whose minimal order rd is
always larger than two. A set of necessary conditions, developed by
several authors, is given in [102, Section 3.1]. For example, for every
embeddable transition matrix, det(Py(A)) > 0 [58]; all eigenvalues {v;}
other than v; =1 must satisfy |v;| # 1, and any negative eigenvalue
must have even algebraic multiplicity [35]. Another necessary condi-
tion implies that only a finite number of branches of log ]%(A) ought
to be considered when determining the compatibility of a given tran-
sition matrix to a generator. These conditions can be used to identify
estimated transition matrices that are not embeddable. Furthermore,
the last quoted condition enables the use of Sylvester’s formula which
provides a complete description of log P¢(A) by incorporating different
branches of the logarithm function. For an rd x rd matrix A with dis-
tinct eigenvalues, and a multi-valued function u(-), Sylvester’s formula
is given by

rd '
u(A) = Zuai(vi) H ((A_UZI) (8.18)
i=1

i 0= v)
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where {ug,,7 = 1,...,rd} represent at most rd different branches of the
function u. By applying this formula to A = 15¢(A), and letting ug, (A)
be a branch of the logarithm function, the desired generator can be
constructed when P4(A) is embeddable [102, Section 3.2a]. A detailed
algorithm for constructing the generator from an embeddable transi-
tion matrix can be found in [102, Section 3.3a]. An extension of this
approach to transition matrices with non-distinct eigenvalues is also
provided in [102].

For an embeddable estimated transition matrix to have a unique
estimated generator, one of the following sufficient conditions must be
met [102, Section 4.1]: i) The eigenvalues of f’¢(A) are distinct and
positive; ii) the minimal value of any element on the main diagonal of
Py(A) is larger than 0.5; iii) det(Ps(A)) > e~™. Under condition i), the
series in (8.17) provides the principal branch of log(P;(A)) and will
converge to a unique valid generator.

Another aspect of the approach for obtaining G discussed in this
section, is that it provides little control over the desired structure of the
estimated generator. In some applications, such as that of ion-channel
current modeling (see Section 11.1), the structure of the true generator

GA and the estimated transition matrix by

G imposes constraints on e
the Baum-Welch algorithm may not fulfil these constraints. Thus, even
if the logarithm of the estimated transition matrix produces a unique
valid generator, the estimated generator may fail to be of the desired
form.

The shortcomings of estimating the generator of a continuous-time
bivariate Markov chain from a regularly time-sampled version of that
chain, and the increased complexity associated with the use of a neces-
sarily small sampling period, render this approach as inferior to the
approach advocated in this paper, where estimation of the genera-
tor is performed directly from the continuous-time bivariate Markov
chain. As discussed earlier, such estimation becomes possible when the
continuous-time bivariate Markov chain is sampled at the jump points
of the observable process. This provides a conceptually more meaning-
ful approach which is also more computationally efficient.
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Hidden Bivariate Markov Chains

A hidden bivariate Markov chain is a discrete-time or a continuous-
time bivariate Markov chain observed through a discrete-time or
a continuous-time memoryless noisy channel. The output of the
channel at time t, denoted here by Y (¢), may depend on the joint
state Z(t) = (X(t),S(t)) of the bivariate Markov chain, or it may
be independent of S(t) given X(¢). Suppose first that the chain and
the channel are discrete-time. The process with the first dependency
scenario corresponds to a standard hidden Markov model, albeit with
an underlying bivariate Markov chain rather than a univariate Markov
chain, see, e.g., [40]. The process with the second dependency scenario
corresponds to a hidden semi-Markov process, see, e.g., [9]. The
main difference between these two models, is that the sojourn time
in each state (a,i) € Z of the hidden Markov model is geometrically
distributed, while the sojourn time in each state a € X of the hidden
semi-Markov process has a discrete phase-type distribution. Phase-type
distributions are more general and may be more suitable in some appli-
cations. The parameter of the hidden bivariate Markov chain in either
case may be estimated using a variant of the Baum-Welch algorithm.

A hidden semi-Markov process may also be obtained by supplement-
ing the standard hidden Markov model, which comprises a discrete-time
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univariate Markov chain observed through a discrete-time memoryless
channel (see, e.g., [40]), with an explicit durational model [42, 124].
While this approach forces the sojourn time distribution to have a
desirable form, it requires a far more complex parameter estimation
scheme, compared to the Baum-Welch algorithm in the hidden semi-
Markov process described in the previous paragraph. Moreover, the
desirable form of the durational distribution is rarely known in practice.
For example, in speech recognition applications, the desirable sojourn
time distribution is not known, and various models have been hypoth-
esized. One example is the Gamma distribution in [67]. It is interesting
to note that when the shape parameter of the Gamma, distribution is an
integer, then it is the distribution of a sum of iid exponential random
variables, i.e., it is an Erlang distribution, which is a special continuous
phase-type distribution.

In speech recognition applications, the distribution of Y (¢) given
X (t) is usually normal with parameter that depends solely on X (¢). In
other applications, such as in reliability theory and DNA analysis, Y (¢)
has a finite alphabet. The development of finite alphabet hidden bivari-
ate Markov chains, motivated by the desire to obtain more favorable
sojourn time distributions, was studied in [9].

Hidden bivariate Markov chains also occur in continuous-time. For
example, a continuous-time univariate Markov chain observed through
a discrete-time memoryless Gaussian channel, was attributed to the
patch-clamp measurements from a single ion-channel [46, 89]. In more
elaborate ion-channel models, the univariate Markov chain is replaced
by a multivariate Markov chain. That chain is also observed through a
discrete-time memoryless Gaussian channel which represents the noise
from the patch-clamp. This application is discussed in more detail in
Section 11.1.

In this Section we deal with a continuous-time bivariate Markov
chain observed through a continuous-time channel. The channel is rep-
resented by additive Brownian motion noise. This model is of theoret-
ical importance since it generalizes the model of a univariate Markov
chain observed in Brownian motion [121, 127, 128]. It is also of practical
interest since measurements from a bivariate Markov chain may be
noisy in some applications.
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The mathematical tools used so far in this paper are inadequate for
our task in this section. Estimation schemes for continuous-time ran-
dom processes observed in Brownian motion, are conveniently derived
through transformation of measure and the generalized Bayes’ rule. In
the next section, we provide a brief introduction to this approach, which
will also be beneficial for our discussion in Section 10. This material
is more advanced and requires some background in random processes.
Excellent accessible texts are the books by Wong and Hajek [120], and
by Klebaner [59].

9.1 Transformation of Measure Approach

The transformation of measure approach is a canonical approach for
deriving the conditional mean estimator of a desired signal given an
observed signal. It applies to discrete-time as well as continuous-time
processes. The approach involves two conceptual steps. First, the prob-
ability measure of the desired and observed signals is transformed into
a reference probability measure, under which the desired and observed
signals are statistically independent. Then, the generalized Bayes’ rule
is invoked for evaluating the conditional mean estimate of the desired
signal, as the ratio of two conditional mean estimates which are cal-
culated under the reference measure. Only one of the two conditional
mean estimates under the reference measure needs to be evaluated,
since the other provides a simple normalization. The evaluated condi-
tional mean estimate under the reference measure is called the unnor-
malized conditional mean estimate.

The transformation of the given measure into the reference measure
is provided by the Radon-Nikodym derivative [14, Theorem 32.2]. When
the two measures possess densities, say with respect to Lebesgue mea-
sure, then the Radon-Nikodym derivative is the likelihood ratio given
by the ratio of the two probability density functions. Alternatively,
when the two measures possess densities with respect to the counting
measure, then the Radon-Nikodym derivative is the ratio of the two
probability mass functions. The key to this approach is the existence
of an explicit expression for the Radon-Nikodym derivative. For prob-
lems involving additive white Gaussian noise or Poisson counting noise,
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explicit expressions for the Radon-Nikodym derivatives are known, but
they depend on stochastic Ito integrals. We next describe these ideas in
more concrete terms, and apply them in Section 9.2 for estimating the
same statistics of a bivariate Markov chain considered in Sections 4 and
5, except that here the observable chain is seen through a Brownian
motion. We shall revisit this approach in Section 10.

In this section, as well as in Section 10, we use Py and P, to denote
probability measures, and Ey and E7 to denote expectations w.r.t. these
probability measures, respectively. This is standard notation in nonlin-
ear filtering theory. This notation should not be confused with P4 and
E4 from earlier sections. Another standard notation is m(-) which rep-
resents the unnormalized conditional expected value of some random
process w.r.t. FPy. The exact definition will be given shortly following
Eq. (9.5) below. This notation should not be confused with the station-
ary distribution 7 of a bivariate Markov chain used in Section 2.1.

Suppose that we are interested in causal conditional mean estima-
tion of a measurable function u(-) of a process {Z(t),t > 0}, not neces-
sarily a bivariate Markov chain, from the observable process

Y1) = /Otv(Z(T))dT LW, 10, (9.1)

where v(+) is some measurable function, and {IW(t),t > 0} denotes a
standard Brownian motion. Suppose that P is the probability mea-
sure of {(Z(t),Y (t)),t >0}, and that {Z(t),t > 0} and {W(¢),t > 0}
are statistically independent under P;. Suppose that a reference prob-
ability measure Py for {(Z(t),Y (t)),t > 0} exists, such that: i) the pro-
cess {Z(t),t > 0} has the same probability measure under Py as under
Py ii) {Y(¢),t > 0} is a standard Brownian motion under Fp, and iii)
{Z(t),t >0} and {Y(t),t > 0} are statistically independent under Py.
Existence of such a probability measure is guaranteed by Girsanov’s
theorem, see, e.g., [120, Section 2, p. 254], [59, Chap. 10]. Define

T(t) = exp{/otv(Z(T))dY(T) _ ;/Otv2(2(¢))d¢}

=1 —i—/o Y(r—)v(Z(7))dY (1), (9.2)
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and assume that Eq{Y(t)} = 1. Let Z} = {Z(7),7 € [0,t]}, and define
Y} similarly. From Girsanov’s theorem, P; is absolutely continuous
w.r.t. Py, and Y(¢) is the Radon-Nikodym derivative of P; w.r.t. Py,
that is,

APy ¢ <t
T(t) = —(Zy,Yy)- 9.3
(6) = G (26, Y9) (9.3
Let G; denote the o-field generated by {Z§,Y{}. A sufficient condi-
tion for {Y(¢)} to be a Py-martingale w.r.t. Gy, with Eo{Y(¢)} =1, is
given by Novikov’s theorem [59, Theorem 8.17]. The martingale prop-
erty means that for any 7 > 0,

Eo{Y(t +7)| Z6YEy =Y (t), as. (9.4)

When the two measures P; and Py possess densities, then the Radon-
Nikodym derivative is given by the likelihood ratio, or the ratio of the
two densities. Girsanov’s theorem is far more general since it holds for
any finite energy signal v(Z(t)) on [0,t]. Note that the integrals in (9.2)
w.r.t. dY (1) are Ito6 integrals [59, Chap. 4].

Let F1{u(Z;)|Y{} denote the conditional mean estimate of
u(Z;) given Y{ evaluated under the true measure P;. Similarly, let
Eo{u(Z)Y(t)|Y{} denote the conditional mean estimate of u(Z;)Y(t)
given Y{ evaluated under the reference measure Py. The generalized
Bayes’ rule (Kallianpur-Striebel formula) [70, Lemma 7.4], states that:

Eo{u(Z)Y(t) Y5}
Eo{Y() Y5}

By{u(Z) |V} = (9.5)
This generalized Bayes’ rule can be easily verified when the two mea-
sures possess densities simply by substituting Y (¢) with the likelihood
ratio.

In the transformation of measure approach, a stochastic differential
equation is developed for the unnormalized conditional expected value
m(u(Z)) = Eo{u(Z;)Y(t)|Y{}, from which the normalized conditional
expected value E1{u(Z;)|Y{} is obtained as m(u(Z))/m(1). The
stochastic differential equation follows from application of the prod-
uct rule [59, p. 220] to u(Z;)Y(¢), by using the differential form of
Y(t) given in the second line of (9.2), and from the semimartingale
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representation of the statistic being estimated [59, Section 9.6]. The
semimartingale representation expresses the estimated statistic as the
sum of a finite-variation function and a martingale.

The transformation of measure approach has become the method of
choice in nonlinear estimation problems. Its striking feature is that it
always leads to linear forward recursions. Since the noise is a Brownian
motion, the resulting recursions are expressed as stochastic differential
equations. Recursive estimation of the state of a continuous-time uni-
variate Markov chain observed in Brownian motion was pioneered by
Wonham [121] and Zakai [127]. Estimation of the number of jumps of
the Markov chain was pioneered by Zeitouni and Dembo [128]. This
was done by augmenting the number of jumps process with the state
process, and estimating the augmented process using the state recur-
sion from [121, 127]. The transformation of measure approach has been
applied to a range of estimation problems in [36]. In particular, the
approach was applied to estimation of Markov modulated Markov pro-
cesses in the absence of noise in [36, 37].

9.2 Noisy Bivariate Markov Chains

In this section we present recursions for estimating the statistics of
interest of a continuous-time bivariate Markov chain {Z(¢),t > 0}
observed in Brownian motion. We assume that the observable noisy
process is given by (9.1), with v(Z(t)) = %X(t), where 3 is a constant
that determines the signal to noise ratio. The statistics of interest
are: i) a function of the state of the bivariate Markov chain; ii) the
number of jumps from one state to another in a given time interval;
and iii) the total sojourn time of the chain in each state in a given
time interval. Estimation of each statistic at time t is performed from
Y{}. To demonstrate the approach, we detail the derivation of the state
recursion, and provide the other two recursions without their proofs.
The derivation of the three recursions, along with some numerical
results, may be found in [38].

9.2.1 State Estimation

In this section we detail the recursion for the conditional mean esti-
mate of a function u(Z(t)) of the state of the bivariate Markov



9.2 Noisy Bivariate Markov Chains 69

chain. Suppose that u(Z(t)) = up; when Z(t) = (b,7). The function can
then be expressed as a linear combination of the indicator functions

{ep;(t),(b,j) € Z} defined in (4.6), that is,
= upion;(t). (9.6)
b.j

Hence, it suffices to estimate {¢y;(t)}. The conditional mean estimate
of the indicator function ¢y;(t) given Y{, is given by,

Goj(t) = Ex{ion; (1) |V} = Eoﬁbfg()gf%f“} — ”;iff;). (9.7)

Clearly, E1{¢p;(t)|Y{} is the Pj-conditional probability of Z(t) =
©pj(t) given Y. We next show how the recursion for m () is derived.
First, from [59, Thm 9.15], it can be shown that y;(t) satisfies,

QObj (ij + Zgab 1j / (Paz )dT + ‘/bj(t) (98)

where {V4;(t)} is a Po—martingale measurable on the o-field F; gener-
ated by Z§. This is the semimartingale representation of ©p;(t). Next,
from the product rule for semimartingales [59, p. 220],

s (DX (E) = 91 (0) + /0 by (7= )T ()

" / Ty (7) + [, Y1) (9.9)
0

where [¢p;, T](t) denotes the quadratic covariation between ¢y;(t) and
T(t). This quadratic covariation equals zero since ¢y;(t) is of finite
variation and Y(t) is continuous [59, Theorem 1.11]. . Substituting the
second line of (9.2) in the first integral of (9.9), and (9.8) in its second
integral, we obtain under P,

o (DT (t) = 013(0) + ; / 03 (7—) X (1) X (r=)dY,
S aalid) [ Xr)gulr)dr

+ [0 aviy o). (9.10)
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The recursion for m(¢p;) is obtained by applying the conditional
expected value under Py, given Y{, to both sides of (9.10). Using [120,
Lemma 3.2, p. 261], it follows that the conditional mean of the last
integral in (9.10) equals zero. Furthermore, using predictability of the
right-continuous bivariate Markov chain with respect to the o-field gen-
erated by the Brownian motion [59, Corollary 8.36], it follows that the
conditional mean of each of the remaining two integrals in (9.10) can be
applied directly to their integrands, and conditioning can be reduced
from Yy to Y. The unnormalized conditional mean estimate 7 (¢p;)
obtained in this way satisfies the following recursion

t
Ti(n) = mo(pp;) + g/o 7 (i )dY (T)
+Zgab(ij)/0 r(ai)d, (9.11)

where mo(¢p;) is the prior unnormalized probability of {X(0) = (b,5)}
under P;. When the underlying chain has only one state, i.e., r =1,
(9.11) reduces to the recursion for estimating the state of a univariate
Markov chain observed in Brownian motion [121, 127].

9.2.2 Number of Jumps Estimation

In this section we detail the recursion for estimating the number of
jumps Miajb(t) from state (a,i) to state (b,7) in [0,t]. We denote the
conditional mean estimate of Mf‘jb(t) given Y{ by ijb(t). Following
the state augmentation approach of [128], a recursion is developed
for the conditional mean estimate of 7.x(t) := M%b(t)govk(t), where
~v=1,...,d and k=1,...,r, from which ijb(t) is obtained by sum-
ming over all (v,k).

The recursion for estimating 7.4 (t) was developed in [38] along the
lines described in Section 9.2.1. The semimartingale representation of
ijb(t) was obtained as in [37, Eq. 24], and is given by

MEP(t) = gap (i) /0 Pai(T—)dT + /0 Pai (T—)d Vi (7). (9.12)
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The product rule is applied here twice, once for M%b(t)T(t) and then for
(ijb(t)'f(t))apyk(t) using (9.8). The resulting recursion for the unnor-
malized conditional mean estimate

(k) = Eo{nyk(t)Y(8) | Yo}, (9.13)
is given by,
me(yk) = mo(nyw) + g/o r (k)Y () + VZng(lk)/o T (1) dT
—|—6jk57bgab(ij)/0 WT((pai)dT (9.14)

where §;;, denotes the Kronecker delta.

9.2.3 Total Sojourn Time Estimation

In this section we detail the recursion for estimating the total sojourn
time D¢(t) in state (a,i) during [0,¢]. We denote the conditional mean
estimate of D%(t) given Y¢ by D%(t). This estimate is also obtained
by using the state augmentation approach of [128], see also [36].
A recursion is developed for the conditional mean estimate of ¢ i (t) :=
D¢(t)pyx(t), where vy =1,...,d and k=1,...,r, from which Dy(t) is
obtained by summing over all (v, k).

The recursion for estimating ¢, (t) was developed in [38] along the
lines described in Sections 9.2.1-9.2.2. The semimartingale representa-
tion of D¢(t) is trivial and is given by

t
D(t) = / i (7)dr (9.15)
0
The recursion for the unnormalized conditional mean estimate
7e(syk) = Eo{sye(0)T (1) Yo} (9.16)

is given by,

(o) = molsre) + 5 | s (e)dY (7)

t

t
+ZgV7(lk)/ 7T-T(glll)dT + 5ik57a/ Wr(ﬁpaz‘)dT. (917)
0 0

vl
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9.2.4 Recursion Implementation

Each of the above three recursions involves a stochastic It6 integral.
A common approach for implementing such recursions is based on
Clark’s transformation [26]. This transformation was applied in [57]
for estimating the state, number of jumps, and total sojourn time of
a continuous-time univariate Markov chain observed in additive white
Gaussian noise. In this approach, the stochastic differential equation is
transformed into an ordinary time-varying differential equation which
can be solved numerically.

To demonstrate the procedure, consider the state recursion (9.11),
and the 1 x rd row vector of state estimates

(@) = {m(wa1), ., m(Yar),a € {1,...,d}}. (9.18)

Define the block diagonal matrix

1
B= Ediag[l dpy..yd - I, (9.19)

where I, is an r x r identity matrix. Then, the state vector estimate
(9.18) satisfies

mie)=me) + [ m(@)BaY () + [ m(pGar  (020)

Clark’s transformation is constructed as follows. Consider a solution
of (9.20) in the form of q;(p) := wi () M; where w,(p) is a row vector
of deterministic differentiable functions and

M, = exp{BY(t) - ;BZt}

= My —i—/OtBMTdY(T). (9.21)

The second equality in (9.21) follows from It6’s formula for semimartin-
gales [59, Section 8.10]. Application of the product rule for semimartin-
gales [59, Corollary 8.7] to ¢:(¢) := w: (@) M; provides,

a(0) = a0() + /0 @ (9)dM, + /0 Ao+ ()Mo + [w(), M] (1),
(9.22)
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The covariation in (9.22) equals zero since M, is of finite variation
and wy(¢) is continuous [59, Section 4.5, Theorem 1.11]. By matching
the first (or the second) integral from (9.20) with the corresponding
integral from (9.22), using the second line of (9.21) for d M., it follows
that if () satisfies the ordinary time varying differential equation

dwi(p) = wi (@) M;GM;dt, (9.23)

then 7 () = q(ep) a.s. when qo(e) = mo(w). Thus, m(p) can be
obtained from a numerical solution of (9.23) with the initial condi-
tion of wy(p) = ﬂo(cp)e*BY(O). Note that M;_ = M; since under Py,
{Y(t)} is a Brownian motion and hence continuous.

A recursion for solving (9.23) numerically, using a first-order Euler
approximation, was given in [26]. It follows from discretization of the
differential equation at ¢ = kd where kK =0,1,..., and § is a step size.
The discretized equation is given by

Dt1)5(P) = @rs(@) + drs (@) MisG M,y
U411 (P) = T(41)5(PIM (1o11)5- (9.24)

Let AYgi1 = Yk+1)s — Yrs Where ygs represents a realization of Y (k).
From (9.24) and (9.21)

1
Ak+1)5(p) = are(p)(I + 5G)6XP{BA?M+1 - 2325}

q0(p) = mo(ep), (9.25)

which is the desired forward recursion for the unnormalized conditional
mean estimate ms(¢) of the state vector ¢. It is easy to see that each
component of q(k+1)5(cp) is positive, whenever the corresponding com-
ponent of g5(¢p) is positive, provided that § < 1/ming ;{—gaq (i)} [74].
The recursions (9.14) and (9.17) were implemented in a similar manner
in [38].

Numerical results using this approach were presented in [57, 38],
for estimating the statistics of univariate and bivariate Markov chains,
respectively. In [38], the recursions (9.14) and (9.17) were also embed-
ded in the EM approach of Section 6.3, for estimating the parameter
of a bivariate Markov chain observed in Brownian motion at various
signal to noise ratios.
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Underlying Diffusion Processes

In this section we focus on two bivariate Markov processes for which
the underlying process is a diffusion process. In one case, the diffusion
process is observed in Brownian motion. In the other case, the diffusion
process modulates the rate of a Poisson process. The pair of processes,
comprising the underlying diffusion process and the observable process
in each of these two scenarios, is a bivariate Markov process. Moreover,
the underlying diffusion process in each case is a Markov process. The
second model described above may be considered as an MMPP with
an uncountably infinite alphabet underlying Markov process. These
processes are of great practical importance in many applications. Their
inclusion in this review paper complements the picture of the family of
bivariate Markov processes.

For each of these two processes, we present recursions, in the form
of stochastic partial differential equations, for estimating the diffusion
process. The recursions for both models can be derived using the trans-
formation of measure approach. The principles of that approach were
outlined in Section 9.1. The approach was originally developed by Zakai
[125] for the conditional mean and conditional density of a diffusion
process observed in Brownian motion. See also [80, 34]. A recursion for

74
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estimating the diffusion process in the presence of a Brownian motion
and a counting process is given in [120, Section 5, p. 269]. The recursions
are given in terms of the unnormalized conditional mean or conditional
density estimates of the diffusion process given the observable process.

Recursions for the normalized conditional mean and conditional
density estimates of a diffusion process observed in Brownian motion
were first developed by Kushner [62]. A recursion for the normalized
conditional density of a diffusion process modulating a Poisson process
was first derived by Snyder [103]. See also [16, 101, 111].

An EM approach for maximum likelihood estimation of some
parameters of a diffusion process observed in Brownian motion was
developed in [29].

10.1 Diffusion Process observed in Brownian Motion

In this section we present Zakai’s equation for recursive estimation of a
time-homogeneous diffusion process observed in Brownian motion [125].
The diffusion process {S(t),t > 0} satisfies the stochastic differential
equation

dS(t) = u(S(t))dt + o (S(t))dW (¢), (10.1)

and the observable process { X (t),t > 0} satisfies the stochastic differ-
ential equation

dX (t) = o(S(t))dt + dW (t), (10.2)

where {W(t),t >0} and {W(t),t >0} are independent Brownian
motions. The functions u(-), o(-) and p(-) are assumed known. The
function u(-) is assumed to satisfy the Lipschitz condition, and the func-
tion o(-) is assumed to satisfy a Holder condition of order larger than
.5. These conditions guarantee existence and uniqueness of the solu-
tion of (10.1) [59, Theorem 5.5]. The process {S(t),t > 0} is a Markov
process [59, Theorem 5.6], and the joint process {(X (t),S(¢)),t > 0} is
jointly Markov.
The generator of a time-homogeneous Markov process is the linear
operator £ defined by [59, Eq. 6.39]
) = p PHSOISO =a) o)
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for any function u for which the limit exists. In that case, we say that u
is in the domain of the generator. Note that (10.3) reduces to (2.4) when
u(+) is an indicator function. When w is bounded and twice continuously
differentiable, the generator of the diffusion process (10.1) can be shown
to satisfy the second order differential equation [59, Eq. 6.30]

2

Lu(o) = ;Jg(a)aiﬁu(a) + u(a)aaau(a), (10.4)

and L is seen as a differential operator.

Consider the following assumptions on the coefficients u(a) and
o(a) of the time-homogeneous diffusion process: al) p(a) and o(a) are
bounded and continuous; a2) The derivatives of p(«) and o(a) w.r.t.
o up to order two are bounded and continuous; a3) o?(a) is bounded
away from zero; a4) () and o%(«) satisfy a Holder condition; a5) The
derivative fi(a) of p(a) w.r.t. a, and the derivatives ¢(a) and () of
o(a) w.r.t. a, are bounded and satisfy a Holder condition.

When al) and a2) hold, the stochastic differential equation (10.1)
has a unique weak solution (i.e., solution in distribution), which has the
strong Markov property [59, Theorem 5.10]. Furthermore, the tran-
sition probability function P(S(7) < s|S(t —t) = «a) of the solution
depends on 7 and 7 — ¢ only through their difference ¢ [59, Theo-
rem 6.10]. Hence, we can focus on P(S(t) < s]|S(0) = «). When the
density of this transition probability function exists, it is denoted by
p(t,c,s). When al) and a3)-a4) are satisfied, then the density p(¢,«, s)
is the unique positive fundamental solution of Kolmogorov’s backward
equation given by [59, Theorem 5.15], [59, Eq. 6.31]

2

B 1, D B
ap(taaﬁs) - 50- (O‘)Wp(t?aas) + ,LL(O&)@])(I&,O&,S)- (105)

If, in addition, ab5) holds, then the density p(t,c,s) satisfies Kol-
mogorov’s forward equation in t and s for any fixed a [59, Theorem
5.15], [59, Eq. 6.32]. This equation is given by

0 10% 5,

ap(t,a,s) = 77(0 (8)p(t,0&,5)) - %(M(S)p(t’a’s))' (106)
Equation (10.6) is also known as the Fokker-Planck equation. Define
the adjoint operator of L as [59, p. 158],

* 1 82 2
(L7u)(s) = 55 5(07(s)uls)) — 5-(u(s)u(s)). (10.7)
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Equations (10.5) and (10.6) may be concisely written as

9p _
ot

9p _

Ep’ at -

L*p (10.8)

respectively.

Zakai’s equation is a stochastic partial differential equation for the
evolution of the unnormalized conditional mean estimate of w(S(t))
given X!. The transformation of measure approach described in
Section 9.1 was originally developed for this diffusion estimation prob-
lem. The approach relies on transformation of the actual probabil-
ity measure P; of (S5,X), to a reference probability measure Py of
(S,X), such that under Py, X is a Brownian motion, S has the same
probability law as under P;, and S and X are statistically indepen-
dent. Such transformation is given by Girsanov’s theorem from (9.2),
when S, X and p(-) take the roles of Z, Y and v(-), respectively. The
generalized Bayes’ rule defined in (9.5) is used to express the condi-
tional mean estimate of u(S(t)) given X} under Pj, as the ratio of
m(u(9)) = Eo{u(S(t))Y(¢)| X} and m (1) where Ey indicates expec-
tation under Fy. Zakai’s equation is a stochastic partial differential
equation for the evolution of m(u(S)). The derivation of Zakai’s equa-
tion along these lines may be found in [126], and in [120, Section 5,
p. 269]. Zakai’s equation is given by

dmy(u(S)) = m(u(S)e(S))dX () + m(Lu(S))dt (10.9)

where L is the differential operator defined in (10.4), and mo(u(S)) =
Ep{u(S(0))}. Uniqueness of the solution for Zakai’s equation was
proved in [125] and more generally in [61].

A second form of Zakai’s equation, called the adjoint Zakai equa-
tion, follows from (10.9), and provides a stochastic partial differential
equation for the evolution of the unnormalized conditional density of
S(t) given X§. We denote this density by ¢;(s). The conditional density
of S(t) given X} under P is given by ¢(s)m(1). Under some assump-
tions similar to those in al)-a5), the adjoint Zakai equation is given by
[125, Theorem 3]

dqi(s) = qi(s)o(s)dX (t) + (L) (s)dt (10.10)
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where (L*q;)(s) is defined in (10.7), and go(s) is the prior unnormalized
density of S(0) under P;.

10.2 Diffusion Modulated Poisson Process

Consider the diffusion process S(¢) in (10.1), and assume that it mod-
ulates the rate A of a Poisson process {N(t),t > 0}. The functions pu(-)
and o(-) in (10.1), and the rate function A(-), are assumed known. The
modulated process may be represented as

AN (t) = M(S(t))dt + dM (t) (10.11)

where M (t) is a martingale with independent increments on the sigma-
field generated by {S§, N}}. Actually, this representation holds for any
right-continuous counting process with finite rate [100, Theorem 1]. The
bivariate process {(N(t),S(t)),t > 0} is jointly Markov. In this section
we present the stochastic partial differential equation for the evolution
of the unnormalized conditional mean estimate of a function u(-) of
the diffusion process given the Poisson events. This is the equation for
me(u(S)) = Eo{u(S(t))Y(t)| N} where Y(t) is the appropriate Radon-
Nikodym derivative.

The Radon-Nikodym derivative for this problem is given by [59,
Eq. 10.45]

T(t) = exp{/otln)\(S(T))dN(T) + /Otu _ )\(S(T))dT}

=1 +/0 Y(r—)MS(r)) — 1)(dN(r) — dr). (10.12)

Under the reference measure Py, the diffusion process {S(¢)} has the
same probability law as under the true measure P, the observable
process {N(t)} is homogeneous Poisson with unit rate, and {S(¢)} and
{N(t)} are independent.

Application of the transformation of measure approach gives (see,
e.g., [126], or [120, Section 5, p. 269)]),

dme(u(S)) = m— (w(S)(A(S) — 1))(dN(t) — dt) + m(Lu(S))dt (10.13)
where mo(u(S)) = Eo{u(S(0))}.
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10.3 Numerical Solutions

Zakai’s equation, (10.9) for the conditional mean estimate, and (10.10)
for the conditional density estimate, describes the evolution of the
unnormalized estimates of these quantities by a stochastic partial differ-
ential equation in an infinite-dimensional space. Approximate numer-
ical solutions of these equations have been the subject of ongoing
research. The literature on this topic is extensive and is beyond the
scope of this review paper. The book by Bain and Crisan [4] con-
tains extensive discussion on application of particle filter techniques
to Zakai’s equation. These are sequential Monte Carlo simulation tech-
niques which avoid setting up a fixed size quantization grid. A relatively
recent survey on this and other numerical approaches may be found
in [20].

Another interesting approach is based on Galerkin approxima-
tion [50]. This approach has recently been studied and expanded to
estimation of a diffusion process observed in a mixture of a Brownian
motion and a Poisson process [47]. In this approach, Zakai’s equation is
projected onto a finite-dimensional subspace spanned by smooth basis
functions, e.g., Hermite polynomials, and the vector of corresponding
Fourier coeflicients satisfies an ordinary stochastic differential equation.
It was shown in [47, Theorem 3.1], under some regularity conditions,
that the Galerkin approximation error converges to zero, uniformly
in time, in the mean square error sense, as the subspace dimension
increases to infinity. The ordinary stochastic differential equation is
solved through the Euler-Maruyama method using time discretiza-
tion. This method tends to become unstable when the sampling inter-
val is not sufficiently small. To overcome this problem, a splitting-up
approach was proposed in which the stochastic and deterministic com-
ponents of the stochastic differential equation are treated separately.
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Selected Applications

Bivariate Markov processes have served as powerful models in many
applications. Discrete-time bivariate Markov processes, with possibly
uncountably infinite alphabet, in the form of hidden Markov models,
have been used in numerous applications such as speech recognition,
speech enhancement, written character recognition, image recognition,
blind channel equalization, target tracking, fault detection, economic
forecasting, DNA sequencing, electrocardiograph (ECG) analysis, and
meteorology. These applications were briefly reviewed in [40] where ref-
erences to specific applications were provided. Continuous-time bivari-
ate Markov chains in the form of MMPPs or BMAPs have been exten-
sively used to model arrival processes in queuing theory, see [71, 72,
and the references therein. Multivariate Markov chains were used in ion-
channel current modeling, see, e.g., [5] and the references therein. An
extensive list of applications of point processes in general, and bivari-
ate Markov processes in particular, in medicine and physiology, may
be found in [104].

In this section we provide a brief overview of several applications.
We begin with ion-channel current estimation where bivariate Markov
processes have been extensively studied. We also review two recent
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applications in spectrum sensing for cognitive radio, and in modeling
of network congestion.

11.1 lon-channel Current Estimation

An important application of bivariate Markov chains, or their alterna-
tive representations as aggregated Markov chains, is in ion-channel cur-
rent estimation. Ion-channels are protein molecules that span the mem-
brane of living cells. In certain configurations, they allow ions to trans-
fer across the membrane, thus producing weak quantal currents measur-
able at a few pico-amperes. There are many types of ion-channels, and
their cumulative contributions determine the nature of neural currents.
Ton-channel currents alternate among several conductance levels, and
they stay in each level for random durations. The number of such levels
may be as small as two, signifying that the channel is either closed (no
current), or open (current flows). Ion-channel currents are measured
using the patch clamp technique. Patch clamp recordings are coarse in
that they only provide information as to whether the channel is open
or closed. They contain no information about the visited conductance
levels or their sojourn times. In addition, they are usually characterized
by low signal to noise ratio. A good introductory summary of the area
of ion-channel currents, with an extensive list of references, was given
by Ball and Rice [7].

The theory of Markov processes plays a central role in the study
of ion-channel current, see, e.g., [7, 5], and the references therein.
A single ion-channel is commonly modeled as a reversible continuous-
time finite-state Markov chain [46]. That chain is not observable, and
only an aggregating function of the chain is provided by the patch
clamp technique. Thus, we have a bivariate Markov chain with one
observable chain and an underlying chain. When noise is taken into
account, the model becomes that of a hidden bivariate Markov chain.
Research in this area has focused on many of the questions that were
treated in this paper. Specifically, construction of the likelihood func-
tion of the observable process [27, 87, 44]; estimation of the parame-
ter of the bivariate Markov chain [8]; estimation of the state sequence
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[45, 87]; and characterization of the distribution of the sojourn time
[5, 87].

In practice, it is difficult to isolate the contribution from a sin-
gle ion-channel, and the measured current may originate from several
channels which are not statistically independent. For this situation,
a more elaborate model was proposed in [5]. The model is a special
multivariate Markov chain with an underlying irreducible continuous-
time Markov chain, say {S(t)}, and m conditionally independent iden-
tically distributed irreducible continuous-time Markov chains {X(t),
Xo(t),...,Xm(t)} given {S(¢)}. The model does not allow for simultane-
ous jumps of {S(¢)} and any of the processes { X1 (t), X2(t), ..., Xm(t)}.
For m =1, the model becomes the MMMP. Conditions for time
reversibility of the multivariate Markov chain were given in [5].

11.2 Spectrum Sensing for Cognitive Radio

The concept of spectrum sensing for cognitive radio was developed to
address spectrum scarcity in wireless communication networks. The
idea is to continuously monitor usage of a given radio channel, predict
in real-time periods during which the channel is idle, and assign the
channel to a secondary user during detected idle periods of the primary
user. Clearly, a key to the success of this approach is the ability of the
cognitive radio system to accurately model the sojourn time of the
primary user in the active and idle states, and to predict the onsets
of such periods. An alternative to this temporal sensing approach, is
spatial spectrum sensing. In the latter approach, the channel may be
allocated to a secondary user located sufficiently far from the primary
user so that their transmissions do not interfere with each other [77].
In [84, 106], temporal sensing was performed by training a hidden
Markov model on real wireless signal measurements from the primary
user. A hidden Markov model with two states and two condition-
ally Gaussian output densities was used. One state represented a
busy channel while the other represented an idle channel. The trained
model was then attributed to newly received cellular signals, and the
states of the signal were decoded using the Viterbi algorithm or the
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forward-backward algorithm, see, e.g., [40]. The channel was turned
over to a secondary user during periods corresponding to the idle state
of the primary user. In [49], it was argued empirically that a geometric
sojourn time distribution, typical of a hidden Markov model, is inad-
equate for reliable representation of the active and idle periods of the
primary user, and that a hidden semi-Markov model would be more
appropriate. In [83], the hidden Markov model was replaced by a hid-
den bivariate Markov chain whose sojourn time in each state follows
that of a discrete phase-type distribution. The hidden bivariate Markov
chain outperformed the standard hidden Markov model by providing
lower probability of prediction error for a given false alarm probability.

11.3 Network Congestion

Congestion due to traffic flows exceeding communication resources may
cause packet loss and delay across the network. Characterizing network
congestion is important for assessing service quality and for designing
the network to accommodate current and future demands. In this sec-
tion we review two approaches for modeling network congestion using
bivariate Markov chains.

In [99], a discrete-time bivariate Markov chain, in the form of a
hidden Markov model, was used to model the end-to-end packet loss
process. In this application, the underlying Markov chain represents
different levels of network congestion. The observable process is binary,
and it assumes the value 0 when the transmitted packet reaches the des-
tination and the value 1 if this packet is lost. Such model is appropriate
for traffic flows in which the packets are transmitted at approximately
constant time intervals.

In [114], a continuous-time bivariate Markov chain was proposed
to model packet delay and loss. This model is more appropriate than
the discrete-time bivariate Markov chain when packets are transmitted
at arbitrary time points. In this approach, the observable process rep-
resents packet delay, with a maximal delay value attributed to packet
loss. The range of delay values was uniformly quantized to conform with
the finite-alphabet of the continuous-time bivariate Markov chain. The
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possible delay values can be measured by sending a sequence of probing
packets from the source host to the destination host at regular inter-
vals. The parameter of this model was estimated from a discrete-time
bivariate Markov chain approximation to the continuous-time bivariate
Markov chain as discussed in Section 8.3.
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Concluding Remarks

In this paper we have reviewed some properties, and a range of recur-
sive estimation procedures, associated with bivariate Markov processes.
This very rich family of random processes contains the hidden Markov
model, the Markov modulated Poisson process, the batch Markovian
arrival process, the Poisson process whose rate is modulated by a dif-
fusion process, and a diffusion process observed in a Brownian motion.
Bivariate Markov processes have produced powerful models in many
application areas including signal processing, queuing, communications,
and biomedical engineering. Both causal and non-causal estimation
of some statistics of the bivariate Markov processes were reviewed.
In addition, off-line as well as on-line recursive parameter estimation
approaches were covered. The estimation approaches were developed
using the Markov renewal property of the bivariate Markov chain, and
the transformation of measure approach. Except for the models involv-
ing diffusion processes and Brownian motions, all other recursions are
explicit and do not require sampling of the continuous-time process at
regular sufficiently small intervals or any numerical integration.

An important open problem in this area is that of recursive parame-
ter estimation tailored to the structure of the bivariate Markov chain. A
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possible approach to this problem is to estimate recursively and jointly
the parameter and associated statistics. In addition, it would be inter-
esting to see whether causal recursive estimation of the statistics of the
bivariate Markov chain facilitates forward recursive estimation of its
parameter.

We hope that this paper could serve as a springboard for other
interested researchers to pursue the study of this rather interesting
family of processes. It is also our hope that this paper would be useful
in promoting applications of bivariate Markov processes.
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