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Abstract— Estimation of link delay densities in a computer
network, from source–destination delay measurements, is of great
importance in analyzing and improving the operation of the
network. In this paper, we develop a general approach for
estimating the density of the delay in any link of the network,
based on continuous-time bivariate Markov chain modeling. The
proposed approach also provides the estimates of the packet
routing probability at each node, and the probability of each
source–destination path in the network. In this approach, the
states of one process of the bivariate Markov chain are associated
with nodes of the network, while the other process serves as an
underlying process that affects statistical properties of the node
process. The node process is not Markov, and the sojourn time
in each of its states is phase-type. Phase-type densities are dense
in the set of densities with non-negative support. Hence, they
can be used to approximate arbitrarily well any sojourn time
distribution. Furthermore, the class of phase-type densities is
closed under convolution and mixture operations. We adopt the
expectation-maximization (EM) algorithm of Asmussen, Nerman,
and Olsson for estimating the parameter of the bivariate Markov
chain. We demonstrate the performance of the approach in a
numerical study.

Index Terms— Delay network tomography, bivariate Markov
chain, EM algorithm.

I. INTRODUCTION

NETWORK tomography aims at estimating internal para-
meters of a computer network from some measurements

taken from accessible nodes or links of the network. Network
tomography was pioneered by Vanderbei and Iannone [34] and
Vardi [35]. In [34], the rate of traffic over source-destination
pairs of the network was estimated from aggregated traffic
counts at input and output nodes. In [35], the rate of traffic
over source-destination pairs was estimated from traffic counts
on some links of the network. Both formulations led to similar
sets of under-determined linear equations of the form V = AU
where V = col{V1, . . . , Vq} is a column vector of say q traffic
count measurements, U = col{U1, . . . , Uc} is a column vector
of say c traffic variables of interest, c > q, and A = {aij} is
a q× c zero-one routing matrix with aij = 1 if Uj contributes
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to Vi, and aij = 0 otherwise. In [35], V represents traffic
over links, and U represents traffic over source-destination
pairs, which is modeled as a vector of independent Poisson
random variables. It was shown in [35] that the unknown
source-destination rates are identifiable provided that A does
not contain duplicate columns or zero columns. A Bayesian
solution to the rate estimation problem of [35] was developed
in [31]. Similar tomography problems arise in other networks
such as road and rail networks [31], as well as in image
deblurring [30], [36].

In this paper we study another aspect of network tomog-
raphy, namely, estimation of the density of link delay from
overall source-destination delay measurements. We do not
distinguish between queuing, propagation, processing, and
transmission delays, and model the total delay on each link [4].
Estimation of propagation delay was studied in [17].
It was shown that propagation delay satisfies a set of under-
determined equations similar to those described above, and
the maximum entropy principle was invoked in estimating
that delay. Propagation link delay was also estimated using
compressed sensing in [16].

In estimating the density of link delay, we assume a
network with random routing. Under this regime, there are
multiple routes for each source-destination pair, and routes
are chosen according to some distribution. We do not impose
any particular structure, such as tree-structure, on the network.
In a deterministic routing regime, there exists a single path
for each source-destination pair. This regime was implicitly
assumed in our above description of the work in [34] and [35].
Clearly, the deterministic routing regime is a particular case of
a random routing regime. Hence, our approach applies to the
two routing strategies. Both deterministic and random routing
regimes were studied in [35].

We model traffic over the network as a continuous-time
bivariate Markov chain, see, e.g., [15]. A bivariate Markov
chain Z comprises a pair of random processes (X, S) which
are jointly Markov. The nodes of the network are represented
by the states of the X-chain. The S-chain plays the role of
an auxiliary underlying process. While (X, S) is Markov, the
individual process X or S alone need not be Markov. We do
not constrain X to be Markov, and thus allow the sojourn
time in each state to deviate from the exponential density
characteristic of Markov chains. The distribution of the sojourn
time in each of the X-states is phase-type. The family of
phase-type distributions includes mixtures of convolutions of
exponential distributions. Phase-type densities are dense in
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the set of densities with support on the non-negative real
line. This means that any sojourn time density is either
phase-type or it can be approximated arbitrarily well by a
phase-type density. The sojourn time in a given X-state,
prior to jumping to a specific next X-state, represents the
link delay. The link delay in a bivariate Markov chain has a
matrix exponential distribution, which generalizes the phase-
type distribution [18]. The proposed approach for estimating
the density of link delay allows great modeling flexibility,
and it does not necessitate any assumption regarding the form
of the density of the link delay. We note that the proposed
approach also provides the packet routing distribution at each
node, and the probability of each source-destination path. Both
can be efficiently calculated.

An intuitive explanation for the phase-type distribution,
is that each transition in the X-chain may involve several
transitions of the S-chain and hence of the bivariate Markov
chain Z = (X, S). On a given path in the state space of Z ,
the sojourn times are independent exponentially distributed,
and hence the sojourn time of the X-chain is the convolution
of exponential distributions. When all possible paths are
considered, the density of the sojourn time of the X-chain
is a mixture of convolutions of exponential distributions.

In the proposed approach, the parameter of the bivariate
Markov chain is estimated from a sequence of independent
source-destination delay measurements. The estimated para-
meter is then used to calculate analytically the matrix expo-
nential distribution of each link delay, the routing distribution,
and the probability of each source-destination path. Estimation
of the parameter of the bivariate Markov chain is performed
using the expectation-maximization (EM) approach. We adopt
the EM algorithm developed by Asmussen et al. [2], for
estimating the parameter of a transient Markov chain with
a single absorbing state, from a sequence of independent
absorbing times. We use a fundamental standard result from
Van Loan [33] to significantly speed up the EM algorithm
of [2]. The resulting EM algorithm is explicit in the E-step
and the M-step, and no numerical integration is required.
Conditions for identifiability of the parameter of the bivariate
Markov chain in this problem are not known. It was shown
in [2] that the initial distribution of the transient Markov chain
may not be identifiable. Nevertheless, the approach is useful
in fitting a parametric model to the measurements, when such
measurements were not necessarily produced by the model.

Estimation of link delay density from source-destination
delay measurements has attracted significant research inter-
est over the years. We mention here a few representative
ideas. Some schemes rely on active network tomography in
which test probes are transmitted across the network (see,
for example, [6], [8], [12], [14], [19]–[21], [25], [29], [32]),
and the references therein. Various models for the link delay
density were used. Discrete models were studied, for example,
in [8], [19], and [20]. Mixture models were studied, for
example, in [6], [19], [29], and [39]. Conditions for identifia-
bility of the discrete models were given in [19]. Identifiability
of exponential link delay density was established in [39].
In [8] a Markov model was assumed to capture spatial depen-
dencies among delays on various links in a tree-structured

network. Two other related aspects of network tomography
include estimation of link loss rate from source-destination
loss measurements (see e.g., [5], [9], [11], [13]), and
topology identification from source-destination measurements
(see, e.g., [7], [10], [26]).

The work in [39] on parametric link delay density estimation
is directly related to our approach. In [39], a single source-
destination path of a network was studied, and the density
of the delay on each link on that path was assumed to be a
mixture of exponential densities. Delays on different links on
the path were assumed statistically independent. The delay link
density was estimated using the EM algorithm and the moment
generating function of the exponential density. This model is
a particular case of our approach when it is applied to a single
source-destination path of the network. In our approach, link
delays are not statistically independent, and the density of each
link delay is phase-type. A similar comparison could be made
between our approach and the approach of [8].

The plan for the remainder of this paper is as follows.
In Section II we provide some background material on bivari-
ate Markov chains. In Section III we detail the applica-
tion of the bivariate Markov chain model to delay network
tomography. In Section IV we summarize the EM algorithm
for estimating the model’s parameter from source-destination
delay measurements. In Section V we discuss application of
the proposed approach to model a fixed source-destination
path in a network. In Section VI we provide the results of
a numerical study. Some concluding remarks are provided
in Section VII.

II. BIVARIATE MARKOV CHAINS

In this section we summarize some results from the theory
of bivariate Markov chains which are relevant to this work.
A recent review of bivariate Markov chains may be found
in [15]. Throughout this paper, a random variable is denoted
by a capital letter, the range or the alphabet of a random
variable is denoted by a blackboard bold capital letter, and
values that the random variable take are denoted by lower
case letters. For example, we may have a random variable X
with range X and values x ∈ X. We use P generically
to denote probability functions such as probability measures
and conditional probability measures. We use p generically
to denote densities such as probability mass functions and
probability density functions. When these functions depend on
a parameter φ, we use Pφ and pφ, respectively. For example,
when X is a discrete random variable, the probability of the
event {X = x} is denoted by Pφ(X = x) = pφ(x). In another
example, when T is a continuous random variable representing
a time instant or duration, we denote its density by pφ(t). Thus,
the identity of the random variable is implicit in the notation of
the density, where in the above examples pφ(x) is the density
of the random variable X , and pφ(t) is the density of the
random variable T . We also use Pφ(T ∈ dt) to express the
probability of the event {T ∈ [t, t + dt)} for an infinitesimal
interval dt . In our notation system, this probability is given by
Pφ(T ∈ dt) = pφ(t)dt. The transition matrix of the bivariate
Markov chain is denoted by bold capital letter Pt, in order to
distinguish it from the scalar probability measure Pφ.
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Let Z = {Z(t), t ≥ 0} denote a continuous-time finite-
state homogeneous irreducible bivariate Markov chain defined
on a given probability space. We use P to denote a probability
measure on that space. The bivariate Markov chain comprises
a pair of random processes, say Z = (X, S), which are jointly
Markov. The individual process X or S alone need not be
Markov. We assume without loss of generality that the state
space of X is X = {1, 2, . . . , d}, and that the state space
of S is S = {1, 2, . . . , r}, for some finite d and r. The state
space of Z is given by Z = X × S. We assume that the
states {(a, i) ∈ Z} of the bivariate Markov chain are ordered
lexicographically.

The transition probability of the bivariate Markov chain is
given by P (Z(t) = (b, j) | Z(0) = (a, i)) for any t ≥ 0 and
any (a, i), (b, j) ∈ Z. We denote the transition matrix of Z
by Pt and assume that Pt is standard, i.e., Pt approaches the
identity matrix as t → 0. The matrix Pt is continuous and
differentiable at t = 0. The derivative of Pt at t = 0 is the
infinitesimal generator of the bivariate Markov chain given by

G = lim
t↓0

1
t
(Pt − I). (1)

The off-diagonal elements of G are non-negative, and the diag-
onal elements are non-positive. If the diagonal elements of G
are finite, then each row of G sums to zero. This assumption
is made throughout this paper. The transition matrix satisfies
Kolmogorov’s forward and backward equations, whose unique
solution is given by

Pt = eGt. (2)

Let G = {gab(ij); (a, i), (b, j) ∈ Z}. For sufficiently small t,

P (Z(t) = (b, j) | Z(0) = (a, i))

=

{
gab(ij)t + o(t), (a, i) �= (b, j)
1 + gaa(ii)t + o(t), (a, i) = (b, j).

(3)

Assume that the bivariate Markov chain enters state (a, i)
at some time which we denote as t = 0. Let ΔTai denote the
sojourn time of the bivariate Markov chain in state (a, i) until
it transits to another state. This sojourn time is exponentially
distributed with rate given by −gaa(ii). Thus,

P (ΔTai > τ | Z(0) = (a, i)) = egaa(ii)τ , τ ≥ 0. (4)

When the chain is in state (a, i) and a jump occurs at some
time t, the probability that the chain jumps to (b, j) �= (a, i)
is given by

P (Z(t) = (b, j) | Z(t−) = (a, i)) = −gab(ij)/gaa(ii).
(5)

Recall that the states {(a, i) ∈ Z} are ordered lexico-
graphically. The generator matrix G may be partitioned into
r × r sub-matrices such that G = {Gab; a, b ∈ X} where
Gab = {gab(ij); i, j ∈ S}. For this partition, the order of
each Gaa is r. A more interesting bivariate Markov chain
is obtained when each X-state is associated with a possibly
different number of S-states. Suppose that the X-state a is

associated with ra S-states, given without loss of generality
by Sa = {1, 2, . . . , ra}. Then, the state space of Z is given by

Z =
d⋃

a=1

{(a, i), i ∈ Sa}. (6)

The generator matrix G may now be partitioned into
sub-matrices {Gab; a, b ∈ X}, where Gab = {gab(ij);
i ∈ Sa, j ∈ Sb}. The order of each Gaa is ra. We shall
encounter such partition in Eq. (23).

We assume that in addition to G, all diagonal matrices
{Gaa} are irreducible. This assumption guarantees that for
every a ∈ X, Gaa is non-singular, and that the elements of
−G−1

aa and of eGaat are all positive for every t > 0. The
S-chain is Markov if and only if the order ra, and the
matrix

∑d
b=1 Gab, are independent of a for every a ∈ X [3].

In that case,
∑d

b=1 Gab is the generator matrix of the S-chain.
A similar condition can be stated for the X-chain to be Markov
upon re-partitioning of G.

The bivariate Markov chain is a Markov jump process with
right continuous piecewise constant sample paths and a finite
number of jumps in each finite interval. As such, the bivariate
Markov chain is strong Markov, i.e., the Markov property
holds for stopping times. This result could be applied to jumps
of the X process, which constitute a subset of the jumps of
the Z process.

Let φ denote the parameter of the bivariate Markov chain.
Under the usual parametrization, φ = {ν, G} where ν is the
initial distribution of the bivariate Markov chain and G is its
generator. In a more general setup, both ν and G may be
functions of a parameter φ of a relatively small dimension.
Also, when ν is the stationary distribution of the process, then
it is a function of G. Let Pφ denote a probability measure of
the process.

Suppose that the bivariate Markov chain is sampled at the
jump points of the X-chain. Suppose that the arbitrary time
origin at t = 0 coincides with a jump of X . This technical
condition guarantees that the first positive sojourn time of X
is distributed like any other sojourn time of that process. For
k = 0, 1, 2, . . ., let T k denote the time of the k + 1st jump
of X . Let Xk = X(T k), Sk = S(T k), and Zk = (Xk, Sk).
We refer to {Zk} as the sampled bivariate Markov chain.
For k = 1, 2, . . ., let Tk = T k − T k−1 denote the sojourn
time of X in state Xk−1. Let T0 = 0. The resulting process
{(Tk, Zk)}∞k=0 is a Markov renewal process for which

Pφ(Tk ≤ t, Zk = zk | Tk−1 = tk−1,

Zk−1 = zk−1, . . . , T1 = t1, Z1 = z1, Z0 = z0)
= Pφ(Tk ≤ t, Zk = zk | Zk−1 = zk−1). (7)

Let pφ(tk, zk | zk−1) denote the density obtained by
differentiating the rhs of (7) w.r.t. t, where tk is a realization
of the sojourn time Tk and zk is a realization of Zk. Since the
sample path {X(t), t ∈ [0, tn]} is uniquely determined by the
random variables {(X0, T1), (X1, T2), . . . , (Xn−1, Tn), Xn},
its likelihood function follows from the joint density
of these random variables, or as the marginal den-
sity of {(Z0, T1), (Z1, T2), . . . , (Zn−1, Tn), Zn}. Using the
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Markov renewal property in (7) we obtain

pφ(x(t), t ∈ [0, tn]) =
∑

s0,...,sn

pφ(z0)
n∏

k=1

pφ(tk, zk | zk−1).

(8)

Let fab
ij (t; φ) = pφ(tk, zk|zk−1) when tk = t, zk−1 =

(a, i), and zk = (b, j). Using homogeneity of the bivariate
Markov chain Z , this density can be evaluated as

fab
ij (t; φ) =

∂

∂t
Pφ(T1 ≤ t, Z1 = (b, j) | Z0 = (a, i)). (9)

Define the transition density matrix by

fab(t; φ) = {fab
ij (t; φ); i, j = 1, . . . r}. (10)

Then from [22, Proposition 1],

fab(t; φ) = eGaatGab, a �= b, t ≥ 0. (11)

Furthermore, eGaat is a transition matrix with the (i, j) ele-
ment given by

Pφ(T1 > t, S(t) = j | Z(0) = (a, i)). (12)

Let νai = Pφ(Z0 = (a, i)), and define

νa = (νa,1, νa,2, . . . , νa,r)
ν = (ν1, . . . , νd) (13)

where ν represents the initial distribution of Z . The likelihood
function in (8) can now be rewritten as

pφ(x(t), t ∈ [0, tn]) = νx0

{
n∏

l=1

fxl−1xl(tl; φ)

}
1 (14)

where 1 denotes a column vector of all ones.
The likelihood function (14) can be calculated using forward

or backward recursions as follows. Let the row vector

L(k; φ) = νx0

k∏
l=1

fxl−1xl(tl; φ) (15)

define the forward density for k ≥ 1, and note that

L(k; φ) = L(k − 1; φ)fxk−1xk(tk; φ) (16)

where L(0; φ) = νx0 . Next, let the column vector

R(k; φ) =
n∏

l=k

fxl−1xl(tl; φ)1, (17)

with R(n + 1; φ) = 1, define the backward density, and note
that

R(k; φ) = fxk−1xk(tk; φ)R(k + 1; φ). (18)

The likelihood function is given by

pφ(x(t), t ∈ [0, tn]) = L(k − 1; φ)R(k; φ) (19)

where k may be chosen arbitrarily to be any integer between
1 and n + 1. The forward and backward recursions must be
scaled to improve their numerical stability, see [15, Sec. 3.4].

Returning to the sampled bivariate Markov chain, integrat-
ing (11) over t gives the transition probabilities

Pφ(Zk = (b, j) | Zk−1 = (a, i)) =
[−G−1

aa Gab

]
ij

. (20)

Define the matrix

Dab =

{
−G−1

aa Gab, a �= b

0, a = b.
(21)

The transition matrix of the sampled bivariate Markov chain
is given by the block matrix D = {Dab, a, b = 1, . . . , d}.
The sampled bivariate Markov chain has one closed set of
recurrent, possibly periodic, states, while the remaining states
are transient [15, Lemma 3]. A state (b, j) is recurrent if and
only if it corresponds to a non-zero column of Gab for some
a �= b. Hence, the transition matrix D has a unique stationary
distribution with zero entries for the transient states. When
ν satisfies ν = νD then it constitutes the stationary distribution
of D. The sampled bivariate Markov chain is stationary if and
only if it is initialized with the stationary distribution.

Let νk
ai = Pφ(Zk = (a, i)) for k = 0, 1, . . . where

ν0
ai = νai. Define νk

a and νk analogously to νa and ν in (13),
respectively. We have

νk
b =

d∑
a=1

νk−1
a Dab. (22)

When the sampled bivariate Markov chain is initialized with
its stationary distribution, then νk

b is independent of k and it
follows from the solution of ν = νD.

III. PARTIALLY OBSERVABLE BIVARIATE MARKOV CHAIN

In this section we describe the proposed model for esti-
mating link delay densities, routing probabilities, and the
probability of any source-destination path in an unstructured
network with random routing regime. We also discuss some
important relevant properties of the model.

We model traffic over the network as a bivariate Markov
chain Z = (X, S). The states of the X-chain represent the
nodes of the network, and the S-chain serves as an auxiliary
background process. We designate a subset of the state space X

as source/intermediate states, and the remaining states as
destination states. This partition is made purely for accounting
purposes. A packet entering a randomly chosen source state
will propagate to a destination state through intermediate states
using random routing. This means that at each node the packet
will be routed to one of the subsequent nodes, which will
be chosen according to some distribution. Upon leaving the
destination state, the process will re-start from a randomly
chosen source state, and a new packet will propagate through
random routing to its destination state, and so on. Effectively,
a source/intermediate node is represented by a non-absorbing
state, while a destination state may be seen as an absorbing
state with a reset loop.

The S-chain serves as an underlying process that helps the
X-chain attain some desirable statistical properties. In particu-
lar, in a bivariate Markov chain, the density of the sojourn time
in each X-state is phase-type, and that density may be far more
general than the exponential density. We shall specify that
density shortly. In the proposed model, we only measure the
overall delay from source to destination, and have no access
to either X or S. We therefore refer to the model as a partially
observable bivariate Markov chain.
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Suppose that the source/intermediate states are X1 =
{1, . . . , d1} for some d1 < d, and that the destinations states
are X2 = {d1 + 1, . . . , d} where clearly X = X1 ∪ X2. The
matrix G can be expressed as {Gab, a, b ∈ X}, where, for
a, b ∈ X1 , Gab = {gab(ij), i, j = 1, . . . , r} are r×r matrices;
for a ∈ X2, b ∈ X1, Gab = row{gab(1j), j = 1, . . . , r} are
1 × r row vectors; for a ∈ X1, b ∈ X2, Gab = col{gab(i1),
i = 1, . . . , r} are r × 1 column vectors; and for a, b ∈ X2,
Gab is a scalar. The generator G of the bivariate Markov
chain may be partitioned according to the class of possible
source/intermediate states and the class of possible destination
states as follows:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11 . . . G1,d1

...
... h1 · · · hd2

Gd1,1 . . . Gd1,d1

e1 −ξ1

...
. . .

ed2 −ξd2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

where {hl, l = 1, . . . , d2} are rd1 × 1 column vectors with
d2 = d − d1, {el, l = 1, . . . , d2} are 1 × rd1 row vectors,
and {ξl} are positive scalars. For l = 1, . . . , d2, we have
hl = col{Ga,d1+l, a = 1, . . . , d1}, el = row{Gd1+l,b,
b = 1, . . . , d1}, and ξl = −Gd1+l,d1+l.

We may conceptually rewrite G as

G =
(

Hcc Hcd

Hdc Hdd

)
(24)

where the subscripts c and d are associated with
source/intermediate states and with destination states,
respectively. For a network with given topology, if no
physical link exists between a pair of source/intermediate
nodes, say a, b ∈ X1, then the corresponding sub-matrix Gab

of the model is null. Similarly, elements of Hcd corresponding
to non-existent links from any node a ∈ X1 to any node
b ∈ X2 should be null. A similar comment can be made
about elements of Hdc. A well known property of the
EM algorithm is that it preserves null values of the parameter.

The sub-matrix Hdd is diagonal since traffic does not
flow from one destination node to another destination node.
Since {ξi} are positive scalars, the sojourn time associated
with the ith destination state is exponential with mean sojourn
time of 1/ξi. By choosing sufficiently large {ξi}, we can
diminish the sojourn time in each destination state, so that
the return to a source node may be considered instantaneous.

Recall that ν denotes the initial distribution of the sampled
bivariate Markov chain. Since the bivariate Markov chain
cannot start in a destination state,

ν = (ν1, . . . , νd1 ,0, . . . ,0). (25)

We define μ = (ν1, . . . , νd1).
The sojourn time of the process in each of the X-states is

phase-type [22]. For X0 = x0, with x0 ∈ X, the phase-type

density is obtained using (11) and (21) as follows:

pφ(t | x0) =

∑
s0,z1:x1 �=x0

pφ(z1, t | z0)pφ(z0)∑
x1:x1 �=x0

∑
s0,s1

pφ(z1 | z0)pφ(z0)

=

∑
x1:x1 �=x0

νx0e
Gx0x0 tGx0x11∑

x1:x1 �=x0
νx0Dx0x11

= −ν̄x0e
Gx0x0 tGx0x01, (26)

where we have used
∑

x1:x1 �=x0
Gx0x11 = −Gx0x01,∑

x1:x1 �=x0
Dx0x11 = 1, and ν̄x0 = νx0/(νx01) denotes

the initial conditional distribution of the S-states associated
with x0, given that X0 = x0. Note that when x1 ∈ X2,
the terms Dx0x11 and Gx0x11 become the subvectors Dx0x1

and Gx0,x1 , respectively. These subvectors follow from the
corresponding subvectors of hx1−d1 . When Xk = a for
some k > 0, the sojourn time density is given by (26)
with νx0 replaced by νk

a from (22), and ν̄x0 is replaced by
ν̄k

a = νk
a/(νk

a1). The family of phase-type densities is dense
in the family of densities with non-negative support [37]. This
means that every sojourn time density is either phase-type
or it can be approximated arbitrarily well by a phase-type
density. The number of phases of the phase-type sojourn time
density (26) equals the number of states in Sx0 . Increasing
that number improves the approximation of the true sojourn
time density.

The parameter φ of the bivariate Markov chain may be esti-
mated from K independent source-destination delay measure-
ments using the EM algorithm. We adopt the EM algorithm
developed in [2] for estimating the parameter of a univariate
Markov chain from K independent absorbing times. In the
Markov chain of [2], all states but one are transient, and
the exceptional state is absorbing. The EM algorithm will be
detailed in Section IV.

Once the parameter of the bivariate Markov chain is esti-
mated, the density of each link delay may be evaluated as
follows. Suppose that X0 = x0 and X1 = x1, x0, x1 ∈ X1. For
the link connecting these nodes we have from (11) and (21),

pφ(t | x0, x1) =

∑
s0,s1

pφ(z1, t | z0)pφ(z0)∑
s0,s1

pφ(z1 | z0)pφ(z0)

=
νx0e

Gx0x0 tGx0x11
νx0Dx0x11

. (27)

When x1 ∈ X2, the terms Gx0x11 and Dx0x11 in (27) are
replaced by Gx0x1 and Dx0x1 , respectively. The density in (27)
is a matrix exponential density [18]. The family of matrix
exponential densities contains all phase-type densities.

Given the estimated parameter of the bivariate Markov
chain, we can also calculate the packet routing distribution
under the random routing regime. This is the probability that
a packet will reach state x1 once it has left state x0. Suppose
x0, x1 ∈ X1. For Z0 = (x0, s0) and Z1 = (x1, s1) we have
from (21),

pφ(x1 | x0) =

∑
s0,s1

pφ(z1 | z0)pφ(z0)∑
x1

∑
s0,s1

pφ(z1 | z0)pφ(z0)

=
νx0Dx0x11∑
x1

νx0Dx0x11
=

νx0Dx0x11
νx01

. (28)
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Note that we need not restrict the sum over x1 to x1 �= x0

since Dx0x0 = 0. When x1 ∈ X2, the term Dx0x11 is replaced
by Dx0x1 . Similarly to (26), Eqs. (27) and (28) could also
be used to evaluate pφ(t | xk, xk+1) and pφ(xk+1 | xk),
respectively, for any k > 0. Assuming Xk = a, this can be
accomplished by replacing νx0 and ν̄x0 by νk

a and ν̄k
a , respec-

tively. Alternatively, we could use the stationary distribution ν
which follows from ν = νD. In our numerical study described
in Section VI we have opted for the latter approach in order to
obtain “steady state” link delay density and routing probability
estimates.

Finally, we note that the probability of a source-destination
path {x0, . . . , xn}, where x0, . . . , xn−1 ∈ X1 and xn ∈ X2,
can be obtained as follows:

pφ(x0, . . . , xn) =
∑

s0,...,sn

pφ(z0)pφ(z1 | z0) · · · p(zn | zn−1)

= νx0Dx0x1Dx1x2 · · ·Dxn−1xn . (29)

IV. THE EM ALGORITHM

In this section we detail the EM algorithm for estimating
the parameter φ of the bivariate Markov chain described
in Section III, from K independent source-destination delay
measurements Y = {Y1, Y2, . . . , YK}. The EM algorithm is
derived along the lines of the approach developed in [2]. The
parameter φ constitutes the off-diagonal elements of Hcc, the
elements of Hcd, and the initial distribution μ. The elements
of Hdd are set as detailed in the paragraph following (24).
For Hdc, we choose {ei = ξiμ, i = 1, . . . , d2}, so that the
initial distribution of the bivariate Markov chain remains μ
after bouncing from any destination state in X2. We do not
assume any particular topology for the network, and hence, we
do not constrain any of the sub-matrices of the Hcc, Hcd, and
Hdc portions of the generator G to be null. See also comments
following Eq. (24).

The EM algorithm generates a sequence of parameter
estimates with increasing likelihood, unless a fixed point is
reached, in which case, the parameter estimate and its likeli-
hood remain constant. Every fixed point of the EM algorithm
is a stationary point of the likelihood function characterized
by zero derivative. Conditions for reaching a fixed point may
be found in [38] but are not easy to verify. The performance of
the EM algorithm depends on the initial guess of the parameter
value since the likelihood function is usually rather complex
and has multiple local maxima. We shall elaborate on the
choice of the initial estimate in Section VI.

The likelihood of the observation sequence is evaluated at
the end of each iteration, and its value is used to judge the
quality of the estimate. The likelihood function is commonly
used in a stopping criterion for the EM algorithm. For exam-
ple, the algorithm could be stopped if the relative increase in
likelihood values in two consecutive iterations falls below a
given threshold. Alternatively, the algorithm could be stopped
after a certain number of iterations if the rate of increase of the
likelihood is low. This stopping criterion was adopted in this
paper where the EM algorithm was limited to 1000 iterations.
It is well known that the EM algorithm has slow convergence
rate [23].

Let Z̃k = {Z(t), 0 ≤ t ≤ Yk} denote the bivariate
Markov chain defined in the interval [0, Yk]. The complete
statistic for the EM algorithm is given by {(Z̃k, Yk), k =
1, . . . , K}. Let φι denote the estimate of the parameter φ
of the bivariate Markov chain at the end of the ιth iteration
of the EM algorithm. Since the observations are assumed
independent, the estimate φι+1 is obtained from maximization
of the EM auxiliary function as follows:

φι+1 = argmaxφ

K∑
k=1

Eφι{log pφ(Yk, Z̃k) | Yk}, (30)

where Eφι denotes expectation under Pφι . The density
pφ(Z̃k, Yk) was derived by Albert in [1, Th. 3.1]. Substituting
that density in (30), and carrying out the maximization, yield
the EM iteration for estimating φ as detailed below.

Assume that for a given k, Yk = yk. Let Mab
ij (yk) denote

the number of jumps from state (a, i) to state (b, j) in [0, yk],
and let Da

i (yk) denote the total sojourn time of the bivariate
Markov chain in state (a, i) in [0, yk]. Let

M̂ab
ij (yk) = Eφι{Mab

ij (Yk) | Yk = yk}
D̂a

i (yk) = Eφι{Da
i (Yk) | Yk = yk} (31)

denote the conditional mean estimates of Mab
ij (yk) and

Da
i (yk), respectively. At the end of the (ι + 1)st iteration, the

new estimate of the initial distribution of the bivariate Markov
chain is given by

ν̂ai =
1
K

K∑
k=1

Pφι(Z(0) = (a, i) | Yk = yk), (32)

and the new estimate of the generator is given by

ĝab(ij) =

∑K
k=1 M̂ab

ij (yk)∑K
k=1 D̂a

i (yk)
, (b, j) �= (a, i). (33)

When a, b ∈ X1, then (33) applies to i, j = 1, . . . , r. When
a ∈ X1, and b ∈ X2, then (33) applies to i = 1, . . . , r and
j = 1.

The essence of the EM algorithm is the evaluation of the
conditional probability in (32) and the conditional mean esti-
mates in (31). These estimates are derived in the propositions
below. The key to the derivation is (11), which implies that
for any a ∈ X1 and any b ∈ X2,

Pφι(Yk ∈ dyk, Z(yk) = (b, j) | Z(0) = (a, i))
= 1′

aie
HccykHcd1bjdyk, (34)

where Yk ∈ dyk means that Yk ∈ [yk, yk + dyk) for an
infinitesimal interval dyk of Yk, and 1ai is a unit column vector
of suitable dimension with a one in the (a, i) position and
zeros elsewhere. Another important relation, similar to (12),
is given by

Pφι(Z(t) = (a, i), t ≤ Yk) = μeHcct1ai. (35)

This relation can be proved similarly to [22, Proposition 1].
Proposition 1: The initial distribution estimate ν̂ai, a ∈ X1,

in (32) is given by

ν̂ai =
1
K

K∑
k=1

νai1′
aie

HccykHcd1
μeHccykHcd1

. (36)
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Proof: Multiplying (34) by νai and summing over all (b, j)
we obtain,

Pφι(Yk ∈ dyk, Z(0) = (a, i))
= νai1′

aie
HccykHcd1dyk. (37)

Summing (37) over all (a, i) we obtain,

Pφι(Yk ∈ dyk) = μeHccykHcd1dyk. (38)

The ratio of the probabilities in (37) and (38) gives
Pφι(Z(0) = (a, i) | Yk = yk), and the result follows
from (32). �

Proposition 2: The total sojourn time estimate D̂a
i (yk),

a ∈ X1, in (31) is given by

D̂a
i (yk) =

∫ yk

0 [μeHcct1ai][1′
aie

Hcc(yk−t)Hcd1]dt

μeHccykHcd1
. (39)

Proof: To evaluate D̂a
i (yk), define the indicator function

ϕai(t) =

{
1, Z(t) = (a, i)
0, otherwise

(40)

and note that

Da
i (Yk) =

∫ Yk

0

ϕai(t)dt. (41)

Hence, using Bayes rule, we obtain,

D̂a
i (yk) = E

{∫ Yk

0

ϕai(t)dt | Yk = yk

}

=
∫ yk

0

Pφι(Z(t) = (a, i), t ≤ Yk | Yk = yk)dt

=
1

Pφι(Yk ∈ dyk)

∫ yk

0

Pφι(Z(t) = (a, i), t ≤ Yk)

·Pφι(Yk ∈ dyk | Z(t) = (a, i), t ≤ Yk)dt. (42)

From (34), we have,

Pφι(Yk ∈ dyk | Z(t) = (a, i), t ≤ Yk)
= 1′

aie
Hcc(yk−t)Hcd1dyk, (43)

and Pφι(Yk ∈ dyk) is given in (38). Substituting (35), (43),
and (38) in (42) completes the proof. �

Proposition 3: The estimate M̂ab
ij (yk) of the number of

jumps from state (a, i) to state (b, j), a �= b, given the
measurement yk, is given as follows:

a) For a, b ∈ X1 and i, j ∈ {1, . . . , r},
M̂ab

ij (yk)

=

∫ yk

0 [μeHcct1ai] gab(ij) [1′
bje

Hcc(yk−t)Hcd1]dt

μeHccykHcd1
.

(44)

b) For a ∈ X1, i = 1, . . . , r; and b ∈ X2, j = 1, we have
using l = b− d1,

M̂ab
ij (yk) =

[μeHccyk1ai][1′
aihl]

μeHccykHcd1
. (45)

Proof: The number of jumps in Part a) is given by

Mab
ij (yk) = lim

ε→0

�yk/ε�−1∑
l=0

ϕai(lε)ϕbj((l + 1)ε)) (46)

where �·	 denotes the floor function, and ϕai(t) is defined
in (40). Since the number of jumps in any finite interval is
finite, the conditional expected value of (46) is given by

M̂ab
ij (yk) = lim

ε→0

�yk/ε�−1∑
l=0

Pφι(Z(lε) = (a, i),

Z((l + 1)ε) = (b, j), (l + 1)ε ≤ Yk) | Yk = yk)

=
1

Pφι(Yk ∈ dyk)
lim
ε→0

�yk/ε�−1∑
l=0

ε [Pφι(Z(lε) = (a, i), lε ≤ Yk)

·1
ε
Pφι(Z((l+1)ε) = (b, j) | Z(lε) = (a, i), (l+1)ε ≤ Yk)

·Pφι(Yk ∈ dyk | Z((l + 1)ε) = (b, j), (l + 1)ε ≤ Yk)] .
(47)

The result in (44) is obtained by substituting (38) into the first
term of (47), using a similar argument as in (35) for the second
term, using (2) and

lim
ε↓0

eGε − I

ε
= G, (48)

for the third term, applying (43) to the fourth term, and
interpreting the resulting sum as a Riemann integral.

For Part b), the bivariate Markov chain transits from (a, i) to
(b, 1) only in its last jump occurring at time Yk = yk. Hence,

Mab
i1 (yk) = lim

ε→0
ϕai(yk − ε)ϕb1(yk). (49)

The conditional mean estimate of Mab
i1 (yk) is given by

M̂ab
i1 (yk)
= lim

ε→0
P (Z(yk − ε) = (a, i), Z(yk) = (b, 1) | Yk = yk)

=
1

Pφι(Yk ∈ dyk)
lim
ε→0

[Pφι(Z(yk − ε) = (a, i))

·Pφι(Yk ∈ dyk, Z(yk) = (b, 1) | Z(yk − ε) = (a, i))] .
(50)

Using (38), (35), and (34), in (50) yields,

M̂ab
i1 (yk) = lim

ε→0

[μeHcc(yk−ε)1ai][1′
aie

Hccεhl]
μeHccykHcd1

, (51)

which is equivalent to (45). �
The integrals in (39) and (44) can be efficiently evaluated

using Van Loan’s approach [33, Th. 1]. Rearranging terms
in (44) (and similarly in (39)), we are interested in evaluating

J(y) =
∫ y

0

eHcc(y−t) ·Hcd1μ · eHcctdt. (52)

Define

C =
(

Hcc Hcd1μ
0 Hcc

)
, (53)

and evaluate eCy. Then, J(y) is the upper right block
of eCy. The matrix exponential is usually calculated using
Padé approximation, which requires O(r3) operations for a
matrix of order r [24]. This approach for evaluating (52) is
significantly faster than the approach used in [2] which relies
on Runge-Kutta numerical integration [28].
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Algorithm 1: EM Algorithm for Estimating the Bivariate
Markov Chain Parameter
Data: Source-destination observations {Y1, . . . , YK};
Result: A high likelihood estimate φ̂ of the parameter φ

of the bivariate Markov chain, which comprises
{νa, a = 1, . . . , d1}, {gab(ij) ∈ Hcc}, and
{gab(i1) ∈ Hcd};

Initialization: Set an initial estimate φ̂← φ0;

Evaluate the likelihood δ(0) of the initial estimate
using (54); Set ι← 1, ιmax ← 1000;
while ι ≤ ιmax do

Use Proposition IV.1 to evaluate ν̂ai;
Use Propositions IV.2 and IV.3 to evaluate D̂a

i (yk)
and M̂ab

ij (yk), respectively; Use the estimates in (33)
to obtain a new estimate of {ĝab(ij)};
Evaluate the likelihood δ(ι) of the new parameter
estimate φι using (54);
Update parameter estimate: φ̂← φι, ι← ι + 1;

end

The likelihood of the observation sequence follows
from (38) and is given by

Pφι(Y1 ∈ dy1, . . . , YK ∈ dyK) =
K∏

k=1

μeHccykHcd1dyk.

(54)

A formal statement of the EM algorithm is given as
Algorithm 1.

V. SINGLE PATH MODELING

In this section we discuss delay estimation on a single
source-destination path, which is of particular interest in a
computer network. We attribute a bivariate Markov chain
to that path, and estimate the parameter of the model from
multiple source-destination delay measurements. Modeling of
traffic on a single source-destination path is simpler than
modeling traffic over the entire network, it provides more
intuitive results, and it will be used to compare our approach
with previous work such as that in [39]. In addition, this
approach could be applied to a network with deterministic
routing, i.e., all packets for a given source-destination pair
follow a single path.

Suppose that the nodes on the single source-destination path
of interest are numbered consecutively, say {1, . . . , d}, where
node 1 is the source node, node d is the destination node, and
nodes {2, . . . , d1}, d1 = d − 1, are intermediate nodes. The
generator of the bivariate Markov chain model is given by

G =

⎛
⎜⎜⎜⎜⎜⎝

G11 G12

. . .
. . . 0

Gd1−1,d1−1 Gd1−1,d1

Gd1,d1 h1

ξ1ν1 0 −ξ1

⎞
⎟⎟⎟⎟⎟⎠ (55)

where all matrices in the upper left block of G, which we
previously referred to as Hcc, have the same order r, ξ1 is

a scalar, and the dimension of the row vector ν1 and of the
column vector h1 equals that order. The initial distribution is
given by

ν = (ν1,0, . . . ,0, 0). (56)

The delay on a given link coincides with the sojourn time of
the X-chain in the state from which the link originates, since
only one X-state is reachable from any given X-state. Thus,
the source-destination delay is the sum of the X-state sojourn
times.

In this model, a packet entering the root node will wander
in the state space of the auxiliary S-chain, until it leaves the
X-state 1 and moves to the next X-state 2. There it will
wander again in the state space of the S-chain, until it moves
to the X-state 3, and so on. Each jump of the S-chain while
the X-chain is at rest, is also a jump of the Z-chain, and the
sojourn time in each state of Z is exponentially distributed.
The link delay could thus be the sum of exponentially distrib-
uted delays, mixtures of such delays, etc. The density of the
link delay in a bivariate Markov chain is known to be phase-
type [15], of which mixtures of convolutions of exponential
densities is a particular case. It is also important to note that
link delays in this model are statistically dependent as expected
in a real network.

Estimation of the parameter of this model from independent
source-destination delay measurements can be done using
the EM algorithm of Section IV. The algorithm applies for
estimating the initial distribution ν1, the off-diagonal elements
of Hcc, and the elements of h1. As in the unstructured network,
ξ1 is set a priori as a large positive number, and e1 = ξ1ν1

guarantees that the initial distribution of the bivariate
Markov chain remains ν1 after bouncing from the destination
X-state d.

When the matrices {Gaa} are diagonal, the density of the
sojourn time in a given X-state, say Xk = a, follows from (26)
and is given by

pφ(t | a) =
r∑

i=1

−ν̄k
a (i)gaa(ii)egaa(ii)t (57)

where ν̄k
a (i) denotes the ith component of ν̄k

a defined shortly
after Eq. (26). This is a mixture of exponential densities
with parameters {gaa(ii), i = 1, . . . , r}. Thus, when the
path is modeled as a bivariate Markov chain with diagonal
matrices {Gaa}, each link delay is a mixture of exponential
densities, but link delays on the path are not statistically inde-
pendent. A mixture of exponential densities link delay model
was used in [39], under the assumption that various link delays
are statistically independent. In the single path context, this
model is a special case of the bivariate Markov chain model
for which the block matrices {Gaa} are diagonal and the block
matrices {Ga,a+1} satisfy Ga,a+1 = −Gaa1νa+1/(νa+11)
when a ∈ X1, and Gd1,d1+1 = −Gd1d11, where
ν = {νb, b ∈ X} is the stationary distribution of the sampled
bivariate Markov chain given below (22).

VI. NUMERICAL RESULTS

In this section we present numerical results, obtained using
MATLAB, aimed at assessing the performance of the bivariate
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Markov chain as a model for estimating parameters of a
network such as link delay density and routing probabilities.
We study modeling of unstructured networks with random
routing regime, as well as modeling of single paths in a
network. We do not assume any specific topology in the
unstructured network, except for the partition of the nodes
into source/intermediate nodes and destination nodes. Thus,
we do not constrain any of the sub-matrices in the Hcc, Hcd,
and Hdc portions of the generator G of the bivariate Markov
chain to be null. This generator is given in (23). In modeling
a single source-destination path in a network, the generator of
the bivariate Markov chain is given by (55). We compare our
results for the single path modeling with the mixture model
approach of [39].

A. Unstructured Networks

We tested our approach on data generated by a relatively
high order bivariate Markov chain, which simulated data
generated by a network. We refer to this model as the
“true” model. We have used a bivariate Markov chain with
d1 = 8 source/intermediate states, d2 = 8 destination states,
and r = 10 for each source/intermediate state. The entries of
the initial distribution vector μ were chosen by first sampling
a uniform distribution on [0, 1], and then normalizing its
components so that μ1 = 1. The entries of the generator
G of the bivariate Markov chain in (23) were chosen as
follows. The off-diagonal elements of the sub-matrix Hcc, and
the elements of Hcd, were drawn randomly by sampling a
uniform distribution on [0, 100] where the value of 100 was set
arbitrarily. For i = 1, . . . , d2, we have assigned ξi = 105. This
value of ξi guarantees a negligible sojourn time with a mean
of 10−5 seconds in each destination state. Furthermore, for
i = 1, . . . , d2, we chose ei = μ ·105. In generating the data Y ,
the bivariate Markov chain was initialized according to μ.
It then evolved through the states within X1×S, and incurred
an exponentially distributed sojourn time in each visited state.
When a destination state was reached, the total sojourn time
was recorded, and the chain bounced back to an initial state
in accordance with e1. We allowed the process to proceed in
this manner until we recorded K = 5000 source-destination
delays {Yk} which constituted the data Y .

Next, we used the source-destination delay data Y generated
from the high order bivariate Markov chain to estimate a
relatively low order bivariate Markov chain with d1 = d2 = 8
and r = 4 using the EM algorithm from Section IV. The
estimated parameter was used to infer the link delay den-
sity estimate from Eq. (27), the routing distribution from
Eq. (28), and the density of the overall source-destination path
delay from Eq. (38). These estimates were compared against
similar estimates obtained from the known parameter of the
higher order true model of r = 10. We have initialized the
EM algorithm by randomly generating off-diagonal elements
of Hcc and all elements of Hcd, as explained above, except
that here the non-negative elements of these matrices were
drawn from a uniform distribution on [0, 150]. By sampling
from a distribution with larger support, we have reduced the
dependency of the initial value of the parameter on its actual

Fig. 1. Diagonal elements of Hcc depicted in ascending order.

value. Furthermore, it appears reasonable to choose the initial
value of the parameter from a broader distribution rather than
from a narrower distribution, which could exclude typical
values of the true parameter. Similarly, the elements of μ
were drawn from a uniform distribution on [0, 1] and were
subsequently normalized. We have observed that the likelihood
of the estimated model increased rather slowly from one EM
iteration to the other. Hence, we have limited the EM algorithm
to 1000 iterations in estimating the parameter of the model.

In comparing the true and estimated densities, we have
evaluated the Kullback-Leibler divergence between the two
densities as follows. For densities f and g the divergence is
given by

DKL(f ||g) =
∫ ∞

0

f(v) log
f(v)
g(v)

dv, (58)

which can be approximated using standard numerical integra-
tion techniques. We have designated f as the true density and
g as the estimated density.

Before turning to the presentation of our link delay esti-
mation results, we demonstrate the accuracy of the parameter
estimation procedure, by estimating the parameter of a par-
tially observable bivariate Markov chain with generator (23)
and d1 = d2 = 8, r = 4, from source-destination delay data
generated by the same bivariate Markov chain. The parameter
of the bivariate Markov chain was randomly generated as
described above, and the EM algorithm was initialized and
terminated as described above. Since the generator G contains
a relatively large number of entries, and estimation of each
individual entry is typically difficult, we present here only
aggregated values of the estimated entries. In particular, Fig. 1
shows plots of the true and estimated 32 diagonal elements
of Hcc as obtained in our study. Fig. 1 demonstrates that
the estimation procedure, starting from an initial parameter,
results in an estimate that is closer to the true parameter
with respect to the diagonal elements. Despite the relatively
inaccurate parameter estimate, the derived estimates of the
source-destination and link delay densities turn out to achieve
reasonably good accuracy, as will be seen shortly. Theoretical
performance bounds for parameter estimation from partially
observable bivariate Markov chain are not known.

In the remaining experiments described in this and in
subsection VI-B, we used the data Y generated by the high
order bivariate Markov chain with r = 10, and applied the EM
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Fig. 2. Overall source-destination delay densities.

Fig. 3. Delay density for a typical link: no. 116.

algorithm to estimate the partially observed bivariate Markov
chain of order r = 4. Fig. 2 shows plots of the density of
the overall source-destination delay, corresponding to Pφ(Yk ∈
dyk) in (38), when φ is the initial parameter, and when φ is the
estimated parameter. Clearly, the true and estimated densities
are in very good agreement. The estimated divergence value
for the true and estimated densities in Fig. 2 was found to
be 1.02 · 10−5.

Next, we compare the link delay density estimates obtained
from the true and estimated parameters. In the proposed model
there are d2

1 − d1 = 56 links connecting states within X1,
d1d2 = 64 links connecting source/intermediate states to
destination states, and a similar number of 64 links connecting
destination states to source/intermediate states. We are only
interested in the first two sets of links, which total 120 links.
Fig. 3 depicts the true and estimated link delay densities for
one of the links. Fig. 4 shows the divergence values for all
120 link delay estimates. We have also evaluated the packet
routing probabilities using (28). Fig. 5 depicts the squared
error between the true and estimated packet routing probability
for each link.

We also studied the sensitivity of our approach to the model
order r. We have repeated our experiments using r = 1, 2, 3,
and compared with the results obtained using r = 4. Lowering

Fig. 4. Divergence values for estimated link delay densities.

Fig. 5. Squared error for estimated packet routing probabilities on the various
links.

the order from r = 4 to r = 1 had negligible effect on
the estimation accuracy of the overall source-destination delay
density as presented in Fig. 2. Lowering the order, however,
impacted the quality of the link delay estimation. As expected,
the quality improved as the order r was increased from 1
to 4. Fig. 6 demonstrates the results for link number 116.
The divergence values corresponding to r = 1, 2, 3, 4 were,
respectively, 0.686, 0.316, 0.180, and 0.061.

B. Single Path Modeling

In this section we demonstrate the workings of our approach
in modeling traffic on a single source-destination path of a net-
work. We consider a path with 5 nodes given by {1, 2, 3, 4, 5}.
Traffic on the given path was modeled as a high order bivariate
Markov chain with d = 5 and r = 10. In this case, d1 = 4
and d2 = 1.

The initial distribution and generator of the high order
bivariate Markov chain were generated randomly as in the
unstructured network. The value of ξ1 in (55) was set to 105

as before. This model was used to generate K = 5000 source-
destination delay measurements Y = {Y1, . . . , YK}. The data
was used to train a low order bivariate Markov chain with
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Fig. 6. Delay density estimates for link no. 116 using varying order r.

Fig. 7. Overall source-destination delay densities in a single route.

d = 5 and r = 4. The EM algorithm was initialized similarly
as was done for the unstructured network. The estimated
parameter was used in (26) to estimate the link delay, and
in (38) to estimate the source-destination path delay.

We compared four different approaches to obtaining an
estimate of the parameter of the bivariate Markov chain.
In approach A, the estimate was obtained using a partially
observable bivariate Markov chain with the generator structure
shown in (55). In approach B, the estimate was also obtained
using the partially observable bivariate Markov chain with the
structure shown in (55), except that here the matrices {Gaa}
were diagonal. The link-delay density estimate provided by
this model is the mixture density (57). This model does not
assume that the delays on various links are independent and
hence provides an upper bound on the performance of [39].
The estimate in C was obtained using the mixture fitting
approach of [39] by specializing the implementation of the
EM algorithm as discussed at the end of Section V. The
estimates in approach D were obtained using the partially
observable bivariate Markov chain with the general generator
structure given in (23).

In Fig. 7, the overall source-destination delay densities are
plotted for the estimates obtained by the four approaches. Note
that source-destination delay density achieves its maximum

Fig. 8. Link delay densities for the first link on the given route.

TABLE I

DIVERGENCE BETWEEN TRUE AND ESTIMATED

DENSITIES ON THE GIVEN ROUTE

away from time 0, in contrast to the delay densities shown
in Figs. 2 and 3. We also remark that a link delay density
with this shape, say for a link starting from node a, could
be obtained using a bivariate Markov chain with generator
such that the submatrix Gaa has a structure similar to that
in (55). All four approaches appear to provide a reasonable
approximation of the source-destination delay density. The
first row of Table I gives the approximate divergence values
between the true source-destination delay density and each of
the estimated densities. Approaches A and B provide delay
density estimates of comparable accuracy. Estimate A results
in a slightly more accurate source-destination delay density
estimate and link 1 delay density estimate, whereas estimate B
results in somewhat better link delay estimates for links 2-4.
In principle, approach A should lead to the most accu-
rate estimate, as it models the link delays using a general
phase-type distribution, but its associated parameter contains
more elements to be estimated. Approaches B and C both
assume a link delay model based on mixtures of exponentials.
As expected, estimate C is less accurate than estimate B, due
to the further assumption of statistical independence among
the link delays. Approach D ignores the single path structure
of the network and consequently, the generator of the bivariate
Markov chain contains significantly more elements to be
estimated. As a result, for the same number of samples and
EM iterations, estimate D is less accurate than estimate A,
particularly with respect to the link 4 delay density. Table I
provides the divergence values between the true and estimated
delay densities for the four links.

Fig. 8 depicts plots for the true and estimated link delay
densities for the first link on the source-destination route.
Comparing the estimates obtained by the bivariate Markov
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chain model and the mixture model of [39], when the EM
for each model is initialized in a similar manner, we see from
Fig. 8 and Table I that estimates A and B are better than
estimate C.

VII. COMMENTS

We developed a fairly general approach to estimate the
density of the total delay on a link in a computer network
from source-destination delay measurements. Our approach is
based on fitting traffic over the network with a continuous-
time bivariate Markov chain. This model implies that the link
delay is fitted with a parametric matrix exponential delay
density. This family of densities is dense in the family of
densities with non-negative support and it includes phase-type
densities as well as mixtures of convolutions of exponential
densities. We studied link delay in networks with random
routing as well as link delay on a single route of the network.
We demonstrated the performance of the proposed approach
using numerical examples and compared some of our results
with the mixture density fitting approach of [39]. One pos-
sible extension of the work presented here is to consider
bivariate Markov chains with finite support phase-type dis-
tributions [27]. Such models could improve the estimation of
the link delay densities which naturally have finite support.
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