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Fig. 2. Overall source-destination delay densities.

Fig. 3. Delay density for a typical link: no. 116.

algorithm to estimate the partially observed bivariate Markov
chain of order r = 4. Fig. 2 shows plots of the density of
the overall source-destination delay, corresponding to Pφ(Yk ∈
dyk) in (38), when φ is the initial parameter, and when φ is the
estimated parameter. Clearly, the true and estimated densities
are in very good agreement. The estimated divergence value
for the true and estimated densities in Fig. 2 was found to
be 1.02 · 10Š 5.

Next, we compare the link delay density estimates obtained
from the true and estimated parameters. In the proposed model
there are d2

1 − d1 = 56 links connecting states within X1,
d1d2 = 64 links connecting source/intermediate states to
destination states, and a similar number of 64 links connecting
destination states to source/intermediate states. We are only
interested in the first two sets of links, which total 120 links.
Fig. 3 depicts the true and estimated link delay densities for
one of the links. Fig. 4 shows the divergence values for all
120 link delay estimates. We have also evaluated the packet
routing probabilities using (28). Fig. 5 depicts the squared
error between the true and estimated packet routing probability
for each link.

We also studied the sensitivity of our approach to the model
order r. We have repeated our experiments using r = 1, 2, 3,
and compared with the results obtained using r = 4. Lowering

Fig. 4. Divergence values for estimated link delay densities.

Fig. 5. Squared error for estimated packet routing probabilities on the various
links.

the order from r = 4 to r = 1 had negligible effect on
the estimation accuracy of the overall source-destination delay
density as presented in Fig. 2. Lowering the order, however,
impacted the quality of the link delay estimation. As expected,
the quality improved as the order r was increased from 1
to 4. Fig. 6 demonstrates the results for link number 116.
The divergence values corresponding to r = 1, 2, 3, 4 were,
respectively, 0.686, 0.316, 0.180, and 0.061.

B. Single Path Modeling

In this section we demonstrate the workings of our approach
in modeling traffic on a single source-destination path of a net-
work. We consider a path with 5 nodes given by {1, 2, 3, 4, 5}.
Traffic on the given path was modeled as a high order bivariate
Markov chain with d = 5 and r = 10. In this case, d1 = 4
and d2 = 1.

The initial distribution and generator of the high order
bivariate Markov chain were generated randomly as in the
unstructured network. The value of ξ1 in (55) was set to 105

as before. This model was used to generate K = 5000 source-
destination delay measurements Y = {Y1, . . . , YK}. The data
was used to train a low order bivariate Markov chain with
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Fig. 6. Delay density estimates for link no. 116 using varying order r.

Fig. 7. Overall source-destination delay densities in a single route.

d = 5 and r = 4. The EM algorithm was initialized similarly
as was done for the unstructured network. The estimated
parameter was used in (26) to estimate the link delay, and
in (38) to estimate the source-destination path delay.

We compared four different approaches to obtaining an
estimate of the parameter of the bivariate Markov chain.
In approach A, the estimate was obtained using a partially
observable bivariate Markov chain with the generator structure
shown in (55). In approach B, the estimate was also obtained
using the partially observable bivariate Markov chain with the
structure shown in (55), except that here the matrices {Gaa}
were diagonal. The link-delay density estimate provided by
this model is the mixture density (57). This model does not
assume that the delays on various links are independent and
hence provides an upper bound on the performance of [39].
The estimate in C was obtained using the mixture fitting
approach of [39] by specializing the implementation of the
EM algorithm as discussed at the end of Section V. The
estimates in approach D were obtained using the partially
observable bivariate Markov chain with the general generator
structure given in (23).

In Fig. 7, the overall source-destination delay densities are
plotted for the estimates obtained by the four approaches. Note
that source-destination delay density achieves its maximum

Fig. 8. Link delay densities for the first link on the given route.

TABLE I

DIVERGENCE BETWEEN TRUE AND ESTIMATED

DENSITIES ON THE GIVEN ROUTE

away from time 0, in contrast to the delay densities shown
in Figs. 2 and 3. We also remark that a link delay density
with this shape, say for a link starting from node a, could
be obtained using a bivariate Markov chain with generator
such that the submatrix Gaa has a structure similar to that
in (55). All four approaches appear to provide a reasonable
approximation of the source-destination delay density. The
first row of Table I gives the approximate divergence values
between the true source-destination delay density and each of
the estimated densities. Approaches A and B provide delay
density estimates of comparable accuracy. Estimate A results
in a slightly more accurate source-destination delay density
estimate and link 1 delay density estimate, whereas estimate B
results in somewhat better link delay estimates for links 2-4.
In principle, approach A should lead to the most accu-
rate estimate, as it models the link delays using a general
phase-type distribution, but its associated parameter contains
more elements to be estimated. Approaches B and C both
assume a link delay model based on mixtures of exponentials.
As expected, estimate C is less accurate than estimate B, due
to the further assumption of statistical independence among
the link delays. Approach D ignores the single path structure
of the network and consequently, the generator of the bivariate
Markov chain contains significantly more elements to be
estimated. As a result, for the same number of samples and
EM iterations, estimate D is less accurate than estimate A,
particularly with respect to the link 4 delay density. Table I
provides the divergence values between the true and estimated
delay densities for the four links.

Fig. 8 depicts plots for the true and estimated link delay
densities for the first link on the source-destination route.
Comparing the estimates obtained by the bivariate Markov
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chain model and the mixture model of [39], when the EM
for each model is initialized in a similar manner, we see from
Fig. 8 and Table I that estimates A and B are better than
estimate C.

VII. COMMENTS

We developed a fairly general approach to estimate the
density of the total delay on a link in a computer network
from source-destination delay measurements. Our approach is
based on fitting traffic over the network with a continuous-
time bivariate Markov chain. This model implies that the link
delay is fitted with a parametric matrix exponential delay
density. This family of densities is dense in the family of
densities with non-negative support and it includes phase-type
densities as well as mixtures of convolutions of exponential
densities. We studied link delay in networks with random
routing as well as link delay on a single route of the network.
We demonstrated the performance of the proposed approach
using numerical examples and compared some of our results
with the mixture density fitting approach of [39]. One pos-
sible extension of the work presented here is to consider
bivariate Markov chains with finite support phase-type dis-
tributions [27]. Such models could improve the estimation of
the link delay densities which naturally have finite support.
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