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An Efficient Eigenvector Approach for Finding 
Netlist Partitions 

Scott W. Hadley, Brian L. Mark, and Anthony Vannelli 

Abstract-A fast eigenvector technique for obtaining good 
initial node partitions of netlists for use in interchange heuris- 
tics is described. The method is based on approximating the 
netlist or hypergraph by a weighted graph, G, such that the 
sum of the cut edges in G tightly underestimates the number of 
cut nets in any netlist partition. An eigenvector technique of 
Barnes [2] is used to partition the graph G into k blocks of fixed 
module size. Another feature of this graph underestimation 
model of the netlist is that it allows us to obtain lower bounds 
on the actual number of cut nets. A multiblock node inter- 
change heuristic of Sanchis [20] is tested on the one resulting 
netlist partition obtained by this new eigenvector approach on 
a variety of small to large sized benchmark netlist partitioning 
problems (between 300 to 12 000 modules and nets). Test re- 
sults on the larger netlists show that in most cases this eigen- 
vector-node interchange approach yields netlist partitions with 
comparable or fewer cut nets than the best netlist partitions 
obtained by using node interchange heuristics alone on many 
random initial netlist partitions. Moreover, the running time of 
this method is a small fraction of the previous node interchange 
methods. 

I. INTRODUCTION 
HE partitioning of the modules of a netlist arises in T many areas, including the laying out of circuits on 

computer chips and printed circuit boards [4], [ 1 13, [ 191, 
computer program segmentation [5], [8], [lo], and the 
laying out of machines in advanced manufacturing sys- 
tems [22], [23]. In each case, we assume that the netlist 
can be represented by a hypergraph, which is a general- 
ization of a graph where a hypergraph generalized edge 
(net) can connect more than two modules. Throughout our 
discussion, we assume that the netlist or hypergraph H, 
contains n nodes (modules) V = { 1,  2, , n }  and I E I 
generalized edges (nets). We study the problem of parti- 
tioning the n nodes into k disjoint blocks, Vl, V2, , * 
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Vk, of node sizes m l ,  m2, - , mk, respectively, such 
that the number of hypergraph edges connecting the k 
blocks is minimized. 

Since this problem is known to be NP-complete (even 
in the simpler case where the hypergraph H is a graph G 
([ 12]), heuristics have been developed to obtain suitable 
partitions [lo], [16], [20]. These heuristics are known as 
interchange methods and are based on iteratively improv- 
ing a series of partitions. In general, the quality of the 
final solution depends on the quality of the initial (start- 
ing) partition. In the heuristics described above the initial 
partition is randomly generated. 

In this paper, we present a fast method for obtaining an 
initial partition to which any interchange method can be 
applied. The method is based on approximating the netlist 
or hypergraph by a weighted graph, G, that tightly under- 
estimates the number of cut nets in any netlist partition. 
An eigenvector technique of Barnes [2] is used to partition 
the resulting graph, G, into k blocks of fixed module size. 
A novel feature of this graph underestimation model of 
the netlist is that it allows us to obtain lower bounds on 
the actual number of cut nets. An efficient implementation 
of the Sanchis node interchange heuristic is developed to 
further reduce the number of nets connecting k blocks 

This node interchange heuristics is tested on the one 
resulting netlist partitioned obtained by this new eigen- 
vector approach on a variety of small to large sized bench- 
mark netlist partitioning problems (between 300 to 12 000 
modules and nets). Test results on the larger netlists in- 
dicate that in most cases this eigenvector-node inter- 
change approach yields netlist partitions with comparable 
or fewer cut nets than the best netlist partitions obtained 
by using node interchange heuristics alone on many ran- 
dom initial netlist partitions. Also, the running time of 
this method is a small fraction of the previous node inter- 
change methods. 

The advantage of developing an eigenvector approach 
to solve the partitioning problem is that the generalized 
initial partitions tend to have many nodes placed in the 
“right blocks.” This is due to the observation that eigen- 
vector methods are more global for solving large-scale 
optimization problems. For example, eigenvector ap- 
proaches have been used to solve many VLSI placement 
problems [3], [ 141. 

On the other hand, node interchange methods are greedy 
or local in nature and get easily trapped in local optima. 

P O I  * 
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More important, it has been shown that interchange meth- 
ods may not converge to “optimal” or “near optimal” 
partitions unless they initially begin from “good” parti- 
tions [13], [17]. We use an eigenvector approach to at- 
tempt to place most of the nodes in the correct blocks or 
node partitions for large-scale partitioning problems. An 
efficient node interchange approach is developed to move 
nodes that reduce the number of generalized hypergraph 
edges that connect modules in at least two blocks. 

This paper is divided into five sections. Section I1 dis- 
cusses how a netlist H can be estimated by a weighted 
graph, G. The edge weights of the graph G are determined 
by characterizing the solution of a related P,, ( p  1 1) min- 
imization problem. In Section 111, we discuss how the 
graph G can be used to obtain initial node partitions using 
the eigenvector based approach of Barnes [2]. Lower 
bounds on the number of cut nets are obtained using the 
tightly underestimated graph approximation, G, of H and 
the simple eigenanalysis results from Donath and Hoff- 
man [9]. The testing of this new eigenvector-based model 
and the efficient multiblock interchange method of San- 
chis [20] is conducted on a variety of well-known bench- 
mark test problems from VLSI circuit layout design and 
is presented in Section IV. Conclusions and directions for 
future research are given in Section V. 

11. APPROXIMATING A NETLIST BY A GRAPH 
The netlist partitioning problem can easily be described 

as a hypergraph partitioning problem. In general, hyper- 
graph partitioning problems are NP-hard, even in the sim- 
ple case where the hypergraph is a graph [ 121. However, 
there are cases where good heuristics exist for partitioning 
problems on graphs but not for the corresponding hyper- 
graph partitioning problem. The problem of partitioning 
the modules of a netlist into blocks of specified size such 
that the number of nets with modules in more than one 
block is minimized falls into this category. In this case a 
good heuristic based on the eigenvalues and eigenvectors 
of the adjacency matrix of the graph has been given by 
Barnes [2]. As such, we are interested in finding ways to 
approximate a hypergraph by a graph. A method for ap- 
proximating a netlist H by a graph, G, with weighted 
edges is given in [25], where we consider partitioning the 
netlist into two blocks only with no block size constraint. 
The node set of G is the same as the node set of H. The 
edge set of G is obtained by replacing each net of H by 
the edge set of a clique containing the modules of the net. 
Edge weights are assigned so that G provides an under- 
estimation of H .  We say that G underestimates H if the 
weight of the edges of G that are cut by any module par- 
tition is not greater than the number of nets cut by the 
same partition. An underestimation can prove to be useful 
when either a lower bound or the optimal solution for the 
graph partitioning problem can be found. The reason the 
underestimation is useful is that any lower bound for the 
graph partitioning problem will also provide a lower 
bound for the netlist partitioning problem. If a general 

estimation is used, bounding results from graph partition- 
ing cannot be exploited. 

In this section, we extend the technique described in 
[25] to obtain weights for the edges of G when we con- 
sider partitioning the netlist into k blocks of specified 
sizes. In subsection A, we find a characterization of the 
weights on the approximating graph of the netlist. We 
provide an illustrative example using a netlist with five 
modules and three nets at the end of the section. 

A. Determining Edge Weights 
We generate the edge weights by considering the clique 

obtained by each generalized edge in turn. After consid- 
ering each generalized edge we obtain a graph containing 
multiple edges. (If node i and n o d e j  are contained in t 
generalized edges, there will be t (multiple) edges be- 
tween i a n d j  in the new graph.) We generate G by re- 
placing each set of multiple edges by a single edge whose 
weight is the sum of the weights of the multiple edges. 

By focusing on a particular generalized edge (net), we 
wish to assign values such that the weight of any cut in 
the clique underestimates any cut in the generalized edge. 
We show that all edge weights in the corresponding clique 
will have the same weight when we consider a single gen- 
eralized edge (see Theorem 1) .  

Assume for simplicity that each generalized edge (net) 
has a unit weight and that we wish to partition the nodes 
(modules) among k blocks. Let a be the value assigned to 
each edge of the clique representation of a generalized 
edge. In order to find a graph fit that underestimates a 
partition of the netlist, we must have Ip(P)( a I 1, where 
I p(P) I is the number of cut edges in the Pth distinguishable 
partition of the net into k blocks. There are only a finite 
number of distinguishable partitions of the modules of a 
net. In order to minimize the error in the underestimation 
of a cut of generalized edge, we must choose the maxi- 
mum value for a .  The maximum possible value for a is 

1 
(1) 

max (IW)l * 

For example, in the case of a net connected to four 
modules where these modules are partitioned over two 
blocks, we see that the maximum number of interconnec- 
tions arises if we assign two modules in each block. This 
implies that there are four interconnections between the 
two blocks. Thus a = 1 /4. The best four-node (modules) 
approximation of the netlist where the four modules are 
connected to one net is shown in Fig. 1. 

B. Theoretical Derivation of Optimal Edge Weights 
In this subsection, we expand on the above observa- 

tions by giving a proof that the intuitive edge weighting 
(1) is in fact optimal in the underestimation case. In gen- 
eral, to edge ( i ,  j )  in G we assign weight aij. Given a 
partition of the nodes, we want the edge weights to satisfy 
the property that, if the generalized edge is cut by a par- 
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easy to verify that the number of edges cut by P E P is 

L 

1. 
4 

1 
4 

1 

4 

Fig. 1. Best four-module graph approximation. 

tition, then the sum of the edge weights of the cut edges 
in G' is less than or equal to 1 (i.e., the value underesti- 
mates the number of cut edges in the hypergraph). 

We employ the following notations and definitions 
when finding the best underestimation edge weighting for 
these graphs. 

Dejnition 1: A k-partition of the nodes V of the com- 
plete graph K,, is a partition of V = { Vl , V2, - - - , V,} 
such that V, n V, = 0 v i # j ,  and U:= V, = V .  Let P 
be the set of all k-partitions of the nodes of a graph. 

DeJinition 2: An equal partition of the node set Vis a 
k-partition such that ( 1  V, I - IV,  1 1  I 1 v i ,  j .  We let E 
be the set of all equal partitions of the node set of a graph. 

We can now give a system of equations describing the 
underestimation property described above: 

c a, + sp = 1 (2) 
(~ . , )EP( f )  

S( 1 0 (3) 

Without loss of generality, assume I V, 1 = I V2 I + tJor 
some f 1 2, (i.e., P E ) .  ConsidFr the k-partition P = 
{ V , ,  V2, - * , V,} , where vl and V2 are obtained by tak- 
i?g one node from VI a?d placing it in V2, giving VI and 
V,, respectively, with V,  = V,  for i 1 3. By expansion 
and comparison it follows that 

I d ) I  = lcP<P)l - (1  - t )  

> IP(P)l. 
This is a contradiction. 0 

Lemma 2: Assume there exists an optimal solution to 
S,, p 2 1 with a, = a for all i ,  j ;  then there exists an 
optimal solution where 

aoPt lJ = = I (P(P>l-' (4) 
where P E  E .  

Proof: Given any feasible solution where a,, = a 
v i ,  j ,  we begin by noticing that for all P E P, sp decreases 
as a increases. Therefore, we are interested in finding the 
largest value of a (implying smallest error for each par- 
tition) that yields a feasible solution. Since there exists a 
feasible solution with a = 0, it follows that aopt 1 0. 

Since 

sp 1 0, aopt 1 0, and I p(P)I 2 0, 

it follows that 

aopt I (p(P)I-l, vz E P .  

So, the largest value of a occurs when 1 p (P) I is mini- 
mized over all P E P ,  i.e., 1 p(P)( is maximized. From 
Lemma 1, we know that this occurs when Z is an equal 

0 k-partition. Thus, aopt = I p(P)I-' for P E  E .  

Lemma 3: For P E E ,  

for all P E  P. We can now formulate the problem of finding 
a best (underestimation) edge weighting a mathematical 
programming problem. There are various measures for 
determining a best edge weighting. Likely candidates are 
the lp noms  for p = 1 , 2, ca. We let S, denote the math- 
ematical programming problem 

Sp = min {Zp(a, s) 1 (a, s) satisfies (2) ,  (3)}, 

where l,(a, s) is the 1, norm of the elements of s. 

, Vk} is a k-partition of 
the nodes of the complete graph K,, that maximizes the 
number of edges in p(P) over all k-partitions, then P is an 
equal partition (i.e., P E E ) .  

Proof: We show this result by contradiction. It is 

Lemma 1: If P = { Vl , V2, * 

Proof: Since P E  E ,  there are (n - k Ln/kJ ) subsets 
of size r n / k l  and the remaining k(1 + Ln/k_l ) - n 
subsets are of size Ln/k_l . The number of edges in a 

0 
Theorem 1: There exists an optimal solution to S,, 

subset of size t is ( t / 2 ) .  The result follows. 

p 1 1 with 

a$Pt = I p(~l1-I v i ,  j ( 5 )  

for any P E  E .  
Proof: First we define equivalence classes of all fea- 

sible partitions. Let Fd denote the equivalence class of 
partitions that yields the same partition after permuting 
the graph nodes. Now, let a* = (a;)  denote an optimal 
edge weighting, let s* = ( s t )  be the corresponding errors, 
and let errd denote the sum of the errors for all partitions 
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TABLE I 

BLOCKS (k) 
CALCULATION OF U FOR DIFFERENT NUMBERS OF 

n k = 2  k = 3  k = 4  

2 1 1 1 
3 1 /2 1 /3  1 / 3  
4 1 /4 1 / 5  1 / 6  

1 /9 5 1 / 6  
6 1 /9 
I 1/12 

1/13 
1/18 

: $2 
1/16 

Net #1 

Net #2 Net #3 
Fig. 2 .  Five-module, three-net example. 

1 

Fig. 3. Best four-module graph approximation. 

in equivalence class d ;  i.e., 

errd = C sp*. 
PEFd 

Since the Pp norm ( p  2 1 and finite) of the errors is 
convex in the feasible region (i.e., underestimations), it 
is easy to see that the minimum of the errors subject to 
(6) for all d occurs when all errors sp* are equal for each 
equivalence class d .  By symmetry of the complete graph 
it follows that this equality holds when all edge weights 
are equal. It follows that there exists an optimal solution 
with all edge weights equal. Applying Lemma 2 the theo- 
rem follows for finite p .  For the P- case a similar argu- 

0 
Table I shows the calculation of the values aip' (using 

Theorem 1 and Lemma 3) for different modules and re- 
quired blocks. 

We now illustrate this technique by means of a small 
five-module, three-net example and obtain the best graph 
underestimation. The hypergraph corresponding to the 
netlist is shown in Fig. 2, and the best graph underesti- 
mation is shown in Fig. 3. 

Each edge in the clique on modules { 1, 2, 3, 4)  will 

ment based on symmetry can be used. 

get weights of 1 /4 ,  the edges of cliques (1, 4 )  and 
(4, 5)  will get weights of 1. Notice that modules 1 and 4 
occur in two nets together: Net #1 with four modules and 
Net #2  with two modules. Therefore the weight of edge 
(1, 4) in G has weight 1.25 = 1 + 1/4.  

111. GENERATING INITIAL PARTITIONS AND BOUNDS 
Given the graph approximation, G, of the hypergraph 

H, we find an initial partition of graph G by using the 
eigenvector-based approach of Barnes [2]. We will use 
the resulting partition of the weighted graph G as a par- 
tition for the hypergraph (netlist) H. Barnes shows that 
the graph partitioning problem is equivalent to a matrix 
approximation problem. We summarize these results be- 
low. 

Assume that the approximating graph, G, under con- 
sideration has n nodes that are to be partitioned into k 
disjoint blocks of sizes ml I m2 I - - * 1 mk. A parti- 
tion can be completely specified by a set of k node as- 
signment vectors, x l ,  x2, - - , &, one corresponding to 
each block, which have the form 

xj = (xu, x2j, * * * , xnj)*, 1 I j I k 

where 

1 if node i is in blockj 

0 otherwise. 
x.. = 

Let vij be the ith component of the eigenvector corre- 
sponding to the jth largest eigenvalue of the adjacency 
matrix of G. Barnes [2]  shows that the solution of the 
following linear transportation problem gives an approx- 
imate solution to the graph partitioning problem: 

n k  
"ij 

i = l  j = 1  J& Maximize - x u  

n 

subject to c xij = mj, j = 1, 

C xij = 1, 

, k 
i =  1 

k 

, n  i = 1, * e *  

j =  1 

xij I 0 ,  i = 1, , n ;  j =  1, , k .  

(7) 

Technically, there are 2k transportation problems ( 7 )  that 
should be solved where k is small. Barnes [2] describes a 
selection procedure that allows one transportation prob- 
lem to be solved. A powerful interior point algorithm 
proposed by Adler et al. is used to solve the linear trans- 
portation problem (7) [ 11. 

In the two-block case, the transportation problem (7) 
can be further simplified by replacing x i 2  by 1 - xi l  . Mak- 
ing this substitution and letting xi = x i l ,  the objective 
function becomes 
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The transportation problem (7) reduces to the following 
{ 0, 1 }-knapsack problem: 

Maximize i [” - *] x, = , = l  5 6,x, 
1 = 1  6 Jm2 
n 

subject to c x, = ml, x, E (0, l} ,  i = 1, * , n. 

(9) 
It is well known that the solution to (9) is obtained by 
sorting the objective coefficients in nonincreasing order 
and setting x ,  = 1 for the first ml variables in the sorted 
list (all other variables are set to zero). 

Recall the weight of any cut in the generated graph G 
underestimates the number of generalized edges cut in H. 
Donath and Hoffman [9] introduced an approach that finds 
lower bounds on the weight of any cut of G. Thus we can 
find a lower bound on the number of cut generalized edges 
of H. 

Consider the matrix A = [a,], where a ,  is the weight 
of the edge joining nodes i and j (i.e., A is the adjacency 
matrix of G). The matrix A is symmetric and of order n 
with zeros along the main diagonal. Consider any diago- 
nal matrix U = [U,], where 

1 = 1  

n c U,, = - c c a g .  

E, I -; c m,A,(A + U), 

(10) 
r = l  I J  

Then the main result of Donath and Hoffman [9] is 
k 

(1 1) 

where E, is the sum of the edges cut by the optimal par- 
tition and A, is the ith largest eigenvalue of A + U. 

Now, let EH be defined as the sum of the nets cut by 
the optimal partition. Since the number of cut edges for 
any partition of the generated graph G underestimates the 
number of cut nets for the same partition in the netlist, it 
follows that the sum of the optimal cut edges, E,, is less 
than the sum of the optimal cut nets, EH; that is, 

1 = 1  

k 

EH I E, I -; c m,A,(A + U). (12) 
r = l  

The bound provided by inequality (12) shows the impor- 
tance of tightly underestimating the number of cut nets by 
the cut edges of the graph G given in subsection 11-B. 

We now illustrate the concepts that have been intro- 
duced by finding the best weighted graph approximation, 
partition, and lower bound on the smallest number of nets 
that are cut on the simple five-node, three-net example 
given in Fig. 2. The best underestimation graph fit for this 
netlist is given in Fig. 3. 

Assume that we wish to partition the netlist into two 
blocks, one block containing three nodes and the other 
block two. The largest two eigenvalues of the adjacency 
matrix A (aij containing the weighted values connecting 
nodes i and j )  of this graph and the corresponding eigen- 

vectors are 

X I  = 1.7368, 

A 2  =0.277, ~2 = [0.223,0.535,0.535, -0.164, -0.5921. 

ul = [0.548,0.206,0.206,0.679,0.391] , 

Substituting into (8), we find that the coefficients of the 
objective function are 

6 = [0.158, -0.259, -0.259, 0.508, 0.6451. 

The partition obtained by sorting the components in 6 is 

s, = (2, 3) .  

Donath and Hoffman [9] obtain bounds on the number of 
cut edges in a graph by choosing the diagonal elements of 
A + U by setting 

u.. = -c j v  a . .  

uV = 0 for i  # j .  

In other words, the diagonal elements, uii + A + U form 
the negative sum of all the weighted edges connected to 
node i .  

We find that 

EH L E, I 0.719 

This implies that at least one (i.e., r0.7191 ) net is cut. 
Since the partition generated by S1 and S, cuts exactly one 
net, we have provably obtained the optimal partition. 

IV. TEST RESULTS 
An available FORTRANK code, NETPART, has been 

developed on a UNIX environment to incorporate the ei- 
genvector-based model partitioning method desribed in the 
preceding two sections. We present experimental results 
from applying the eigenvector method and the node inter- 
change method to several networks. All computational 
work was done on a MIPS/2000 RISC computer at the 
University of Waterloo. 

The FORTRAN subroutine LASO [2 13 was used to ob- 
tain the k largest eigenvalues and their corresponding ei- 
genvectors. The LASO code is based on the block Lan- 
czos method for finding a few largest or smallest 
eigenvalues and corresponding eigenvectors of a sparse 
matrix [7]. 

The calculation of the k largest eigenvalues and corre- 
sponding eigenvectors for larger netlists by LASO is 
modest [21]. This is accomplished by deleting the nets 
connected to a large number of modules ( > 20 modules). 
This has the effect of not introducing large-sized cliques 
in the graph with weighted edges; that is, the approxi- 
mating graph of the netlist is kept sparse. These nets were 
put back into the netlist when the Sanchis multiblock in- 
terchange heuristic was used and the lower bounds were 
determined by inequality (12). 
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In the two-block case, a simple heap sort is used to 
solve the transportation problem (9). A general transpor- 
tation problem solver using an interior point method was 
developed to handle the multiple-block case [ 11. Our re- 
sults show that the time required to solve the transporta- 
tion problem is not significant in comparison with the time 
required to obtain the eigenvalues and eigenvectors using 
the block Lanczos code LASO. 

A C program implementation of the efficient multiblock 
node interchange approach of Sanchis [20] which further 
reduces the number of cut nets of any initial partition was 
developed. This node interchange heuristic is capable of 
handling partitions involving an arbitrary number of 
blocks, and includes the feature of level gains to distin- 
guish between node moves. Our implementation allows 
for nonuniform net weights without significantly chang- 
ing the time complexity of the Sanchis method. 

These techniques and the resulting computer codes were 
tested on five netlist partitioning problems, listed in Table 
11. Chipl is taken from the work of Fiduccia and Mat- 
theyses [ 101 and Primary 1 , Primary2, Bio, and Industry2 
are taken from the MCNC gate-array and standard cell 
test suite benchmarks. These netlists vary in size from 
300 to 12 OOO nodes and 300 to 13 000 nets. 

The preceding eigenvector-based procedure was tested 
on the netlists listed in Table 11. In all cases, we attempted 
to partition the netlists into two, four, or six disconnected 
blocks of modules. Each block was allowed to have up to 
10% more or less than the equipartitioned number of 
modules. 

Table I11 shows the number of cut nets and running time 
to obtain these results by applying the eigenvector ap- 
proach of Sections I1 and I11 to these netlists. The CPU 

TABLE I1 
NETLIST PARTITIONING TEST CASES 

Node Degree Net Size 

Nets Nodes X Name U X U 

Chipl 294 300 2.82 1.15 2.87 1.39 
Primary 1 904 833 3.50 1.29 3.22 2.59 
Primary2 3029 3014 3.72 1.55 3.70 3.82 
Bio 5711 6417 3.26 1.03 3.66 20.92 
Industry2 12949 12142 3.89 1.79 3.64 11.15 

- 

TABLE I11 
EIGENVECTOR PARTITIONS 

2 Blocks 4 Blocks 6 Blocks 

Name Cuts Time Cuts Time Cuts Time 

Chipl 42 5.02 80 10.19 91 14.58 
Primaryl 181 13.58 298 74.16 329 32.10 
Primary2 694 48.61 925 235.16 1097 238.69 
Bio 364 134.74 873 209.85 906 341.68 
Industry2 1383 201.78 4472 292.20 4102 614.14 

TABLE IV 
AFTER NODE INTERCHANGE 

6 Blocks 4 Blocks 2 Blocks 

Name Cuts Time Cuts Time Cuts Time 

51 2.36 69 1.66 Chipl 15 2.4 
Primary1 63 3.33 120 5.36 149 7.08 
Primary2 257 9.97 440 15.42 581 16.95 
Bio 175 18.67 262 17.87 369 36.04 
Industry2 530 39.32 1743 217.73 1689 190.10 

TABLE V 
TWO-BLOCK PARTITIONS: NODE INTERCHANGE 

time for the partition cuts include the time for forming the 
graph adjacency matrix, solving for the eigenvalues and 

- 
X u Best Worst Time Runs Name 

eigenvectors, and finally solving the transportation prob- 
lem. 

Table IV shows the results obtained by supplying the 
multiblock node interchange heuristic of Sanchis [20] to 
improve the number of cut nets found using the eigenvec- 
tor approach for the two, four, and six block cases given 
in Table 111. 

Tables V, VI, and VI1 give the results obtained from 
using node interchange on 30 random starting partitions. 
The level parameter setting was set to “1” in all test cases 
[20, pp. 64-66]. It was found that level parameter settings 
up to 4 led to negligible partition improvement on these 
test cases. One should note that the average net size does 
not exceed 4 for any of the test problems. However, the 
running times were substantiallv larger using level Daram- 

18.34 30 Chipl 24.23 4.62 20 38 
Primaryl 71.17 11.09 53 101 73.57 30 
Primary2 255.67 39.44 172 327 355.91 30 
Bio 165.23 30.71 93 225 646.06 30 
Industry2 774.37 206.99 393 1176 1585.03 30 

TABLE VI 
FOUR-BLOCK PARTITIONS: NODE INTERCHANGE 

- 
Name X u Best Worst Time Runs 

Chipl 63.53 7.20 53 79 37.66 30 
Primaryl 180.93 15.35 140 204 137.55 30 
Primary2 784.63 43.39 625 845 887.41 30 
Bio 645.80 46.96 578 704 719.21 30 
Industry2 2474.40 107.73 2266 2549 1365.18 30 

- ” I Y  TABLE VI1 
SIX-BLOCK PARTITION: NODE INTERCHANGE eter settings larger than 1. 

Each of these three tables contains seven columns. The 
- second column gives the average number (mean) of cut Name X u Best Worst Time Runs 

nets obtained for each netlist example. Column 3 gives Chipl 83.60 7.31 69 97 52.20 30 the standard deviation; columns 4 and 5 give the “best” primaryl 215.94 13.42 187 240 199.65 30 
and “worst” partitions obtained for each example. Fi- Primary2 913.23 34.39 806 961 2026.82 30 
nally, the last two columns yield the running time (sec- Fiustry2 2881.90 90,80 2513 3025 18114,67 3o 
ond) and the number of runs that were conducted. 

863.10 42.62 757 952 2951.34 30 
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TABLE VI11 
EIGENVECTOR BOUNDS 

~ 

2 Blocks 4 Blocks 6 Blocks 

Name Cuts Time Cuts Time Cuts Time 

Chip1 7 12.27 19 22.56 28 36.45 
Primary1 21 28.71 49 40.71 56 71.26 
Primary2 93 80.16 191 194.39 224 386.74 
Bio 51 209.17 83 299.38 119 443.66 
Industry2 187 297.63 515 421.74 614 803.07 

Some general observations can be made from the re- 
sults presented in Tables 11-VII. The final partitions that 
are obtained using the node interchange approach from 
the initial partition generated by the eigenvector tech- 
nique compare favorably with those obtained using only 
random starting partitions. The total of the execution times 
for obtaining a starting partition using the eigenvector ap- 
proach and then applying iterative improvement on this 
one generated partition is much less than the time re- 
quired to perform the heuristic from 30 random starting 
partitions. For the four larger examples, the combined 
time of eigenvector and iterative improvement is from four 
to more than 20 times faster than using up to 30 random 
starting partitions. 

In all cases, the results from the cascaded procedure of 
applying the eigenvector method and then iterative im- 
provement are close to the best partitions that were ob- 
tained using iterative improvement alone from the random 
starting partitions. For most of the larger sized prob- 
lems-Primaryl, Primary2, Bio, and Industry2-this new 
approach yields cuts that are 50%-100% better than the 
cuts found for the partitions generated from random start- 
ing partitions only. Also, the quality of the resulting par- 
titions is much better as the size of the problem increases 
and the number of blocks increases. The results are su- 
perior for the four and six block cases. 

More important, the large test problems Bio and 
Industry2 show the importance of getting the best parti- 
tion possible from using a node interchange approach only 
once. The running time of the interchange method from 
one starting partition is becoming expensive. Thus, the 
method becomes more attractive for solving these practi- 
cal large partitioning problems. 

Table VI11 shows lower bounds obtained on the number 
of cut nets for the five tested problems using the Donath- 
Hoffman bounds given by inequality (12). The bounds 
generated in Table VI11 can be tightened considerably by 
looking at other diagonal values, uii, satisfying (10). Cul- 
lum et al. [6] describe a nondifferentiable mathematical 
programming approach for selecting uii values that im- 
prove considerably the bounds of the inequality (12). 

Rend1 and Wolkowicz [ 181 recently introduced another 
eigenvector-based scheme for finding bounds on the num- 
ber of cut edges in a graph with weighted edges. An im- 
portant feature of their approach is that their bounds are 
no worse than the Donath-Hoffman bounds given by in- 
equality (12). Preliminary results on small test examples 

[ l ]  I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga, “An im- 
plementation of Karmarkar’s algorithm for linear programming,” 
Mathematical Programming, vol. 44 ,  pp. 297-335, 1989. 

[2] E. R. Barnes, “An algorithm for partitioning the nodes of a graph,” 
SIAM J .  Algebraic and Discrete Methods, vol. 3 ,  no. 4 ,  pp. 541- 
550, 1982. 
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(i.e., up to 100 nodes) reveal that their approach gener- 
ates bounds that are 25-200% better than the Donath- 
Hoffman bounds. This approach has the added advantage 
that it avoids the nondifferentiable mathematical program- 
ming analysis of Cullum et al. [6] required to compute 
these bounds. This latter approach is being investigated 
by the authors. 

V. CONCLUSIONS 
In this paper, we have introduced a new method to ob- 

tain initial node partitions for use in interchange heuristics 
where the aim is to minimize the number of nets (wires 
or signals) cut by the partition. This heuristic relies on a 
method to approximate a hypergraph or netlist by a graph 
with weighted edges in order to apply known partitioning 
results of Barnes [2] based on eigenvectors. The heuristic 
is very efficient in that the graph approximation of the 
hypergraph is easily obtained and the most expensive part 
of the procedure is finding and sorting the eigenvalues and 
eigenvectors corresponding to the adjacency matrix of the 
estimating graph. 

An efficient implementation of Sanchis’s interchange 
algorithm [20] is used to further reduce the number of cut 
nets for the k-partitions that are initially generated by the 
new eigenvector model. The outlined approach is tested 
on several small (300 modules /nets) to large size (12 000 
modules /nets) netlist partitioning examples. This new 
approach is compared with the use of at most 30 random 
starting partitions and the interchange algorithm alone on 
these test examples. 

Test results show that the new approach is comparable 
to the interchange approach on small examples but gen- 
erates positions that are 50- 100 % better on the larger test 
cases. The largest test problems, Bio and Industry2, show 
the importance of getting the best partition possible from 
using a node interchange approach only once. The run- 
ning time of the interchange method from one starting 
partition is becoming expensive. Thus, the method be- 
comes more attractive for solving these practical large 
cases. 

The calculation of the k largest eigenvalues and corre- 
sponding eigenvectors for larger netlists by the block Lan- 
czos code is modest 1211. This is accomplished by delet- 
ing the nets connected to a large number of modules ( > 20 
modules). This has the effect of not introducing large- 
sized cliques in the graph with weighted edges; that is, 
the approximating graph of the netlist is kept sparse. 
Future practical codes should attempt to balance denser 
graph approximations and the running time to find initial 
partitions. This work is currently in progress. 
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