
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. I , JULY 1992 885

An Efficient Eigenvector Approach for Finding
Netlist Partitions

Scott W. Hadley, Brian L. Mark, and Anthony Vannelli

Abstract-A fast eigenvector technique for obtaining good
initial node partitions of netlists for use in interchange heuris-
tics is described. The method is based on approximating the
netlist or hypergraph by a weighted graph, G, such that the
sum of the cut edges in G tightly underestimates the number of
cut nets in any netlist partition. An eigenvector technique of
Barnes [2] is used to partition the graph G into k blocks of fixed
module size. Another feature of this graph underestimation
model of the netlist is that it allows us to obtain lower bounds
on the actual number of cut nets. A multiblock node inter-
change heuristic of Sanchis [20] is tested on the one resulting
netlist partition obtained by this new eigenvector approach on
a variety of small to large sized benchmark netlist partitioning
problems (between 300 to 12 000 modules and nets). Test re-
sults on the larger netlists show that in most cases this eigen-
vector-node interchange approach yields netlist partitions with
comparable or fewer cut nets than the best netlist partitions
obtained by using node interchange heuristics alone on many
random initial netlist partitions. Moreover, the running time of
this method is a small fraction of the previous node interchange
methods.

I. INTRODUCTION
HE partitioning of the modules of a netlist arises in T many areas, including the laying out of circuits on

computer chips and printed circuit boards [4], [1 13, [191,
computer program segmentation [5], [8], [lo], and the
laying out of machines in advanced manufacturing sys-
tems [22], [23]. In each case, we assume that the netlist
can be represented by a hypergraph, which is a general-
ization of a graph where a hypergraph generalized edge
(net) can connect more than two modules. Throughout our
discussion, we assume that the netlist or hypergraph H,
contains n nodes (modules) V = { 1, 2, , n } and I E I
generalized edges (nets). We study the problem of parti-
tioning the n nodes into k disjoint blocks, Vl, V2, , *

Manuscript received January 7, 1991; revised June 16, 1991. This work
was supported by an operating grant (OGP 0044456) and a Microelec-
tronics Research Fund grant from the Natural Sciences and Engineering
Research Council of Canada. This paper was recommended by Associate
Editor M. Marek-Sadowska.

S. W. Hadley was with the Department of Electrical and Computer En-
gineering, University of Waterloo, Waterloo, Ont., Canada. He is now
with the Department of Mathematics and Systems Engineering, Shell Re-
search B.V., Amsterdam, The Netherlands.

B. L. Mark was with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, Ont., Canada. He is now with
the Department of Electrical Engineering, Princeton University, Princeton,
NJ 08540.

A. Vannelli is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1.

IEEE Log Number 9 107 1 18.

Vk, of node sizes m l , m2, - , mk, respectively, such
that the number of hypergraph edges connecting the k
blocks is minimized.

Since this problem is known to be NP-complete (even
in the simpler case where the hypergraph H is a graph G
([12]), heuristics have been developed to obtain suitable
partitions [lo], [16], [20]. These heuristics are known as
interchange methods and are based on iteratively improv-
ing a series of partitions. In general, the quality of the
final solution depends on the quality of the initial (start-
ing) partition. In the heuristics described above the initial
partition is randomly generated.

In this paper, we present a fast method for obtaining an
initial partition to which any interchange method can be
applied. The method is based on approximating the netlist
or hypergraph by a weighted graph, G, that tightly under-
estimates the number of cut nets in any netlist partition.
An eigenvector technique of Barnes [2] is used to partition
the resulting graph, G, into k blocks of fixed module size.
A novel feature of this graph underestimation model of
the netlist is that it allows us to obtain lower bounds on
the actual number of cut nets. An efficient implementation
of the Sanchis node interchange heuristic is developed to
further reduce the number of nets connecting k blocks

This node interchange heuristics is tested on the one
resulting netlist partitioned obtained by this new eigen-
vector approach on a variety of small to large sized bench-
mark netlist partitioning problems (between 300 to 12 000
modules and nets). Test results on the larger netlists in-
dicate that in most cases this eigenvector-node inter-
change approach yields netlist partitions with comparable
or fewer cut nets than the best netlist partitions obtained
by using node interchange heuristics alone on many ran-
dom initial netlist partitions. Also, the running time of
this method is a small fraction of the previous node inter-
change methods.

The advantage of developing an eigenvector approach
to solve the partitioning problem is that the generalized
initial partitions tend to have many nodes placed in the
“right blocks.” This is due to the observation that eigen-
vector methods are more global for solving large-scale
optimization problems. For example, eigenvector ap-
proaches have been used to solve many VLSI placement
problems [3], [141.

On the other hand, node interchange methods are greedy
or local in nature and get easily trapped in local optima.

P O I *

0278-0070/92$03.00 0 1992 IEEE

886 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. I, JULY 1992

More important, it has been shown that interchange meth-
ods may not converge to “optimal” or “near optimal”
partitions unless they initially begin from “good” parti-
tions [13], [17]. We use an eigenvector approach to at-
tempt to place most of the nodes in the correct blocks or
node partitions for large-scale partitioning problems. An
efficient node interchange approach is developed to move
nodes that reduce the number of generalized hypergraph
edges that connect modules in at least two blocks.

This paper is divided into five sections. Section I1 dis-
cusses how a netlist H can be estimated by a weighted
graph, G. The edge weights of the graph G are determined
by characterizing the solution of a related P,, (p 1 1) min-
imization problem. In Section 111, we discuss how the
graph G can be used to obtain initial node partitions using
the eigenvector based approach of Barnes [2]. Lower
bounds on the number of cut nets are obtained using the
tightly underestimated graph approximation, G, of H and
the simple eigenanalysis results from Donath and Hoff-
man [9]. The testing of this new eigenvector-based model
and the efficient multiblock interchange method of San-
chis [20] is conducted on a variety of well-known bench-
mark test problems from VLSI circuit layout design and
is presented in Section IV. Conclusions and directions for
future research are given in Section V.

11. APPROXIMATING A NETLIST BY A GRAPH
The netlist partitioning problem can easily be described

as a hypergraph partitioning problem. In general, hyper-
graph partitioning problems are NP-hard, even in the sim-
ple case where the hypergraph is a graph [121. However,
there are cases where good heuristics exist for partitioning
problems on graphs but not for the corresponding hyper-
graph partitioning problem. The problem of partitioning
the modules of a netlist into blocks of specified size such
that the number of nets with modules in more than one
block is minimized falls into this category. In this case a
good heuristic based on the eigenvalues and eigenvectors
of the adjacency matrix of the graph has been given by
Barnes [2]. As such, we are interested in finding ways to
approximate a hypergraph by a graph. A method for ap-
proximating a netlist H by a graph, G, with weighted
edges is given in [25], where we consider partitioning the
netlist into two blocks only with no block size constraint.
The node set of G is the same as the node set of H. The
edge set of G is obtained by replacing each net of H by
the edge set of a clique containing the modules of the net.
Edge weights are assigned so that G provides an under-
estimation of H . We say that G underestimates H if the
weight of the edges of G that are cut by any module par-
tition is not greater than the number of nets cut by the
same partition. An underestimation can prove to be useful
when either a lower bound or the optimal solution for the
graph partitioning problem can be found. The reason the
underestimation is useful is that any lower bound for the
graph partitioning problem will also provide a lower
bound for the netlist partitioning problem. If a general

estimation is used, bounding results from graph partition-
ing cannot be exploited.

In this section, we extend the technique described in
[25] to obtain weights for the edges of G when we con-
sider partitioning the netlist into k blocks of specified
sizes. In subsection A, we find a characterization of the
weights on the approximating graph of the netlist. We
provide an illustrative example using a netlist with five
modules and three nets at the end of the section.

A. Determining Edge Weights
We generate the edge weights by considering the clique

obtained by each generalized edge in turn. After consid-
ering each generalized edge we obtain a graph containing
multiple edges. (If node i and n o d e j are contained in t
generalized edges, there will be t (multiple) edges be-
tween i a n d j in the new graph.) We generate G by re-
placing each set of multiple edges by a single edge whose
weight is the sum of the weights of the multiple edges.

By focusing on a particular generalized edge (net), we
wish to assign values such that the weight of any cut in
the clique underestimates any cut in the generalized edge.
We show that all edge weights in the corresponding clique
will have the same weight when we consider a single gen-
eralized edge (see Theorem 1) .

Assume for simplicity that each generalized edge (net)
has a unit weight and that we wish to partition the nodes
(modules) among k blocks. Let a be the value assigned to
each edge of the clique representation of a generalized
edge. In order to find a graph fit that underestimates a
partition of the netlist, we must have Ip(P)(a I 1, where
I p(P) I is the number of cut edges in the Pth distinguishable
partition of the net into k blocks. There are only a finite
number of distinguishable partitions of the modules of a
net. In order to minimize the error in the underestimation
of a cut of generalized edge, we must choose the maxi-
mum value for a . The maximum possible value for a is

1
(1)

max (IW)l *

For example, in the case of a net connected to four
modules where these modules are partitioned over two
blocks, we see that the maximum number of interconnec-
tions arises if we assign two modules in each block. This
implies that there are four interconnections between the
two blocks. Thus a = 1 /4. The best four-node (modules)
approximation of the netlist where the four modules are
connected to one net is shown in Fig. 1.

B. Theoretical Derivation of Optimal Edge Weights
In this subsection, we expand on the above observa-

tions by giving a proof that the intuitive edge weighting
(1) is in fact optimal in the underestimation case. In gen-
eral, to edge (i , j) in G we assign weight aij. Given a
partition of the nodes, we want the edge weights to satisfy
the property that, if the generalized edge is cut by a par-

HADLEY et al.: AN EFFICIENT EIGENVECTOR APPROACH 887

easy to verify that the number of edges cut by P E P is

L

1.
4

1
4

1

4

Fig. 1. Best four-module graph approximation.

tition, then the sum of the edge weights of the cut edges
in G' is less than or equal to 1 (i.e., the value underesti-
mates the number of cut edges in the hypergraph).

We employ the following notations and definitions
when finding the best underestimation edge weighting for
these graphs.

Dejnition 1: A k-partition of the nodes V of the com-
plete graph K,, is a partition of V = { Vl , V2, - - - , V,}
such that V, n V, = 0 v i # j , and U:= V, = V . Let P
be the set of all k-partitions of the nodes of a graph.

DeJinition 2: An equal partition of the node set Vis a
k-partition such that (1 V, I - IV, 1 1 I 1 v i , j . We let E
be the set of all equal partitions of the node set of a graph.

We can now give a system of equations describing the
underestimation property described above:

c a, + sp = 1 (2)
(~ . ,)EP(f)

S(1 0 (3)

Without loss of generality, assume I V, 1 = I V2 I + tJor
some f 1 2, (i.e., P E) . ConsidFr the k-partition P =
{ V , , V2, - * , V,} , where vl and V2 are obtained by tak-
i?g one node from VI a?d placing it in V2, giving VI and
V,, respectively, with V, = V, for i 1 3. By expansion
and comparison it follows that

I d) I = lcP<P)l - (1 - t)

> IP(P)l.
This is a contradiction. 0

Lemma 2: Assume there exists an optimal solution to
S,, p 2 1 with a, = a for all i , j ; then there exists an
optimal solution where

aoPt lJ = = I (P(P>l-' (4)
where P E E .

Proof: Given any feasible solution where a,, = a
v i , j , we begin by noticing that for all P E P, sp decreases
as a increases. Therefore, we are interested in finding the
largest value of a (implying smallest error for each par-
tition) that yields a feasible solution. Since there exists a
feasible solution with a = 0, it follows that aopt 1 0.

Since

sp 1 0, aopt 1 0, and I p(P)I 2 0,

it follows that

aopt I (p(P)I-l, vz E P .

So, the largest value of a occurs when 1 p (P) I is mini-
mized over all P E P , i.e., 1 p(P)(is maximized. From
Lemma 1, we know that this occurs when Z is an equal

0 k-partition. Thus, aopt = I p(P)I-' for P E E .

Lemma 3: For P E E ,

for all P E P. We can now formulate the problem of finding
a best (underestimation) edge weighting a mathematical
programming problem. There are various measures for
determining a best edge weighting. Likely candidates are
the lp noms for p = 1 , 2, ca. We let S, denote the math-
ematical programming problem

Sp = min {Zp(a, s) 1 (a, s) satisfies (2) , (3)},

where l,(a, s) is the 1, norm of the elements of s.

, Vk} is a k-partition of
the nodes of the complete graph K,, that maximizes the
number of edges in p(P) over all k-partitions, then P is an
equal partition (i.e., P E E) .

Proof: We show this result by contradiction. It is

Lemma 1: If P = { Vl , V2, *

Proof: Since P E E , there are (n - k Ln/kJ) subsets
of size r n / k l and the remaining k(1 + Ln/k_l) - n
subsets are of size Ln/k_l . The number of edges in a

0
Theorem 1: There exists an optimal solution to S,,

subset of size t is (t / 2) . The result follows.

p 1 1 with

a$Pt = I p(~l1-I v i , j (5)

for any P E E .
Proof: First we define equivalence classes of all fea-

sible partitions. Let Fd denote the equivalence class of
partitions that yields the same partition after permuting
the graph nodes. Now, let a* = (a;) denote an optimal
edge weighting, let s* = (s t) be the corresponding errors,
and let errd denote the sum of the errors for all partitions

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 7, JULY 1992 888

TABLE I

BLOCKS (k)
CALCULATION OF U FOR DIFFERENT NUMBERS OF

n k = 2 k = 3 k = 4

2 1 1 1
3 1 /2 1 /3 1 / 3
4 1 /4 1 / 5 1 / 6

1 /9 5 1 / 6
6 1 /9
I 1/12

1/13
1/18

: $2
1/16

Net #1

Net #2 Net #3
Fig. 2 . Five-module, three-net example.

1

Fig. 3. Best four-module graph approximation.

in equivalence class d ; i.e.,

errd = C sp*.
PEFd

Since the Pp norm (p 2 1 and finite) of the errors is
convex in the feasible region (i.e., underestimations), it
is easy to see that the minimum of the errors subject to
(6) for all d occurs when all errors sp* are equal for each
equivalence class d . By symmetry of the complete graph
it follows that this equality holds when all edge weights
are equal. It follows that there exists an optimal solution
with all edge weights equal. Applying Lemma 2 the theo-
rem follows for finite p . For the P- case a similar argu-

0
Table I shows the calculation of the values aip' (using

Theorem 1 and Lemma 3) for different modules and re-
quired blocks.

We now illustrate this technique by means of a small
five-module, three-net example and obtain the best graph
underestimation. The hypergraph corresponding to the
netlist is shown in Fig. 2, and the best graph underesti-
mation is shown in Fig. 3.

Each edge in the clique on modules { 1, 2, 3, 4) will

ment based on symmetry can be used.

get weights of 1 /4 , the edges of cliques (1, 4) and
(4, 5) will get weights of 1. Notice that modules 1 and 4
occur in two nets together: Net #1 with four modules and
Net #2 with two modules. Therefore the weight of edge
(1, 4) in G has weight 1.25 = 1 + 1/4.

111. GENERATING INITIAL PARTITIONS AND BOUNDS
Given the graph approximation, G, of the hypergraph

H, we find an initial partition of graph G by using the
eigenvector-based approach of Barnes [2]. We will use
the resulting partition of the weighted graph G as a par-
tition for the hypergraph (netlist) H. Barnes shows that
the graph partitioning problem is equivalent to a matrix
approximation problem. We summarize these results be-
low.

Assume that the approximating graph, G, under con-
sideration has n nodes that are to be partitioned into k
disjoint blocks of sizes ml I m2 I - - * 1 mk. A parti-
tion can be completely specified by a set of k node as-
signment vectors, x l , x2, - - , &, one corresponding to
each block, which have the form

xj = (xu, x2j, * * * , xnj)*, 1 I j I k

where

1 if node i is in blockj

0 otherwise.
x.. =

Let vij be the ith component of the eigenvector corre-
sponding to the jth largest eigenvalue of the adjacency
matrix of G. Barnes [2] shows that the solution of the
following linear transportation problem gives an approx-
imate solution to the graph partitioning problem:

n k
"ij

i = l j = 1 J& Maximize - x u

n

subject to c xij = mj, j = 1,

C xij = 1,

, k
i = 1

k

, n i = 1, * e *

j = 1

xij I 0 , i = 1, , n ; j = 1, , k .

(7)

Technically, there are 2k transportation problems (7) that
should be solved where k is small. Barnes [2] describes a
selection procedure that allows one transportation prob-
lem to be solved. A powerful interior point algorithm
proposed by Adler et al. is used to solve the linear trans-
portation problem (7) [11.

In the two-block case, the transportation problem (7)
can be further simplified by replacing x i 2 by 1 - xi l . Mak-
ing this substitution and letting xi = x i l , the objective
function becomes

HADLEY et al. : AN EFFICIENT EIGENVECTOR APPROACH 889

The transportation problem (7) reduces to the following
{ 0, 1 }-knapsack problem:

Maximize i [” - *] x, = , = l 5 6,x,
1 = 1 6 Jm2
n

subject to c x, = ml, x, E (0, l} , i = 1, * , n.

(9)
It is well known that the solution to (9) is obtained by
sorting the objective coefficients in nonincreasing order
and setting x , = 1 for the first ml variables in the sorted
list (all other variables are set to zero).

Recall the weight of any cut in the generated graph G
underestimates the number of generalized edges cut in H.
Donath and Hoffman [9] introduced an approach that finds
lower bounds on the weight of any cut of G. Thus we can
find a lower bound on the number of cut generalized edges
of H.

Consider the matrix A = [a,], where a , is the weight
of the edge joining nodes i and j (i.e., A is the adjacency
matrix of G). The matrix A is symmetric and of order n
with zeros along the main diagonal. Consider any diago-
nal matrix U = [U,], where

1 = 1

n c U,, = - c c a g .

E, I -; c m,A,(A + U),

(10)
r = l I J

Then the main result of Donath and Hoffman [9] is
k

(1 1)

where E, is the sum of the edges cut by the optimal par-
tition and A, is the ith largest eigenvalue of A + U.

Now, let EH be defined as the sum of the nets cut by
the optimal partition. Since the number of cut edges for
any partition of the generated graph G underestimates the
number of cut nets for the same partition in the netlist, it
follows that the sum of the optimal cut edges, E,, is less
than the sum of the optimal cut nets, EH; that is,

1 = 1

k

EH I E, I -; c m,A,(A + U). (12)
r = l

The bound provided by inequality (12) shows the impor-
tance of tightly underestimating the number of cut nets by
the cut edges of the graph G given in subsection 11-B.

We now illustrate the concepts that have been intro-
duced by finding the best weighted graph approximation,
partition, and lower bound on the smallest number of nets
that are cut on the simple five-node, three-net example
given in Fig. 2. The best underestimation graph fit for this
netlist is given in Fig. 3.

Assume that we wish to partition the netlist into two
blocks, one block containing three nodes and the other
block two. The largest two eigenvalues of the adjacency
matrix A (aij containing the weighted values connecting
nodes i and j) of this graph and the corresponding eigen-

vectors are

X I = 1.7368,

A 2 =0.277, ~2 = [0.223,0.535,0.535, -0.164, -0.5921.

ul = [0.548,0.206,0.206,0.679,0.391] ,

Substituting into (8), we find that the coefficients of the
objective function are

6 = [0.158, -0.259, -0.259, 0.508, 0.6451.

The partition obtained by sorting the components in 6 is

s, = (2, 3) .

Donath and Hoffman [9] obtain bounds on the number of
cut edges in a graph by choosing the diagonal elements of
A + U by setting

u.. = -c j v a . .

uV = 0 for i # j .

In other words, the diagonal elements, uii + A + U form
the negative sum of all the weighted edges connected to
node i .

We find that

EH L E, I 0.719

This implies that at least one (i.e., r0.7191) net is cut.
Since the partition generated by S1 and S, cuts exactly one
net, we have provably obtained the optimal partition.

IV. TEST RESULTS
An available FORTRANK code, NETPART, has been

developed on a UNIX environment to incorporate the ei-
genvector-based model partitioning method desribed in the
preceding two sections. We present experimental results
from applying the eigenvector method and the node inter-
change method to several networks. All computational
work was done on a MIPS/2000 RISC computer at the
University of Waterloo.

The FORTRAN subroutine LASO [2 13 was used to ob-
tain the k largest eigenvalues and their corresponding ei-
genvectors. The LASO code is based on the block Lan-
czos method for finding a few largest or smallest
eigenvalues and corresponding eigenvectors of a sparse
matrix [7].

The calculation of the k largest eigenvalues and corre-
sponding eigenvectors for larger netlists by LASO is
modest [21]. This is accomplished by deleting the nets
connected to a large number of modules (> 20 modules).
This has the effect of not introducing large-sized cliques
in the graph with weighted edges; that is, the approxi-
mating graph of the netlist is kept sparse. These nets were
put back into the netlist when the Sanchis multiblock in-
terchange heuristic was used and the lower bounds were
determined by inequality (12).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 7, JULY 1992 890

In the two-block case, a simple heap sort is used to
solve the transportation problem (9). A general transpor-
tation problem solver using an interior point method was
developed to handle the multiple-block case [11. Our re-
sults show that the time required to solve the transporta-
tion problem is not significant in comparison with the time
required to obtain the eigenvalues and eigenvectors using
the block Lanczos code LASO.

A C program implementation of the efficient multiblock
node interchange approach of Sanchis [20] which further
reduces the number of cut nets of any initial partition was
developed. This node interchange heuristic is capable of
handling partitions involving an arbitrary number of
blocks, and includes the feature of level gains to distin-
guish between node moves. Our implementation allows
for nonuniform net weights without significantly chang-
ing the time complexity of the Sanchis method.

These techniques and the resulting computer codes were
tested on five netlist partitioning problems, listed in Table
11. Chipl is taken from the work of Fiduccia and Mat-
theyses [101 and Primary 1 , Primary2, Bio, and Industry2
are taken from the MCNC gate-array and standard cell
test suite benchmarks. These netlists vary in size from
300 to 12 OOO nodes and 300 to 13 000 nets.

The preceding eigenvector-based procedure was tested
on the netlists listed in Table 11. In all cases, we attempted
to partition the netlists into two, four, or six disconnected
blocks of modules. Each block was allowed to have up to
10% more or less than the equipartitioned number of
modules.

Table I11 shows the number of cut nets and running time
to obtain these results by applying the eigenvector ap-
proach of Sections I1 and I11 to these netlists. The CPU

TABLE I1
NETLIST PARTITIONING TEST CASES

Node Degree Net Size

Nets Nodes X Name U X U

Chipl 294 300 2.82 1.15 2.87 1.39
Primary 1 904 833 3.50 1.29 3.22 2.59
Primary2 3029 3014 3.72 1.55 3.70 3.82
Bio 5711 6417 3.26 1.03 3.66 20.92
Industry2 12949 12142 3.89 1.79 3.64 11.15

-

TABLE I11
EIGENVECTOR PARTITIONS

2 Blocks 4 Blocks 6 Blocks

Name Cuts Time Cuts Time Cuts Time

Chipl 42 5.02 80 10.19 91 14.58
Primaryl 181 13.58 298 74.16 329 32.10
Primary2 694 48.61 925 235.16 1097 238.69
Bio 364 134.74 873 209.85 906 341.68
Industry2 1383 201.78 4472 292.20 4102 614.14

TABLE IV
AFTER NODE INTERCHANGE

6 Blocks 4 Blocks 2 Blocks

Name Cuts Time Cuts Time Cuts Time

51 2.36 69 1.66 Chipl 15 2.4
Primary1 63 3.33 120 5.36 149 7.08
Primary2 257 9.97 440 15.42 581 16.95
Bio 175 18.67 262 17.87 369 36.04
Industry2 530 39.32 1743 217.73 1689 190.10

TABLE V
TWO-BLOCK PARTITIONS: NODE INTERCHANGE

time for the partition cuts include the time for forming the
graph adjacency matrix, solving for the eigenvalues and

-
X u Best Worst Time Runs Name

eigenvectors, and finally solving the transportation prob-
lem.

Table IV shows the results obtained by supplying the
multiblock node interchange heuristic of Sanchis [20] to
improve the number of cut nets found using the eigenvec-
tor approach for the two, four, and six block cases given
in Table 111.

Tables V, VI, and VI1 give the results obtained from
using node interchange on 30 random starting partitions.
The level parameter setting was set to “1” in all test cases
[20, pp. 64-66]. It was found that level parameter settings
up to 4 led to negligible partition improvement on these
test cases. One should note that the average net size does
not exceed 4 for any of the test problems. However, the
running times were substantiallv larger using level Daram-

18.34 30 Chipl 24.23 4.62 20 38
Primaryl 71.17 11.09 53 101 73.57 30
Primary2 255.67 39.44 172 327 355.91 30
Bio 165.23 30.71 93 225 646.06 30
Industry2 774.37 206.99 393 1176 1585.03 30

TABLE VI
FOUR-BLOCK PARTITIONS: NODE INTERCHANGE

-
Name X u Best Worst Time Runs

Chipl 63.53 7.20 53 79 37.66 30
Primaryl 180.93 15.35 140 204 137.55 30
Primary2 784.63 43.39 625 845 887.41 30
Bio 645.80 46.96 578 704 719.21 30
Industry2 2474.40 107.73 2266 2549 1365.18 30

- ” I Y TABLE VI1
SIX-BLOCK PARTITION: NODE INTERCHANGE eter settings larger than 1.

Each of these three tables contains seven columns. The
- second column gives the average number (mean) of cut Name X u Best Worst Time Runs

nets obtained for each netlist example. Column 3 gives Chipl 83.60 7.31 69 97 52.20 30 the standard deviation; columns 4 and 5 give the “best” primaryl 215.94 13.42 187 240 199.65 30
and “worst” partitions obtained for each example. Fi- Primary2 913.23 34.39 806 961 2026.82 30
nally, the last two columns yield the running time (sec- Fiustry2 2881.90 90,80 2513 3025 18114,67 3o
ond) and the number of runs that were conducted.

863.10 42.62 757 952 2951.34 30

HADLEY er al. : AN EFFICIENT EIGENVECTOR APPROACH

TABLE VI11
EIGENVECTOR BOUNDS

~

2 Blocks 4 Blocks 6 Blocks

Name Cuts Time Cuts Time Cuts Time

Chip1 7 12.27 19 22.56 28 36.45
Primary1 21 28.71 49 40.71 56 71.26
Primary2 93 80.16 191 194.39 224 386.74
Bio 51 209.17 83 299.38 119 443.66
Industry2 187 297.63 515 421.74 614 803.07

Some general observations can be made from the re-
sults presented in Tables 11-VII. The final partitions that
are obtained using the node interchange approach from
the initial partition generated by the eigenvector tech-
nique compare favorably with those obtained using only
random starting partitions. The total of the execution times
for obtaining a starting partition using the eigenvector ap-
proach and then applying iterative improvement on this
one generated partition is much less than the time re-
quired to perform the heuristic from 30 random starting
partitions. For the four larger examples, the combined
time of eigenvector and iterative improvement is from four
to more than 20 times faster than using up to 30 random
starting partitions.

In all cases, the results from the cascaded procedure of
applying the eigenvector method and then iterative im-
provement are close to the best partitions that were ob-
tained using iterative improvement alone from the random
starting partitions. For most of the larger sized prob-
lems-Primaryl, Primary2, Bio, and Industry2-this new
approach yields cuts that are 50%-100% better than the
cuts found for the partitions generated from random start-
ing partitions only. Also, the quality of the resulting par-
titions is much better as the size of the problem increases
and the number of blocks increases. The results are su-
perior for the four and six block cases.

More important, the large test problems Bio and
Industry2 show the importance of getting the best parti-
tion possible from using a node interchange approach only
once. The running time of the interchange method from
one starting partition is becoming expensive. Thus, the
method becomes more attractive for solving these practi-
cal large partitioning problems.

Table VI11 shows lower bounds obtained on the number
of cut nets for the five tested problems using the Donath-
Hoffman bounds given by inequality (12). The bounds
generated in Table VI11 can be tightened considerably by
looking at other diagonal values, uii, satisfying (10). Cul-
lum et al. [6] describe a nondifferentiable mathematical
programming approach for selecting uii values that im-
prove considerably the bounds of the inequality (12).

Rend1 and Wolkowicz [181 recently introduced another
eigenvector-based scheme for finding bounds on the num-
ber of cut edges in a graph with weighted edges. An im-
portant feature of their approach is that their bounds are
no worse than the Donath-Hoffman bounds given by in-
equality (12). Preliminary results on small test examples

[l] I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga, “An im-
plementation of Karmarkar’s algorithm for linear programming,”
Mathematical Programming, vol. 44 , pp. 297-335, 1989.

[2] E. R. Barnes, “An algorithm for partitioning the nodes of a graph,”
SIAM J . Algebraic and Discrete Methods, vol. 3 , no. 4 , pp. 541-
550, 1982.

89 I

(i.e., up to 100 nodes) reveal that their approach gener-
ates bounds that are 25-200% better than the Donath-
Hoffman bounds. This approach has the added advantage
that it avoids the nondifferentiable mathematical program-
ming analysis of Cullum et al. [6] required to compute
these bounds. This latter approach is being investigated
by the authors.

V. CONCLUSIONS
In this paper, we have introduced a new method to ob-

tain initial node partitions for use in interchange heuristics
where the aim is to minimize the number of nets (wires
or signals) cut by the partition. This heuristic relies on a
method to approximate a hypergraph or netlist by a graph
with weighted edges in order to apply known partitioning
results of Barnes [2] based on eigenvectors. The heuristic
is very efficient in that the graph approximation of the
hypergraph is easily obtained and the most expensive part
of the procedure is finding and sorting the eigenvalues and
eigenvectors corresponding to the adjacency matrix of the
estimating graph.

An efficient implementation of Sanchis’s interchange
algorithm [20] is used to further reduce the number of cut
nets for the k-partitions that are initially generated by the
new eigenvector model. The outlined approach is tested
on several small (300 modules /nets) to large size (12 000
modules /nets) netlist partitioning examples. This new
approach is compared with the use of at most 30 random
starting partitions and the interchange algorithm alone on
these test examples.

Test results show that the new approach is comparable
to the interchange approach on small examples but gen-
erates positions that are 50- 100 % better on the larger test
cases. The largest test problems, Bio and Industry2, show
the importance of getting the best partition possible from
using a node interchange approach only once. The run-
ning time of the interchange method from one starting
partition is becoming expensive. Thus, the method be-
comes more attractive for solving these practical large
cases.

The calculation of the k largest eigenvalues and corre-
sponding eigenvectors for larger netlists by the block Lan-
czos code is modest 1211. This is accomplished by delet-
ing the nets connected to a large number of modules (> 20
modules). This has the effect of not introducing large-
sized cliques in the graph with weighted edges; that is,
the approximating graph of the netlist is kept sparse.
Future practical codes should attempt to balance denser
graph approximations and the running time to find initial
partitions. This work is currently in progress.

REFERENCES

892 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 7, JULY 1992

[3] J. P. Blanks, “Near-optimal placement using a quadratic objective
function,” in Proc. Design Automat. Con$, 1985.

[4] R. K. Brayton, G. Hactel, K. Mullen, and A. Sangiovanni-Vincen-
telli, Logic Minimization Algorithms for VLSI Synthesis. Boston:
Kluwer Academic Publishers, 1984.

[5] A. M. Comeau, “A study of user program optimization in a paging
system,” in Proc. ACM Symp. Operating System Principles (Gatling-
burg, TN), Oct. 1967.

[6] J. Cullum, W. E. Donath, and P. Wolfe, “The minimization of cer-
tain nondifferentiable sums of eigenvalues of symmetric matrices,”
Marhemarical Programming Study, vol. 3, pp. 35-55, 1975.

[7] J. Cullum and R. H. Willoughby, Lunczos Algorithms for Large Sym-
metric Eigenvalues Computation, vols. I and 11. Boston: Birkhau-
ser, 1985.

[8] P. J. Denning, “Virtual memory,” Comput. Surveys, vol. 2, pp. 153-
189, 1970.

[9] W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning
of graphs,” IBM J . Res. Develop., vol. 17, no. 5, pp. 420-425, 1973.

[lo] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. 19th Design Automat. Conf.,

[l l] A. D. Friedman and P. R. Menon, Theory and Design of Switching
Circuits. Rockville, MD: Bell Telephone Laboratories and Com-
puter Sciences Press, 1975.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability. San
Francisco, CA: Freeman, 1979.

[13] J. R. Gilbert and E. Zmijewski, “A parallel graph partitioning al-
gorithm for a message passing multiprocessor,” Int. J. Parallel Pro-
gramming, vol. 16, pp. 427-449, 1987.

[141 K. Hall, “An r-dimensional quadratic placement algorithm,” Man-
agement Sci., vol. 17, pp. 219-229, 1970.

[15] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” Combinarorica, vol. 4 , no. 4, pp. 373-395, 1984.

[16] B. W. Kemighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J . , vol. 49, no. 2, pp. 291-
307, 1970.

[17] A. Pothen, H. D. Simon, and K. P. Liou, “Partitioning sparse ma-

1982, pp. 175-181.

[24] A. Kusiak, A. Vannelli, and K. R. Kumar, “Clustering analysis:
Models and algorithms,” Control and Cybernetics, vol. 15, no. 2,

[25] A. Vannelli and S. W. Hadley, “A Gomory-Hu cut tree approach for
partitioning netlist,” IEEE Trans. Circuits Syst., vol. 37, no. 9, pp.

pp. 139-154, 1986.

1133-1139, 1990.

Scott W. Hadley received the B.Math, M.Math
and Ph.D (combinatorics and optimization) de-
grees from the University of Waterloo, Waterloo,
Ontario, Canada, in 1981, 1987, and 1990.

He is presently a Research Mathematician in the
Department of Mathematics and Systems Engi-
neenng at Koninkliijke/Shell-Laboratonum, Am-
sterdam, Netherlands. His main research interests
lie in the area of practical applications of large-
scale combinatonal optimization problems.

Brian L. Mark received the B.A.Sc. degree in
electrical and computer engineering from the Uni-
versity of Waterloo, Waterloo, Ontario, Canada,
in 1991. He is currently undertaking his graduate
studies (M.A.Sc. and Ph.D.) in electrical engi-
neering at Princeton University, Princeton, NJ.
His main research interests lie in communication
theory.

trices with eigenvectors of graphs,” SIAM J. Matrix Analysis and

1181 F. Rend1 and H. Wolkowicz, “A projection technique forpartitioning
the nodes of a graph,” Research Report CORR 90-20, Dept. Com-
binatorics and Optimization, University of Waterloo, 1990 (submitted
to Mathematical Programming).

[19] R. L. Russo, P. H. Oden, and P. K. Wolff, Sr., “A heuristic pro-
cedure for the partitioning and mapping of computer logic blocks to
modules,” IEEE Trans. Compur., vol. C-20, pp. 1455-1462, 1972.

[20] L. A. Sanchis, “Multiple-way network partitioning,” IEEE Trans.
Comput., vol. 38, no. 1 , pp. 62-81, 1989.

[21] D. S. Scott, “LAS02 documentation,” Computer Science Depart-
ment, University of Texas at Austin, 1980.

[221 A. J. Vakharia, “Methods of cell formation in group technology: A
framework for evaluation,” Inr. J . Operations Management, vol. 6 ,
no. 3, pp. 257-271, 1986.

[23] A. Vannelli and K. R. Kumar, “A method for finding minimal bot-
tleneck cells for grouping part-machine families, ” Int. J . Prod. Res.,
vol. 24, pp. 387-400, 1986.

Appl., vol. 11, pp. 430-452, 1990.

Anthony Vannelli received the Ph.D. degree in
electrical engineering from the University of Wa-
terloo, Waterloo, Ontario, Canada, in 1983. In
1983 and 1984 he was an IBM postdoctoral fellow
in the Mathematical Sciences Department at the
IBM Thomas J. Watson Research Center, York-
town Heights, NY.

He joined the Department of Industrial Engi-
neering at the University of Toronto in 1984. In
1987, he joined the Department of Electrical and
Computer Engineering at the University of Wa-

terloo. He is currently an Associate Professor and has held a Natural Sci-
ences and Engineering Council of Canada University Research Fellowship
since 1984. His research focuses mainly on the development of efficient
linear, nonlinear, and combinatorial optimization techniques for solving
VLSI circuit layout and design problems.

