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Abstract
The classical Erlang and Engset loss models have been used extensively in the traffic en-

gineering of traditional telephone exchanges. More recently, these models have been general-
ized to the so-called loss networks, which provide models for resource sharing in multiservice
telecommunication networks. In this paper, we introduce a new generalized class of models,
queueing-loss networks, which captures both queueing and loss aspects of a system. The
queueing-loss network model is a natural extensions of queueing networks and loss networks
which have the product-form solution. We discuss applications of the model and analyze a
particular example of a simple queueing-loss network.
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1 Introduction

Recently, there has been an increasing interest in generalizations of the loss models originally

studied by Erlang and Engset in the context of telephone exchanges (see e.g., (Syski, 1986)). Loss

networks provide models for studying the blocking behavior of connection-oriented services in

circuit-switched networks, ATM networks, optical networks and wireless networks. As we discuss

in this paper, loss networks have much in common with the traditional queueing network models.

The earliest work on queueing networks with product form goes back to J.R. Jackson’s original

paper (1963). Theory for queueing network models has advanced considerably over the past

several decades (Baskett et al, 1975), (Kelly, 1979), (Reiser & Kobayashi, 1975) and has been

widely applied to the performance analysis of computing systems and packet-switched networks

(Kobayashi, 1978).

This paper introduces a new class of models, queueing-loss networks, which are natural

generalizations of queueing networks and loss networks. We give a brief development of loss

networks by systematically generalizing the classical loss models using notions from the theory of

queueing networks. This development culminates in the introduction of queueing-loss networks

and a discussion of their properties. Next, possible applications of the model are discussed and a

particular example of a simple queueing-network model is analyzed. Finally, the paper concludes

with a discussion of directions for further research on queueing-loss network models.
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Figure 2: Engset Loss Model

2 Generalized Loss Models

We use the general term station, to denote an entity which provides service to arriving calls

or customers. A station consists of a number of servers or lines and possibly a waiting room

or buffer. A loss station is one that has a finite number of servers and no waiting room. An

arriving call either begins service immediately or is rejected due to the lack of a sufficient number

of available servers. By contrast, a queueing station, as considered in this paper, has a sufficiently

large waiting room such that no call is rejected.

The original loss model studied by Erlang is equivalent to an M/M/S(0) queue 1 (see Fig-

ure 1); i.e., a loss station with S servers where arriving calls form a Poisson process with rate λ

and each call occupies a server for an exponentially distributed holding time with mean 1/µ.

The stationary distribution of the number of busy servers is given by

P (n) =
1

G(S)
an

n!
, 0 ≤ n ≤ S, (1)

where a = λ/µ is the offered load and G(S) is a normalization constant given by

G(S) =
S∑

n=0

an

n!
(2)

1Often the notation M/M/S/S is used in the queueing theory literature, where the second S signifies the
maximum number of calls that can be accommodated in the system.
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As S → ∞, G(S) → ea, hence P (n) → ane−a/n!, which is the stationary distribution of

an infinite-server (IS) station or M/M/∞ queue (see e.g., (Kobayashi, 1978)). Therefore, the

distribution (1) is a truncated Poisson distribution. The probability that all servers are found

busy in the steady state is given by the celebrated Erlang loss formula:

B(S) def= P (S) =
aS

S!

[
S∑

i=0

ai

i!

]−1

. (3)

The Erlang loss formula can be expressed in terms of the normalization constant as follows:

B(S) = 1− G(S − 1)
G(S)

. (4)

The above probability B(S) is often referred to as the time congestion, since this represents

the proportion of time that all the servers are busy. The call congestion or call loss probability

L(S) is defined as the probability that a newly arriving call finds all servers occupied, and hence

is lost or blocked, i.e., leaves the system without being served. When the arrival process is

Poisson, as in the Erlang loss model, the call congestion and the time congestion can be seen to

be equivalent, via the so-called PASTA (Poisson Arrivals See Time Averages) property (Wolff,

1989).

If we replace the Poisson arrival (i.e., an infinite source model) in the Erlang loss model by

a finite number N of sources (N > S), then we obtain what is often termed the Engset loss

model (see Figure 2), which we denote as an M(N)/M/S(0) queue 2. Each source generates a

call with an exponentially distributed inter-generation time with mean 1/ν and then places the

call at the loss station, where it either acquires a server for an exponentially distributed holding

time or is blocked. Both completed and lost calls alike return to the sources and a new cycle

begins. For this model, n(t), the number of calls in progress at time t, will have, in the steady

state, the following truncated binomial distribution:

P (n,N) =
1

G(S,N)

(
N

n

)
bn, 0 ≤ n ≤ S, (5)

where b = ν/µ and the normalization constant G(S, N) is given by

G(S,N) =
S∑

n=0

(
N

n

)
bn. (6)

The time congestion B(S,N) is given by

B(S,N) def= P (S,N) = 1− G(S − 1, N)
G(S,N)

. (7)

Because the arrival is not Poisson in the finite source model, the call congestion L(S, N) is no

longer the same as B(S, N), but we find the following simple relation:

L(S, N) = 1− G(S − 1, N − 1)
G(S, N − 1)

= B(S,N − 1). (8)

2In the literature it is often referred to as M/M/S/N/S, where the last two symbols represent the number of
sources, and the number of customers that can be accommodated in this service station.
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More generally, the distribution of number of calls in service seen by an arriving call is the time

average distribution that would be observed if the number of sources were reduced by one. This

is analogous to the result that holds in an M(N)/M/1 queue or a machine servicing model

(Kobayashi, 1978).

We now define a generalized Erlang loss model as follows:

1. Multi-class sources: We introduce a set, C, of call classes. The arrival pattern of class c

calls is a Poisson process with rate λc. We denote by nc(t) the number of class c calls in

progress at time t.

2. Simultaneous acquisition of multiple servers: A class c call requires to hold Ac servers

simultaneously. If the total number of servers or lines is S, then the following constraint

must be met: ∑

c∈C
Acnc(t) ≤ S. (9)

3. Generally distributed holding time: The call holding time distribution is a general distri-

bution Gc(t) with mean 1/µc:
∫ ∞

0
(1−Gc(t)) dt =

1
µc

. (10)

Let the state process of this generalized loss station be denoted by n(t) = (nc(t) : c ∈ C).
Let P (n) denote the equilibrium state distribution when there are S servers. The set of feasible

states is

F(S) = {n ≥ 0 :
∑

c∈C
Acnc ≤ S}. (11)

The departure process from the station includes both calls that have successfully completed ser-

vice and those which are rejected. The generalized Erlang station shares many of the properties

associated with stations in queueing networks.

A queueing station is said to be quasi-reversible if its state process n(t) is a stationary Markov

process with the property that the state at an arbitrary time t0 is independent of:

(i) the arrival times of class c calls, c ∈ C, after time t0; and

(ii) the departure times of class c calls, c ∈ C, prior to time t0.

The property of quasi-reversibility was introduced by Kelly (1979) to characterize a wide class of

queueing stations which, together with certain rules governing call routing, give rise to product-

form queueing networks. We extend this definition to loss stations by assuming the convention

that the departure process includes both calls that successfully complete service and those

which are blocked and do not receive service. A closely related property is reversibility. A

stochastic process n(t) is reversible if it is statistically identical with the time reversed process

nR(t) = n(τ − t) for any τ . For a stationary Markov process, reversibility holds if and only if
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its stationary distribution satisfies the detailed balance equations (Baskett et al, 1975), (Kelly,

1979).

The following important theorem is proved in (Kobayashi & Mark, 1994):

Theorem 2.1 The generalized Erlang station is quasi-reversible and its state-process n(t) is a

reversible Markov process with stationary distribution given by

P (n|S) =
1

G(S)

∏

c∈C

ac
nc

nc!
, n ∈ F(S) (12)

where ac = λc/µc and G(S) is the normalization constant defined by

G(S) =
∑

n∈F(S)

∏

c∈C

ac
nc

nc!
(13)

This result can be easily extended to the loss station model in which the calls are generated

from a finite number of sources of multiple classes. We define a generalized Engset loss station

as follows:

1. Multi-class sources: Let Nc be the number of sources for class c calls, c ∈ C, and let N be

the vector {Nc, c ∈ C}. We denote by nc(t) the number of class c calls in progress at time

t. Then, clearly

nc(t) ≤ Nc, c ∈ C. (14)

The inter-generation time at a class-c source is characterized by a general distribution

Fc(t) with mean 1/νc: ∫ ∞

0
(1− Fc(t)) dt =

1
νc

. (15)

2. Simultaneous acquisition of multiple servers: As in the generalized Erlang loss model.

3. Generally distributed holding time: As in the generalized Erlang loss model.

The set of feasible states is now given by

F(S,N) = {n ≥ 0 :
∑

c∈C
Acnc ≤ S; nc ≤ Nc, c ∈ C} (16)

The following theorem (Kobayashi & Mark, 1994) is a generalization of a result first reported

by Cohen (1957).

Theorem 2.2 For the generalized Engset loss system, n(t) is a reversible Markov process with

stationary distribution:

P (n|S,N) =
1

G(S,N)

∏

c∈C

(
Nc

nc

)
bc

nc , n ∈ F(S,N) (17)

where bc = νc/µc, and the normalization constant G(S,N) is given by

G(S,N) =
∑

n∈F(S,N)

∏

c∈C

(
Nc

nc

)
bc

nc (18)
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3 Loss Networks

One can further extend the above generalized loss station (GLS) models by introducing multiple

server types. In the generalized Erlang and Engset models, we extend the second property as

follows:

2’. Simultaneous acquisition of multiple servers of different types: Let L denote a set of server

types. There are Sl servers of type l ∈ L. A class c call requires to hold Alc servers of

type l simultaneously. For each server type l ∈ L, the following constraint must be met:

∑

c∈C
Alcnc(t) ≤ Sl. (19)

The results of Theorems 3.1 and 3.2 can be generalized straightforwardly to accommodate the

concept of server types. Figure 3 shows a generalized loss station in which each call can simul-

taneously acquire multiple servers from among several server types.

We define the properties of a loss network as follows:

1. Let L denote the set of links in the loss network. A link ` ∈ L contains S` channels.

2. A call class c ∈ C is defined as a pair (r, τ), where r ∈ R is a route or path of the call in

the loss network, and τ ∈ T is the type of the call. Thus, the set C = R× T . 3

3In the loss station models discussed in the preceding section, the class C and the type T are equivalent. In
the loss network, for a given source-destination pair, different types of call may take different routes.
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3. A class c call seeks to simultaneously acquire A`c channels of link ` for each link ` ∈ L.

4. The holding time of a class c call is a general distribution Gc(t) with mean 1/µc.

The loss network can be seen to be equivalent to a generalized loss station (GLS) with multiple

server types, where each link in the loss network corresponds to a server type in the GLS.

The loss network provides a general model for a circuit-switched network that carries multi-rate

traffic (i.e., different values of A`c for different c) among different types τ of calls (Kelly, 1991),

(Kobayashi & Mark, 1997). The model is equally applicable to bidirectional flows. All that is

required is to assign different class parameters to traffic in the reverse directions. The reverse

traffic for a given pair of nodes may have different bandwidth requirements (i.e., A`c different

from that for the forward direction). Similarly, the route used for the traffic in the reverse

direction need not be the reverse path of the forward path.

By specifying the arrival pattern of a loss network as a multi-class Poisson process as in

property 1 of the generalized Erlang model in section 2, we obtain an open loss network (OLN)

(see Figure 4). The OLN is equivalent to a generalized Erlang loss station with simultaneous

acquisition among multiple server types. If we replace the multi-class Poisson process of the

OLN by a multi-class finite source model as in property 1 of the generalized Engset model, we

obtain a closed loss network (CLN). The CLN is equivalent to a generalized Engset loss station

with multiple server types.

In the open loss network, the Poisson stream of class c arrivals is analogous to an open

subchain in a queueing network (Baskett et al, 1975), (Reiser & Kobayashi, 1975). Hence, in

the OLN, each class c is said to be open. Similarly, dual to the concept of a closed subchain in

a queueing network, we can define a closed class c in a loss network by replacing the Poisson

stream of class c call arrivals by a finite source model of population Nc. The closed loss network

is then a loss network wherein all the classes are closed. A mixed loss network (MLN), as shown
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in Figure 5, may have both kinds of classes. The MLN further generalizes the generalized Erlang

and Engset stations of the previous section. Open, closed and mixed loss networks are analogous

to open, closed and mixed queueing networks (Baskett et al, 1975), respectively.

Denote the state process of a mixed loss network by n(t) = [nO(t),nC(t)], with nO(t) =

(nc(t) : c ∈ CO) and nC(t) = (nc(t) : c ∈ CC). We have the following result for the MLN:

Theorem 3.1 The state process of the mixed loss network is a reversible Markov process with

equilibrium distribution given by

P (n|S,N) =
1

G(S,N)
PO(nO)PC(nC |N), n ∈ F(S,N) (20)

where

PO(nO) =
∏

c∈CO

anc
c

nc!
, PC(nC |N) =

∏

c∈CC

(
Nc

nc

)
bc

nc (21)

with ac = λc/µc (c ∈ CO), bc = νc/µc, (c ∈ CC), and

F(S,N) = {n ≥ 0;
∑

c∈C
A`cnc ≤ S`, ` ∈ L; nc ≤ Nc, c ∈ CC} (22)

and

G(S,N) =
∑

n∈F(S,N)

PO(nO)PC(nC). (23)

From the stationary distribution of the mixed loss network obtained above, we can express

the time congestion and call congestion for the class c in terms of the normalization constant

G(S,N) as follows:
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1. For a class c call in an open route c ∈ CO

Bc(S,N) = 1− G(S−Ac,N)
G(S,N)

(24)

Lc(S,N) = Bc(S,N), (25)

where Ac is the c-th column of the matrix A = [A`c]. The last equation is due to the

PASTA property referred to earlier.

2. For a class c call in a closed route c ∈ CC

Bc(S,N) = 1− G(S−Ac,N)
G(S,N)

(26)

Lc(S,N) = Bc(S,N− 1c), (27)

where 1c denotes the unit vector, whose c-th component is unity.

The above formulas for the time and call congestions are generalizations of the formulas obtained

for the Erlang and Engset models. For numerical methods (exact, approximate and asymptotic)

to compute the normalization constants G(S,N) for different values of S and N, the reader is

referred to (Kobayashi & Mark, 1997) and references cited therein.

4 Queueing-Loss Networks

Thus far, we have arrived at the mixed loss network by generalizing the classical Erlang and

Engset loss models. We now carry the generalization further by introducing the concept of
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a queueing-loss network (QLN). A queueing-loss network (see Figure 6) consists of a set of

queueing subnetworks {Qj ; j ∈ J } and a set of loss subnetworks {Lk; k ∈ K}. Calls are routed

within each queueing subnetwork and loss subnetwork component as well as between queueing

and loss network components. The call routing behavior can be governed by a Markov chain of

arbitrary order (Kobayashi, 1978).

Each queueing subnetwork, Qj , consists of a network of quasi-reversible queueing stations.

Hence, if nQj denotes the population vector in the queueing subnetwork Qj , its stationary

state distribution PQj (nQj ) has the product form. Furthermore, the queueing network itself is

quasi-reversible (Kelly, 1979).

In general, each loss subnetwork, Lk, can be a mixed loss network (MLN). The loss network

component of the MLN can be replaced by an equivalent Generalized Loss Station (GLS) with

simultaneous server acquisition. Each closed class in the MLN, representing a finite source

population, can be decomposed as infinite server (IS) station placed in tandem with the GLS

(see Figure 5). Let nLk
denote the population vector for the MLN. From Theorem 3.1, the

state distribution PLk
(nLk

) has the product form. In the decomposed representation of the

MLN, each IS component is quasi-reversible, and by Theorem 2.1, the GLS component is also

quasi-reversible.

Hence, the queueing-loss network can be decomposed into a set of quasi-reversible compo-

nents. The routing of calls between these components can be characterized by a Markov chain of

arbitrary order (Kobayashi, 1978). By combining these observations we now see that the QLN

is a generalized queueing network. The only difference between this queueing network and those

studied previously (Baskett et al, 1975), (Kelly, 1979), (Reiser & Kobayashi, 1975) is that it

contains GLSs as its components. We have already established the fact that a GLS is a general-

ized version of an IS station, and is a quasi-reversible station. Therefore, we can conclude that

the QLN has a product-form solution. We state this general result for queueing-loss networks

in the following theorem:

Theorem 4.1 Consider a queueing-loss network (QLN) that contains a set of queueing subnet-

works {Qj ; j ∈ J } and a set of loss subnetworks {Lk; k ∈ K}. Let nQj and nLk
represent the

population vectors in these subnetworks. The joint stationary distribution of the state process

n(t) of the QLN takes the form:

P (n) =
1

G(S,N)

∏

j∈J
PQj (nQj )

∏

k∈K
PLk

(nLk
), (28)

where PQj (·) and PLk
(·) themselves have product forms and are proportional to the marginal

distributions of the subnetworks Qj and Lk, j ∈ J , k ∈ K. The normalization constant G(S,N)

and the feasible state set F(S,N) are defined over the capacity vector S of loss stations, and

the finite source vector N in the network. These vectors correspond to Cartesian products of the

corresponding vectors of the subnetworks.
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5 Example Queueing-Loss Network

A useful application of the queueing-loss network model may be found, for example, in a circuit-

switched network in which call connection requests are served by either a centralized facility or

distributed centers. Arriving calls may have to queue for the call-connection service if many such

requests are already placed on the call-connection server. The call-connection server performs

the function of admission control; i.e., it decides whether a new call can be accepted or not, based

on the bandwidth resources requested by the call and the available resources of the network.

In this application, the call-connection server is modeled by a queueing station, whereas the

circuit-switched network itself is modeled by a loss network. The overall system is thus modeled

by a queueing-loss network.

Consider the simple example of a QLN shown in Figure 7. We label the three stations

as stations 0, 1, and 2, respectively. Station 0 is an IS station, representing a finite source

of population N . The inter-generation time of calls from each source is given by a general

distribution. Station 1 is a single server queue representing, for example, a call-connection

server. Station 2 is a loss station with S servers, and the call holding time can have a general

distribution. We assume that N > S; otherwise, a call loss would not occur at this station. For

the application discussed above, station 2 could be replaced by a more general loss network,

representing, for example, a circuit-switched network.

As the results in the previous sections suggest, we can allow multiple classes of sources at

station 0, and multiple types of servers at station 2. If station 1’s queue discipline is FCFS

(first-come, first-served) or any type of work-conserving queue discipline, then the service times

at this station must be drawn from the exponential service time that is common to all classes of

customers (see e.g, (Kobayashi, 1978)). If the queue discipline of station 1 is either LCFS-PR

(last come, first-served with preemptive resume) or processor sharing (PS), then we can allow

multiple classes for the service time and the distribution functions can be general, as long as

their means are finite. We should also note that the processing rate of each station can be

queue-dependent, i.e., the completion rate µi(ni) of each server at station i can be an arbitrary

function of its local queue size ni, i = 0, 1, 2. For the IS station and the loss station, we allow
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the dependency µc(nic) for different classes c ∈ C, i = 0, 2. The same generality applies to a

queueing station as well, if it adopts either LCFS-PR or PS.

For the sake of illustrative simplicity, we assume only one class of sources and a single type

of servers at the loss station, i.e., station 2. Further, we assume that the service rates are queue

independent. Thus, the inter-generation time of each source at station 0 has mean 1/µ0, the

service time at station 1 is exponentially distributed with mean 1/µ1, and the service time at

station 2 has mean 1/µ2. Using Theorem 4.1, we can write the stationary distribution of the

queueing-loss network as:

P (n0, n1, n2) ∝ 1
n0!

(
λ

µ0

)n0
(

λ

µ1

)n1 1
n2!

(
λ

µ2

)n2

(29)

∝ 1
n0!

(
1
µ0

)n0
(

1
µ1

)n1 1
n2!

(
1
µ2

)n2

,

for (n0, n1, n2) in the feasible set

F(S, N) = {(n0, n1, n2) : n0 + n1 + n2 = N ; n0, n1 ≥ 0; 0 ≤ n2 ≤ S}.

Here, λ is the rate of traffic through this closed route, but this unknown parameter can be

absorbed into the normalization constant. Hence, we can write

P (n0, n1, n2) =
1

G(S, N)
1

n0!

(
1
µ0

)n0
(

1
µ1

)n1 1
n2!

(
µ0

µ2

)n2

, (30)

where

G(S, N) =
∑

n0+n1+n2=N,0≤n2≤S

1
n0!

(
1
µ0

)n0
(

1
µ1

)n1 1
n2!

(
1
µ2

)n2

(31)

=
1

µN
1

S∑

n2=0

N−n2∑

n0=0

1
n0!

(
1
µ0

)n0 1
n2!

(
µ0

µ2

)n2

. (32)

The time congestion and call congestion at station 2 are then obtained by

B(S, N) = 1− G(S − 1, N)
G(S, N)

, (33)

L(S, N) = B(S, N − 1) = 1− G(S − 1, N − 1)
G(S,N − 1)

. (34)

Suppose that we wish to find ρ1, the utilization of station 1. By extending results known for

closed queueing networks (see e.g., (Kobayashi, 1978)), we can write

ρ1 = 1− G(−1)(S, N)
G(S, N)

, (35)

where G(−1)(S, N) represents the value of the normalization constant when station 1 is deleted

from the system. This corresponds to the situation which would arise if we let µ1 → ∞ in the

above queueing-loss system. In the limit as µ1 → ∞, only the terms corresponding to n1 = 0

remain in (31) and we obtain the following expression for G(−1)(S, N):

G(−1)(S,N) =
1

N !

(
1
µ0

)N

GL(S, N), (36)
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where

GL(S, N) =
S∑

n=0

(
N

n

) (
µ0

µ2

)n

(37)

is the normalization constant of the Engset loss station resulting from deleting station 1 from

the queueing-loss network. If station 1 has a constant rate, as is the present case, we can use

the following alternative formula (see e.g., (Kobayashi, 1979, p. 172)):

ρ1 =
1
µ1

G(S,N − 1)
G(S, N)

(38)

It is not difficult to confirm that the above two formulas for the server utilization ρ1 are indeed

equivalent.

To study the effect of the queueing station 1 on the system capacity of loss station 2, one

can express the marginal distribution of station 2 as a function of µ1 as follows:

P (n2, µ1) =

(N
n2

)
(µ0/µ2)n2 + N !(µ0/µ1)N ∑N−n2−1

n=0 (µ1/µ0)n+n2/n!
∑S

m=0

(N
m

)
(µ0/µ2)m + N !(µ0/µ1)N

∑S
m=0

∑N−m−1
n=0 (µ0/µ1)n+m/n!

. (39)

Clearly, as µ1 approaches infinity, P (n2, µ1) approaches the marginal distribution of an Engset

loss station. One can further show that the time congestion at station 2, given by P (S, µ1), is a

monotonically increasing function of µ1. The behavior of P (S, µ1) as a function of µ1 quantifies

the tradeoff between blocking at station 2 and queueing delay in station 1. As µ1 → ∞, the

queueing delay decreases to zero but the time congestion at station 2 increases to that of an

Engset loss station. The effect of the queueing station is to alleviate blocking at the loss station

at the expense of introducing queueing delay.

We now point out an equivalence between the QLN of Figure 7 and the open loss network

(OLN) defined in Section 3. Using the fact that the variables in Eq.(29) must satisfy n0 + n1 +

n2 = N , we can write the stationary distribution of (n0, n2) as:

P (n0, n2) ∝ 1
n0!

(
µ1

µ0

)n0 1
n2!

(
µ1

µ2

)n2

. (40)

Hence,

P (n0, n2) =
1

G̃(S, N)
an0

0

n0!
an2

2

n2!
, (41)

where a0 = µ1/µ0, a2 = µ1/µ2 and

G̃(S,N) =
∑

0≤n0+n2≤N,n2≤S

an0
0

n0!
an2

2

n2!
. (42)

Observe that Eq.(41) is the stationary state distribution of an open loss network defined as

follows. There are two links, l1 and l2, with link capacities N and S, respectively. There are

two traffic classes, c0 and c2: Calls of class c0 arrive according to a Poisson process of rate a0

and use a route containing just link l1. Calls of class c2 arrive according to a Poisson process of
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rate a2 and use a route containing links l1 and l2. The matrix A = [Alc : l ∈ {l1, l2}, c ∈ {c0, c2}]
which indicates the resource requirements of the OLN is given as follows:

A =

[
1 1
0 1

]
(43)

Thus, with respect to the stationary probability state distribution of the two loss stations in

Figure 7, the simple QLN is equivalent to an OLN. Furthermore, certain methods for approxi-

mate the normalization constant G̃(S,N) for the OLN may be used to solve for the probability

state distribution of the QLN.

6 Conclusion

In this paper we introduced the queueing-loss network model as a generalization of classical

loss and queueing models. By further generalizing results on loss networks (Kobayashi & Mark,

1994, 1997), we showed that the product-form solution applies to this extended class of stochastic

models. Queueing-loss networks allow multiple classes of calls, multiple types of servers, general

call service times and general call inter-generation time distributions. A key observation in

making this generalization was that an entire open loss network (OLN) or subnetwork could be

replaced by a single generalized loss station (GLS).

The queueing-loss network can be used to model systems which involve both queueing and

loss behaviors. For example, arriving calls to a circuit-switched network may first have to wait at

a queueing station prior to being subjected to admission control. For a small three-stage closed

queueing-loss network, we have shown how various performance measures can be calculated. For

general queueing-loss networks, performance measures such as time congestion, call congestion at

loss stations, and utilization at queueing stations can be expressed in terms of the normalization

constant G(S,N). For a large network with large values of S (the vector of number of servers at

various loss stations) and/or large N (the vector of the number of sources in closed subchains),

a direct evaluation of the normalization constants G(S,N) become computationally intensive.

A large body of literature exists that addresses the computational aspect of approximating the

normalization constant for loss networks (see e.g., (Kobayashi & Mark, 1997) and references

cited therein).

Future work could investigate the behaviors of more complicated queueing-loss network mod-

els and in particular, the interaction between the queueing and loss aspects. A limitation of the

queueing-loss network models discussed in this paper is that the subsequent behavior of calls, af-

ter being blocked at a loss station, is identical with that of calls which have successfully received

service; i.e., they proceed to follow the same path. In practice, blocked calls are often tagged as

such and subsequently receive different treatment from their successfully served counterparts.

Although the product-form solution will no longer hold in this case, the practical implications

of such a model make its thorough investigation an interesting open problem.
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