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A Discrete-Time Approach to Analyze Hard Handoff
Performance in Cellular Networks
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Abstract—The handoff algorithm employed in a cellular net-
work has a significant impact on overall network performance, but
evaluation of handoff performance has for the most part been done
using only crude approximations or brute-force computer simu-
lation. We introduce a new discrete-time approach to analyze the
performance of handoff algorithms based on pilot signal strength
measurements. We derive exact analytical expressions and develop
a recursive numerical procedure to evaluate handoff performance
metrics for a mobile station moving along a straight-line trajectory
in a cellular network employing hard handoff. The numerical
procedure provides a computational solution to a level-crossing
problem in discrete time. Our discrete-time approach provides
valuable analytical insight into the performance impact of handoff
algorithms. Moreover, our numerical procedure for discrete-time
handoff analysis provides an accurate and efficient tool for the
design and dimensioning of high-performance handoff algo-
rithms. The accuracy of the numerical procedure is validated by
simulation.

Index Terms—Cellular systems, discrete-time systems, handoff
algorithms, level-crossing problems.

I. INTRODUCTION

I N CELLULAR networks, each mobile station (MS) main-
tains connectivity via an active set of base stations (BS). A

handoff algorithm determines the dynamics of the active set as
the MS moves through the network. In hard handoff, the MS is
“handed off” from one BS to another BS as it leaves the cell cov-
erage area of the first and enters that of the second. In this case,
the active set of an MS consists of at most one BS at any given
time. Hard handoff algorithms are used in 2G and 3G wireless
networking standards such as GSM, GPRS, and UMTS (FMA1
mode) [1].

The handoff behavior of mobile units in a cellular network is
critical to the overall performance in terms of quality of service,
resource utilization, and signaling load. Ideally, the network
should maintain a seamless quality of service for an active
mobile user engaged in a call as it traverses cell boundaries.
Even when the mobile station is in the idle state, handoff
decisions impact the network in terms of resource utilization
and signaling load as well as the quality of service experienced
by the MS when it transits to the active state. Thus, the proper
design and dimensioning of the handoff algorithm is crucial
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to the deployment of a cellular network. The present paper is
motivated by the need for an analytical framework to model
handoff behavior accurately and to dimension parameter values
without resorting to time-consuming computer simulation.

We develop a new discrete-time approach to analyze the
handoff performance of an MS moving along a trajectory in
a cellular network. The handoff decisions are based on pilot
signal strength measurements from the candidate BSs. Handoff
behavior is characterized in terms of events associated with a
discrete-time random process (i.e., a random sequence) deter-
mined by the received pilot signal strengths from the candidate
BSs. Our discrete-time framework allows us to derive exact
expressions for the cell assignment and handoff probabilities at
each sampling epoch along a trajectory traversed by the MS.
Based on the discrete-time approach, we develop an efficient
numerical procedure to compute handoff performance mea-
sures such as the handoff and assignment probabilities of the
MS. Such a procedure can be used to design and dimension
the parameters for handoff in a cellular network. Our analytical
approach also provides new insights into the behavior and
performance of handoff algorithms. In particular, our analysis
reveals the effect of the averaging filter for the received pilot
signal strengths on the handoff decisions.

Early work on handoff performance evaluation has largely
been based on computer simulation studies [2]–[5]. In indus-
trial practice, computer simulation remains the primary means
for choosing key parameters to optimize the performance of
modern-day wireless networks. Detailed computer simulations
of wireless cellular networks require considerable computation
time, making them cumbersome to use for the purposes of net-
work design and dimensioning. More importantly, the simu-
lation approach generally does not lead to deeper analytical
insight into handoff performance.

The present paper was inspired by earlier work of Holtzman
and his coworkers [6], [7], who were among the first to attempt
an analytical study of handoff performance along a mobile
trajectory. Vijayan and Holtzman [6] characterized handoff
behavior in terms of the level crossings of the difference
in the received pilot signal strengths of two candidate BSs.
In the asymptotic regime of high-level crossings, the level-
crossing events form a Poisson process. Two limitations of
the Poisson level-crossing model are that it is accurate only
for relatively high-level crossings and the sampling interval
must be sufficiently small for the continuous-time model to
be accurate. Subsequently, Zhang and Holtzman [7] proposed
a discrete-time approach to analyze handoff based on the
Gaussian properties of the sampled and processed received
signal strengths. The formulas obtained in [7] rely on simplifying
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approximations that can lead to inaccurate results, as we have
observed in our numerical studies. The discrete-time handoff
analysis developed in the present paper differs from those of
[6] and [7] in that it does not involve any approximations, given
the basic system model. In essence, our approach provides
a solution to the level-crossing problem in the discrete-time
domain.

While handoff algorithms have been studied extensively in
recent years (cf., [8]–[10]), to our knowledge ours is the first
exact analytical framework for computing the handoff perfor-
mance measures considered in [6] and [7], i.e., assignment and
handoff probabilities along a mobile trajectory. In [11], the mean
number of handoffs for an MS moving between two BSs is eval-
uated via simulation and a simple closed-form approximation is
developed by curve-fitting to the simulation results. In [12], a
similar approach is used to obtain a simple closed-form expres-
sion for the mean handoff delay. The expression is exact when
the hysteresis margin is zero but is only approximate when a
nonzero hysteresis margin is included. Indeed, the authors of
[12] state that finding an exact analytic expression for the cell
assignment probability “does not seem tractable.” In [13], the
rate of switching between BSs for an MS is analyzed, but the
authors do not address the “difficult problem of a handoff al-
gorithm utilizing hysteresis to reduce handoff rate.” Thus, our
discrete-time approach provides a solution to an important open
problem in handoff design.

Other recent works related to handoff analysis have focused
on traffic modeling and call blocking probability during handoff
(cf., [14] and [15]) in the spirit of earlier traffic-based models
used to study the performance of cellular networks (cf., [16]
and [17]). Typically, the traffic models used in conjunction with
handoff studies assume Poisson call arrivals. In contrast, our
work makes no assumptions on the traffic arrival processes and
focuses exclusively on modeling the handoff behavior of an MS
moving along a particular trajectory in the network based on
received signal strength measurements.

Section II describes the basic signal propagation model for
a general class of handoff algorithms, first in the more familiar
continuous-time setting and then in discrete-time, providing the
basis for our subsequent analysis. Section III introduces a new
discrete-time formulation of the handoff problem and develops
analytical expressions for the handoff performance measures in
discrete time. Section IV develops an efficient recursive pro-
cedure for computing the handoff performance measures. Sec-
tion V presents numerical evaluations of handoff performance
obtained using the discrete-time approach. Finally, the paper is
concluded in Section VI.

II. PILOT SIGNAL STRENGTH MODEL

This section describes the signal propagation model for
the pilot signal strength used by handoff algorithms. The
propagation model provides the basis for analyzing the handoff
performance of an MS travelling along a straight-line trajectory
at constant speed in a cellular network. A discrete-time version
of this model is used in our subsequent analysis of handoff
performance.

Fig. 1. Straight-line trajectory between two BSs in a cellular network.

A. Continuous-Time Model

The cellular network consists of a set of BSs. The th station
, located by a position vector , lies at the center of its

associated cell . The coverage area of cell is determined by the
pilot signal strength from . Assume that the MS is initially
located at position at time zero and connected to . The MS
reaches position at time , moving at a constant speed of
along the line segment between and . As the MS moves along
this trajectory, the candidate BS for handoff is (see Fig. 1).
The MS makes handoff decisions based on measurements of the
pilot signal strengths received from the two BSs and .
The position of the MS at time is given as follows:

where is the unit vector in the direction of the vector .
The pilot signal strength (in decibels) received from a BS as

a function of distance in typical urban mobile environments has
been modeled empirically as the sum of three components (cf.,
[18]): path loss, shadow fading, and fast fading. The path loss
is a deterministic function of the distance from the BS, while
the shadow and fast-fading components are modeled as random
processes in the distance parameter . This model has been used
in a number of studies of handoff performance in cellular net-
works (cf., [6]). Under the assumption of constant MS speed
along the straight-line trajectory, the pilot signal strength can be
expressed equivalently as a function of a continuous-time pa-
rameter . The pilot signal strength (in decibels), received at the
MS from at time , is represented as follows:

(1)

where

(2)

and , are independent1 zero-mean stationary
Gaussian processes. The values of the constants and de-
pend on the mobile environment, with dB and

dB being typical values in an urban setting. The term
accounts for path loss, while models the effect of log-
normal (shadow) fading and models fast fading. The auto-
correlation function of has been experimentally observed
to have the following form (cf., [18]):

(3)

1If necessary, cross correlation between received signal strengths can easily
be incorporated into the model.
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where is the standard deviation of the shadowing signal
strength and the constant is called the decay factor.

To eliminate the effect of fast fading, the MS applies an expo-
nential averaging window to the measured signal strength .
The impulse response of the averaging window is given by

(4)

where determines the effective size of the averaging
window. The processed pilot signal strength from is then
given by , where denotes convolution.

B. Discrete-Time Model

Our analysis of handoff performance is based on a dis-
crete-time model for the signal strength measurements. In the
discrete-time model, the mobile unit samples the pilot signal
strengths at time instants , where is the sampling
interval. The discrete-time parameter varies between zero
and , the total number of sampling intervals along
the MS trajectory from time zero and to time . The distance
between successive sampling positions of the mobile is denoted
by . The discrete-time model captures the handoff
behavior of an MS more accurately than its continuous-time
counterpart since all signal strength measurements are sampled
in an actual system.

In discrete time, the basic signals of the system model are
simply sampled versions of their continuous-time counterparts

(5)

The processes , , are independent zero-mean sta-
tionary Gaussian processes characterized by an autocorrelation
function given by

(6)

The shadow fading process can be represented as a
first-order autoregressive (AR) process by the following:

(7)

where is a zero-mean stationary white Gaussian noise
process with variance . The parameters of the AR
model determine an autocorrelation function for of the
form

(8)

By comparing (6) and (8), the AR parameters for the shadow
fading process are determined as

The discrete-time equivalent of the exponential smoothing
window is given by

(9)

where . The processed pilot signal strength
from is then obtained by convolving with

in the discrete-time domain. The evolution of the process
is governed by the following second-order difference

equation (see Appendix I):

(10)

From (10), we see that is a second-order AR process, a
fact that we shall exploit in Section III. Various statistical prop-
erties of the process that will be used in the sequel are
derived in Appendixes I and II.

III. DISCRETE-TIME HANDOFF ANALYSIS

A. Assignment Regions

The MS makes a handoff decision based on the processed
pilot signal strengths from the two candidate BSs. In other
words, a handoff decision made at time is based on the vector

, where denotes the real line.
A large class of so-called hysteresis-based handoff algorithms
may be characterized in terms of a partition of into three
regions: is the assignment region for ; is the assignment
region for ; and is the hysteresis region, where the MS
may be assigned either to or .

A handoff decision at time is made as follows.

1) If , then a handoff occurs to unless the MS
is already assigned to .

2) If , then a handoff occurs to unless the MS
is already assigned to .

3) If , then no handoff occurs.

At time the MS becomes active and is assigned to ,
if , and otherwise to . In this case, the hys-
teresis level is effectively zero and there are only two assignment
regions: is the assignment region for

at time zero and is the assign-
ment region for at time zero.

With the above formulation of hysteresis-based handoff, we
may consider some important special cases. A practical class
of handoff algorithms operates on the basis of the relative
processed signal strength from and (cf., [6]). We
define hysteresis levels and associated with and

, respectively. A handoff of the mobile user from to
occurs when the relative processed signal strength
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Fig. 2. Assignment regions based on relative signal strength.

Fig. 3. Assignment regions based on relative strengths with absolute thresholds.

falls below the value . Conversely, a handoff from to
occurs when exceeds the value . For handoff al-

gorithms based on relative signal strength, the assignment re-
gions are given as follows: ,

, and , where
“ ” denotes the set difference operator. These regions are illus-
trated in Fig. 2.

Some handoff algorithms combine relative signal strength
with an absolute threshold on the required pilot signal strength
(cf., [7]). In such algorithms, a handoff from to occurs
at time if and only if and , where

is the absolute threshold on . Conversely, a handoff
from to occurs at time if and only if
and . The two-dimensional (2-D) assignment re-

gions for this handoff algorithm become:
, , and
. These regions are illustrated in Fig. 3. Dif-

ferent specifications of the assignment regions lead to different
handoff algorithms. A nonlinear assignment region is illustrated
in Fig. 4. A nonlinear assignment region arises, for example, in
the locally optimal handoff algorithm described in [19].

B. Handoff as a Level-Crossing Problem

The handoff behavior of an MS traveling along a given trajec-
tory can be viewed as a 2-D level-crossing problem (cf., [20]).
Handoff events may occur when the process enters the as-
signment regions and . The level-crossing analogy can be
more readily visualized in the case of handoff based on relative
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Fig. 4. Nonlinear assignment regions.

Fig. 5. Handoff as a level-crossing problem.

signal strength. In this case, the handoff decision is based on the
one-dimensional (1-D) relative signal strength . Handoff
events correspond to level crossings of the process with
respect to the hysteresis levels and . Thus, handoffs from

to correspond to downcrossings of , while hand-
offs from to correspond to upcrossings of , as can be
seen in Fig. 5.

The handoff analysis of Vijayan and Holtzman [6] is based
on the level-crossing analogy in the 1-D case and in the con-
tinuous-time domain. In the asymptotic regime where

, the point process formed by the set of upcrossings of and
that formed by the set of downcrossings of approach in-
dependent Poisson processes [20]. Based on this result, Vijayan
and Holtzman obtain expressions for handoff performance met-
rics such as handoff probability and cell assignment probability.
However, the Poisson process model is generally not accurate
for smaller values of the hysteresis levels.

In practice, as the MS moves along a given trajectory, it
samples and processes the signal strengths from the candidate
BSs at discrete time instants. Level crossings between sampling
instants do not necessarily lead to actual handoff events. The
analysis in [6] relies on the assumption that the sampling in-

terval is sufficiently small such that at most one level-crossing
event can occur between sampling instants. Thus, the analysis
based on the continuous-time model cannot capture the effect
of varying the sampling interval on handoff behavior. The ap-
proach to handoff analysis introduced in this paper provides, in
effect, a solution to the level-crossing problem in discrete time,
which captures the behavior of practical handoff algorithms.

C. Assignment Probability

We represent the sampled and processed signal strength mea-
surements from and by the vector process

. Let denote the sequence consisting of
the most recent values of up to and including time ,
where

(11)

Equivalently, may be viewed as a string of length on
the alphabet
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We shall use the notation to denote a string consisting of the
symbol repeated times. When , falls in either
region or region . At any time , the vector falls
in exactly one of the three assignment regions , , or .

Cell assignment of an MS along a given trajectory can be
characterized as follows. For , if the MS is assigned to

at time , a handoff to cell occurs at time if and
only if . Conversely, if the MS is assigned to at
time , a handoff to cell occurs at time if and only if

. We can also characterize cell assignment as follows.
Proposition 1: At time , the MS is assigned to if

and only if or for some
, . Similarly, the MS is assigned to if and only

if or for some , where
.

Proof: Suppose , where .
This condition is equivalent to and ,

. Clearly, the MS is assigned to at time
. Since no handoff occurs at times ,

the MS must also be assigned to at times
. Similarly, if , then the MS must

be assigned to at time .
Conversely, assume that the MS is assigned to at time .

Then, we must have for some or
for . Let be the largest such . Since the MS is assigned
to at time , it must be that , .
Setting , we have that when

, or otherwise. The case of assignment
of MS to at time is proved similarly.

Let denote the event that the mobile is assigned to
at time . We refer to as the cell assignment event at time

. By virtue of Proposition 1, we can express the assignment
event as a disjoint union of more elementary events2

(12)
For convenience, we introduce the notation

where is a string of symbols on the assignment alphabet
with length denoted by . Noting that the events on the

right-hand side of (12) are mutually exclusive, we obtain
the following exact characterization of the cell assignment
probabilities.

Proposition 2: The cell assignment probabilities can be ex-
pressed as

(13)

(14)

2When sets A and B are disjoint we denote their union byA B to emphasize
this property.

D. Handoff Probability

Let denote the event that at time the cell assignment
changes from cell to cell , i.e., a handoff occurs from cell

to cell . Similarly, denotes the event that a handoff
occurs from cell to cell at time . We can express the cell
handoff events, and for , in terms of the cell
assignment events defined earlier as

and

Analogous to Proposition 2, the conditions for a handoff event
to occur can be expressed as follows.

Proposition 3: For , a handoff from to occurs at
time if and only if and for
some , or . Similarly, a
handoff from to occurs at time if and only if
and for some , , or

.
Hence, the handoff events and , for , can

be expressed as

(15)

(16)

Since the events on the right-hand sides of (15) and (16) are mu-
tually exclusive, we have the following exact characterization of
the cell handoff probabilities, analogous to Proposition 2.

Proposition 4: The cell handoff probabilities for can
be expressed as

(17)

E. Other Performance Metrics

An important performance measure is the mean number of
handoffs that occur as the mobile moves along a given trajectory.
Let denote the number of handoffs that occur for a mobile
moving along a given trajectory. Let denote the indicator
random variable for the event . The number of handoffs can
be expressed as
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Hence, the mean number of handoffs is given by

where is the probability of handoff in either direction
at time . Finally, the crossover point is defined as the point
along a straight-line trajectory at which the probability of the
MS being assigned to drops below 0.5 (cf., [6]), given that
the probability of assignment to at time is greater
than 0.5. The crossover point is a measure of the handoff delay.

IV. NUMERICAL EVALUATION OF HANDOFF PERFORMANCE

For handoff algorithms based on relative signal strength,
the handoff behavior of the MS maps to the 1-D process

. In this case, the assignment regions
are intervals of the real line: , , and

. The assignment regions at system initialization
time are and . The expressions
derived earlier for assignment and handoff probability map
straightforwardly to the 1-D case. In this case, (13) expresses
the cell assignment probability to at time as a summation
of probabilities of the form . The process
satisfies a difference equation similar to (10) as follows for

:

(18)

where and .
Thus, can be characterized as a second-order AR
process.

By exploiting the second-order Markov property of ,
we can develop a recursive procedure for evaluating the assign-
ment and handoff probabilities. We define a sequence of bi-
variate functions as follows:

(19)

and for

(20)

Here, denotes the joint density of
and denotes the conditional

density of given and . Expressions
for the conditional joint densities are derived in Appendix II.
The notation denotes the standard Riemann integral over

the set . The bivariate functions have the following useful
property (the proof can be found in Appendix III).

Lemma 1: For

(21)

The probabilities of the form , where is a string of
characters representing intervals of the real line, are expressed
by (36) in Appendix III.

Applying Proposition 2 and Lemma 1, we can express the
probability of assignment to as follows (the result for as-
signment to is analogous).

Proposition 5:

(22)

with the initial conditions and
.

The handoff probability from and can also be ex-
pressed in terms of the functions (the result for handoff from

to is analogous).
Proposition 6:

(23)

(24)

for .
In a practical implementation of the recursive procedure for

evaluating assignment and handoff probabilities, the bivariate
function can be represented as a matrix over a fi-
nite grid of points in 2-D space. The integrals that appear in
the recursive procedure are approximated by trapezoidal inte-
gration. The numerical procedure can be made arbitrarily more
accurate by using a larger matrix, corresponding to a grid of
higher granularity. Our implementation of the procedure com-
putes assignment probabilities to an error of less than 10 . The
overall computational complexity of the procedure at each iter-
ation is , where denotes the hysteresis parameter.

V. NUMERICAL RESULTS

We now present numerical results to validate the accuracy of
our numerical procedure for evaluating handoff performance.
We evaluate the cell assignment and handoff probabilities along
a straight-line trajectory between two BSs and . We
also evaluate the impact of the hysteresis parameter on the
mean number of handoffs and the crossover point for the two
trajectories. We set the main system parameters as follows:

m, dB, dB, dB, m,
m. The averaging parameter is set to 10 m.
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Fig. 6. Probability of being assigned to station BS with h = 1 dB.

We validated our numerical procedure against results ob-
tained using computer simulation. Each simulation data point
was obtained by performing 100 000 sample path realizations.
The 95% confidence intervals were computed but are too small
to be displayed except for in Fig. 8, where handoff probabilities
are plotted. The simulation results validate the accuracy of our
numerical procedure (and vice versa). The numerical procedure
is far more efficient than simulation, since the performance
metrics are only computed along a single realization of the MS
trajectory, whereas a large number of sample path realizations
are required to achieve an equivalent level of accuracy using
the simulation approach. For comparison purposes, we also
obtained numerical results using the Poisson approximation
model of Vijayan and Holtzman [6] and the approximate dis-
crete-time model of Zhang and Holtzman [7] (without absolute
thresholds).

Fig. 6 shows the probability that the MS is assigned to
as a function of the sampled distance along the straight-line
trajectory from to when the hysteresis parameter
is set to dB. The curve obtained from our model
matches closely to that obtained from simulation. Since the
MS begins at , the assignment probability is initially one
and then decreases monotonically to zero as it approaches

along the straight-line trajectory. The cell assignment
probability curve obtained using the Vijayan–Holtzman model
is also shown in Fig. 6. The assignment probabilities obtained
from Vijayan–Holtzman model are inaccurate in this scenario
and a bias can be seen in the crossover point. For relatively
small hysteresis levels, the Vijayan–Holtzman model does
not provide a good estimate for the crossover point and the
mean number of handoffs.

Observe in Fig. 6 that the crossover point is approximately
equal to the halfway point along the trajectory, i.e., 1000 m. The
ideal assignment probability curve along the direct trajectory is
a step function with a step discontinuity from level 1 to level

0 at the halfway point. As the hysteresis level is increased,
the assignment probability curve more closely approximates a
step function. However, the value of the crossover point also in-
creases, implying a larger handoff delay in this case. Therein
lies a critical tradeoff in dimensioning the parameter for hys-
teresis-based handoff algorithms.

For larger values of one would expect the Vi-
jayan–Holtzman results to improve since the Poisson
level-crossing model is asymptotically accurate as the value of
the parameter is increased. However, Fig. 7 shows significant
discrepancies for dB when the MS moves along the
45 line trajectory indicated in Fig. 1. In Fig. 7, there is a
significant error in the assignment probability curve for the first
couple of hundred meters, which is approximately the radius of
a microcell. This is because the asymptotic model used in [6]
does not take into account the transient behavior due to system
initialization when the MS becomes active. This effect is more
pronounced for larger values of .

Fig. 8 shows the probability of the MS being handed off from
to as it moves along the trajectory when the hysteresis

parameter is set to dB. The simulation results are shown
along with 95% confidence intervals. The curve obtained from
the Vijayan–Holtzman model underestimates the handoff prob-
abilities. The handoff probability increases to a maximum value
near the crossover point. It should further be noted that for small
values of the handoff probabilities, an especially large number
of simulations is required to achieve an equivalent level of ac-
curacy, making our analytical approach an attractive alternative
to simulation.

In Fig. 9, the mean number of handoffs for an MS is plotted as
a function of the hysteresis parameter using the four methods
discussed above. Note that the Zhang–Holtzman model [7] over-
estimates the mean number of handoffs over almost the entire
range of hysteresis values. The Vijayan–Holtzman model un-
derestimates the mean number of handoffs when is less than
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Fig. 7. Probability of being assigned to station BS with h = 12 dB for 45 trajectory.

Fig. 8. Probability of handoff from BS to BS with h = 3 dB.

5 dB, while for dB, this model shows close agreement
with our analytical results.

In general, it is desirable to minimize the number of handoffs
while maintaining as small a handoff delay as possible. A
small handoff delay is particularly important for the design and
dimensioning of 3G systems, since the allocated bandwidth
is significantly larger than for 2G systems. As we saw earlier,
small handoff delay can be achieved by using small values for
the hysteresis parameter. On the other hand, small hysteresis
levels imply a larger number of handoffs. The tradeoff between
crossover point and mean number of handoffs is illustrated
explicitly in Fig. 10. The optimum operating point will typically
lie in the neighborhood of the knee of the tradeoff curve.

For reference, the hysteresis level corresponding to a given
crossover point is also plotted on the same graph.

VI. CONCLUSION

The main contribution of this paper is a rigorous discrete-time
approach to analyze the handoff performance of an MS moving
along a trajectory in a cellular network. In this approach, the pro-
cessed relative signal strength observed by an MS along a trajec-
tory is mapped to a random sequence over a set of assignment re-
gions. Based on the proposed discrete-time framework, expres-
sions were derived for the probabilities of cell assignment and
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Fig. 9. Mean number of handoffs versus hysteresis level.

Fig. 10. Crossover point versus mean number of handoffs.

handoff along arbitrary straight-line trajectories. An efficient
numerical procedure was developed for accurately evaluating
the performance measures for handoff algorithms based on rel-
ative signal strength. Our results find direct application to the
design and dimensioning of hard handoff algorithms in cellular
networks based on the GSM, GPRS, and UMTS (FMA1 mode)
standards (cf., [1]).

In recent years, some novel handoff algorithms have been
proposed in the research literature. Veeravalli and Kelly [19],
for example, formulate a locally optimal hard handoff algo-
rithm to obtain the best tradeoff between expected number
of service failures and expected number of handoffs. Akar
and Mitra [21] consider further variations in optimal and
suboptimal hard handoff control algorithms. Pahlavan et al.

[10] and Narishiman and Cox [22] suggest the use of neural
networks to make handoff decisions. Such handoff algorithms
generally result in nonlinear assignment regions (cf., Fig. 4).
In principle, nonlinear assignment regions are accommodated
in our discrete-time framework, but the numerical evaluation
of the assignment and handoff probabilities in this case may
be computationally challenging. The same remark applies to
handoff algorithms that use both relative and absolute signal
strengths (cf., Fig. 3).

Our discrete-time framework can also accommodate changes
in the velocity of the MS. In this case, the statistics of the pilot
signal strength measurements would be nonstationary, but our
recursive numerical procedure could still be applied by appro-
priately specifying the second-order density functions. An in-
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teresting avenue of investigation is to extend our approach to
analyze adaptive handoff algorithms (cf., [23]–[25]).

In the present paper, we exploited the second-order Markov
property of the processed relative signal strength to
carry out the handoff analysis. In [26], this key observation is
used to develop an alternative averaging technique to eliminate
fast fading while preserving the first-order Markov property of
the raw signal strength. In this case, the handoff analysis can be
carried out even more efficiently than with conventional aver-
aging. Finally, we remark that although the present paper has fo-
cused on the problem of hard handoff, the discrete-time handoff
approach can be applied to the analysis of soft handoff algo-
rithms as well [27].

APPENDIX I
DIFFERENCE EQUATION FOR

From (7), we see that the shadow fading process is
obtained by passing the Gaussian noise process through
a first-order filter. In the Z-transform domain, we have

(25)

where denotes the (unilateral) Z-transform of
, denotes the Z-transform of , and

is the Z-transform of the first-order filter, given by
. In the Z-domain, the raw pilot signal

strength can be expressed as

(26)

where is the Z-transform of the mean signal strength
. Taking the Z-transform of both sides, we have

(27)

with . Solving for in (27),
we obtain . Combining (26)
and (27), we have

(28)

Dividing both sides of (28) by , we obtain

(29)

Now reverting back to the discrete-time domain, we obtain the
second-order recurrence (10).

APPENDIX II
STATISTICS OF THE PROCESSED SIGNAL STRENGTH

Let denote the mean of . From (28), the
Z-transform of the process can be expressed as

. Reverting to the time domain, we can
express as

(30)

The autocovariance function of is equivalent
to the autocorrelation of the zero-mean process , where

. The process satisfies the re-
currence relation [cf., (10)]

(31)

The autocovariance function of is then given by

(32)

When , and are independent and we have

(33)

Note that . Setting in (33) we obtain

(34)

The correlation coefficient is given by

Taking the variance on both sides of (31) we obtain

(35)

Equations (33)–(35) completely define the autocovariance func-
tion .

Since and are assumed to be independent,
it follows that the autocovariance function of the processed rel-
ative signal strength is given by

. If we further assume that , then the variance
of is given by and

. In particular, we have . Also, in this case
the correlation coefficient is given by .

The joint density is a bivariate Gaussian density
with correlation coefficient given by . The conditional den-
sity is a Gaussian density with mean given
by
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and standard deviation given by

APPENDIX III
PROOF OF LEMMA 1

We introduce the following compact notation for a multidi-
mensional integral over the intervals of the real line

Let be a string of symbols, each of which rep-
resents an interval of the real line. Then, the probability
can be expressed as

(36)

for .
For , the left-hand side of (21) is given by

For , we have

(37)

Using the fact that the process is a second-order
Markov chain, the integrand of the second term in (37) reduces
to the joint pdf . Hence, the second term is simply

. By expanding the third term in (37) and using the
second-order Markov property of in a recursive
fashion, we obtain
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