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Discrete-Time Level-Crossing Analysis of Soft Handoff
Performance in Cellular Networks
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Abstract—In this correspondence, we develop a formal method for
solving a class of level-crossing problems in discrete-time with application
to the analysis of soft handoff performance in cellular networks such as
code-division multiple-access (CDMA) systems. In such networks, proper
dimensioning of soft handoff parameters is critical to overcoming propa-
gation impairments and providing a transparent radio access service for
multiple user profiles. We obtain exact expressions for the cell assignment
and active set update probabilities of a mobile station traveling along
an arbitrary straight-line trajectory. We develop recursive algorithms to
compute performance measures such as outage probability, macrodiversity
gain, and signaling load. The discrete-time level-crossing analysis yields an
accurate and efficient computational tool for designing and dimensioning
high performance soft handoff algorithms while avoiding the need for
approximations or time-consuming computer simulations.

Index Terms—Cellular networks, code-division multiple access (CDMA),
level-crossing, macrodiversity, network dimensioning, performance anal-
ysis, recursive computation, soft handoff.

I. INTRODUCTION

In CDMA cellular networks such as IS-95, a mobile station (MS)
maintains connectivity to an active set of base stations as it moves along
a trajectory. The characteristics of CDMA spread spectrum communi-
cations permit the mobile station to receive transmissions from more
than one base station simultaneously. This capability makes it possible
to process a handoff from one base station to another within the ac-
tive set of base stations maintained by the MS without any perceptible
disturbance in communications for both voice and data traffic. Such a
handoff procedure is known as soft handoff (cf. [2]–[5]). By contrast,
cellular systems based on FDMA and/or TDMA, such as analog cel-
lular or GSM, employ the more traditional hard handoff, whereby the
mobile station maintains connectivity to at most one traffic channel at
all times. In hard handoff, the mobile releases its current traffic channel
and establishes connectivity via the new traffic channel.

To enable soft handoff in CDMA systems, signaling and data trans-
missions from base stations in the active set of the mobile station must
be combined at a common point. The common point could be anywhere
in the network, but typically it is located in the mobile switching center
(MSC), which manages the radio link between the base stations and the
mobile station. In IS-95, a decision is made at the common point to es-
tablish communications between the mobile station and one of the base
stations in the active set when the signal from the selected base station
becomes considerably stronger than the signals from the others. In the
interim periods, the mobile station engages in simultaneous communi-
cations with all base stations in the active set.
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Compared to hard handoff schemes, soft handoff can increase the
cell coverage area, or equivalently, lower the outage probability (cf.
[6]). When the active set contains more than one base station, the mo-
bile station provides diversity by combining the associated traffic chan-
nels in the forward or reverse links. Macrodiversity gain arises because
less transmit power is required on the forward and reverse links, re-
sulting in a reduction in the total system interference [6], [7]. Conse-
quently, a further benefit of soft handoff is the longer battery life that
results from the reduction in transmit power.

In this correspondence we present a discrete-time approach to eval-
uate soft handoff performance in cellular networks.1 The formalisms
developed in the course of our analysis are more generally applicable
to the numerical solution of a class of level-crossing problems (cf. [10])
in discrete-time. We derive an expression for the probability, as a func-
tion of the discrete-time parameter k, that a given base station will be
assigned to the active set of a given mobile station. We also develop ef-
ficient recursive procedures for the exact evaluation of the cell assign-
ment and active set update probabilities. Based on these soft handoff
probabilities, a number of other important performance measures can
be computed, which can be used to determine the average signaling
load and macrodiversity gain for soft handoff. By taking into account
the mobile station’s trajectory in the network, a more accurate assess-
ment of the outage probability can be obtained using the discrete-time
approach compared with analyses that assume a stationary MS (cf. [6]).

Most of the earlier work on handoff analysis has relied primarily on
computer simulation (cf. [11]–[13]). Vijayan and Holtzman [14] were
among the first to develop an analytical model for hard handoff algo-
rithms. Their model applied asymptotic results from the theory of level
crossings [10] by approximating the sequences of handoffs to each
of the two candidate base stations as two independent Poisson pro-
cesses. The Poisson approximation is asymptotically true as the hys-
teresis threshold increases to infinity, but loses accuracy for smaller
hysteresis values. Zhang and Holtzman [15], [16] proposed an alterna-
tive approach to analyze handoff based on the Gaussian properties of
the sampled and processed received signal strengths. Their approach in-
corporated absolute signal strength thresholds in the handoff algorithm.
Approximations for the handoff probabilities in [15] rely on some sim-
plifying assumptions that can lead to inaccurate results. In [17], [18]
simple closed-form approximations for the mean number of handoffs
and mean handoff delay, respectively, for an MS moving between two
base stations, are developed by curve-fitting to simulation results. In
[19]–[21], asymptotic level-crossing results are used to derive approx-
imations for the outage probability.

The correspondence is organized as follows. Section II describes
the basic discrete-time signal propagation model for analyzing the
performance of soft handoff algorithms. Section III develops a dis-
crete-time characterization of soft handoff and derives the basic soft
handoff performance metrics. Section IV develops the computational
algorithms for efficiently evaluating the soft handoff probabilities.
Section V presents numerical results illustrating the computation of
soft handoff performance metrics using the discrete-time analysis.
Finally, the correspondence is concluded in Section VI.

II. SIGNAL PROPAGATION MODEL

The cellular network is partitioned into a set of cells, where the ith
cell has an associated base station BSi, located geographically by a
position vector, bbbi, extended from a fixed origin. For convenience, we
shall assume that the mobile station moves at a constant speed of v

1An early version of this work was presented in part in [1]. A discrete-time
analysis of hard handoff performance is treated in [8], [9].
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Fig. 1. Soft handoff sample path.

along a straight line from point aaa to point bbb in the cellular network. The
position, rrr(t), of the mobile station at time t is then given as follows:

rrr(t) = aaa+ vteee; 0 � t � T

where eee is a unit vector in the direction of the vector bbb� aaa.

A. Received Signal Strength

The pilot signal strength (in dB), received at the mobile from base
station BSi is given by (cf. [15], [16])

Yi(t) = mi(t) +Wi(t) + Zi(t) (1)

where

mi(t) = �1 � �2 log(krrr(t)� bbbi(t)k)

and fWi(t)g is an independent set of zero mean stationary Gaussian
processes. The term mi(t) accounts for path loss, while Wi(t) models
the effect of lognormal (shadow) fading. The constants �1 and �2 de-
pend on the mobile environment, with �1 = 0 dB and �2 = 30 dB
being typical values in an urban setting. The autocorrelation function
of Wi(t) has been experimentally observed by Gudmundson [22] to
have the following form:

RW (� ) = �2W exp �
vj� j

d0
(2)

where �W is the standard deviation of the shadowing signal strength
and the constant d0 is called the decay factor. The process Zi(t) rep-
resents the effect of fast fading on the received pilot signal strength.
The fast fading component can be effectively eliminated using the local
averaging technique presented in [23], without appreciably modifying
the characteristics of the shadowing and the path loss components.
Therefore, we shall ignore the fast fading component in our subsequent
analysis.

In practice, the mobile station samples the pilot signal strengths at
discrete time instants tk = k�s, where �s is the sampling interval and k
ranges from 0 toK , whereK = bT=�sc. The discrete-time counterpart
of (1) is given by:

Yi[k] = mi[k] +Wi[k] (3)

where Yi[k] = Y (tk), mi[k] = m(tk), and Wi[k] = W (tk). The
processes fWi[k]g are independent, zero-mean, stationary Gaussian
processes with autocorrelation function given by

RW (m) = �2W exp
�jmjds
d0

(4)

where ds = v�s is the distance between adjacent samples. From (3),
one sees that the marginal density of Yi[k], which we denote by fk(y),
is Gaussian with mean mi[k] and variance �2W .

The shadow fading process fWi[k]g can be represented as a
first-order autoregressive (AR) process by the following difference
equation:

Wi[k] = aWi[k � 1] + Vi[k] (5)

where fVi[k]g is a zero-mean, stationary white Gaussian noise process
with variance �2V . The parameters a; �2V of the AR model determine
an autocorrelation function for fWi[k]g of the form

RW (m) = �2V
ajmj

1� a2
: (6)

By comparing (6) and (4), the AR parameters for shadow fading are
determined as follows:

a = exp �
ds
do

; �2V = (1� a2)�2W :

From (3) and (5), one obtains a first-order difference equation in the
received signal strength Yi[k]:

Yi[k] = aYi[k � 1] +mi[k]� ami[k � 1] + Vi[k] (7)

which clearly shows that fYi[k]g is a first-order AR process. For a mo-
bile station moving along an arbitrary straight-line trajectory, sample
paths of the received signal strength,Yi[k], can be generated for the pur-
pose of Monte Carlo simulation (7). Later in the paper, we will make
use of the first-order conditional density of Yi[k] given Yi[k� 1] = x,
which we shall denote as fk(yjx). From (7), it is easy to see that
fk(yjx) is a Gaussian density with mean ax + mi[k] � ami[k � 1]
and variance �2V .

B. Soft Handoff Model

The assignment ofcell i to themobile station’s activeset is determined
by the time-evolution of the received signal strength process fYi(t)g. In
IS-95 CDMA networks, cell i is added to the active set of the MS when
the value of Yi(t) exceeds the add threshold Ta. Cell i is removed from
the active set whenYi(t) falls below the drop thresholdTd for an interval
of at least �d seconds. In the discrete-time framework, the cell assign-
ment decision is based on the processfYi[k]g. Cell i is dropped from the
active set when the value of Yi[k] is less than Td forM consecutive dis-
crete-time instants, where M = d�d=�se. The parameters Ta, Td, and
M determine the soft handoff algorithm. In general, these parameters
may also depend on the cell i. Fig. 1 shows a sample path of the sam-
pled pilot signal strength fYi[k]g received from base station BSi .
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III. SOFT HANDOFF ANALYSIS

Soft handoff behavior with respect to a fixed base station BSi can
be characterized in terms of events induced by the process fYi[k]g.
Partition the real line into three disjoint intervals defined as follows:

A [Ta;1); H (Td; Ta); D (�1; Td]

where A is the assignment region, H is the hysteresis region, and D is
the drop region. The soft handoff behavior with respect to BSi can be
couched in terms of these three regions. Denote the active (or assign-
ment) set of the mobile station at time k byAk . Let Yi[knr] denote the
vector consisting of the r most recent values of fYi[k]g up to time k

Yi[k n r] (Yi[k � r + 1]; . . . ; Yi[k]): (8)

The soft handoff rule at time k � 1 can be expressed as follows: If
cell i is not in the active set at time k � 1, it enters the active set Ak

at time k if and only if Yi[k] 2 A. Conversely, if cell i is in the active
set at time k � 1, it leaves the active set Ak at time k if and only if
Yi[k nM ] 2 DM . We assume that cell i is not in the active set at time
k = 0.

It is convenient to characterize the received signal strength in terms
of the regions A, H , and D. Specifically, the received signal Yi[k] can
be mapped to a symbol Si[k] defined on the alphabet S = fA;H;Dg
as follows:

Si[k]

A; if Yi[k] 2 A

H; if Yi[k] 2 H

D; if Yi[k] 2 D.
(9)

For L 2 S , let Lk denote the string L . . .L (k times), when k � 1
and letL0 denote the null string. In this context, a string of lengthn � 1
is equivalent to an n-tuple over the alphabet S . The length of a string
s will be denoted by jsj. Let Sk denote the set of strings of length k,
with S0 denoting the empty set. The assignment of BSi at time k is
determined by the string Si[k n k] that corresponds to the sample path
Yi[k n k]. The soft handoff rule can be re-formulated in terms of the
process fS[k]g. Thus, the set of all possible handoff behaviors of BSi
can be characterized in terms of the set S+ of all finite length strings
over the alphabet S , i.e., S+ = [1k=1S

k .

A. Assignment Probabilities

The assignment of BSi at time k can be characterized in terms of
subsets of the set Sk . Let Ei[k] denote the event that cell i is assigned
to the active set at time k. We assume that at time k = 0, cell i is
not assigned to the active set. For k � 1, the cell assignment event
Ei[k] occurs if and only if Si[l] = A for some l, 1 � l � k and
Si[m n M ] 6= DM for all m, l � m � k. In other words, BSi is
assigned to the active set at time k if the received signal strength falls
in region A at some time l and after this time it never falls in region D
for M consecutive time slots, at least up to time k.

Let Bk denote the set of strings of length k over the alphabet S that
do not contain the symbol A. One may express the set Bk as Bk =
fH;Dgk . Define

Gk Bk \ fH;DH;D
2
H; . . . ; DM�1

Hg+:

Note that Gk is the set of strings of length k that end in the symbol
H and that do not contain the substring DM or the symbol A. The
following lemma expresses the assignment event Ei[k] as a disjoint
union of more elementary events.2

2When sets A and B are disjoint we denote their union by A t B.

Lemma 1:

Ei[k] =

M�1

l=0

k

r=l+1

fSi[k n r] 2 AGr�l�1D
lg: (10)

For a string s 2 S+, of length jsj � k, we introduce the following
notation:

pk;i(s) PfYi[k n jsj] 2 sg = PfSi[k n jsj] = sg:

Thus, pk;i(s) is the probability that the last jsj values of the sequence
Yi[k nk] fall in the regions defined by the string s. The probability that
cell i is assigned to the active set is denoted by Pi[k] = PfEi[k]g.
Similarly, the probability that cell i is not assigned to the active set is
denoted by �Pi[k] = Pf �Ei[k]g. We have that Pi[k] + �Pi[k] = 1 for
all k � 0. In particular, we have assumed that �Pi[0] = 1. Given the
representation of the event Ei[k] in Lemma 1, an expression for the
assignment probability follows immediately.

Proposition 1:

Pi[k] =

M�1

l=0

k

r=l+1 s2AG D

pk;i(s): (11)

Equation (11) provides a closed-form expression for the assignment
probability but is not convenient for computation. An efficient proce-
dure for computing Pi[k] will be developed in Section IV.

B. Active Set Update Events

One of the most critical issues in the dimensioning, design and opti-
mization of mobile networks is the modeling of the signaling required
to maintain the active set of the mobile stations. An update of the active
set occurs when a base station is either dropped or added to the active
set. Such an event corresponds roughly to the concept of a handoff be-
tween two base stations in hard handoff algorithms. The main differ-
ence is that the active set may contain two or more base stations at any
given time (cf. [8]).

An important performance measure for the soft handoff problems is
the mean number of updates of the active set required by the mobile
while moving along a particular trajectory. Let Ai[k] denote the event
that base station BSi is added to the active set of the mobile station at
time k. The event Ai[k] can be expressed as follows:

Ai[k] = �Ei[k � 1] \Ei[k]: (12)

Similarly, we define Di[k] as the event that BSi is dropped from the
active set at time k. The event Di[k], can be expressed as follows:

Di[k] = Ei[k � 1] \ �Ei[k]: (13)

The following lemma expresses the add and drop events as unions
of disjoint events.

Lemma 2:

Ai[k] = fSi[k n k] 2 Gk�1Agt
M�1

r=1

fSi[k n k] 2 D
rGk�r�1Agt

k

r=M

fSi[k n r] 2 D
MGr�M�1Ag

Di[k] =

k

r=M+1

fSi[k n r] 2 AGr�M�1D
Mg:

Let PA [k] = P (Ai[k]) denote the probability that an add event oc-
curs at time k. Similarly, let PD [k] = P (Di[k]) denote the drop prob-
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ability at time k. Expressions for the add and drop probabilities follow
immediately from Lemma 2. Efficient numerical procedures for com-
puting these probabilities will be developed in Section IV.

C. Derived Performance Metrics

From the cell assignment probabilities, a number of handoff perfor-
mance measures can be derived. The mean size of the active set or
macrodiversity degree at a given instance k is given by

nk =
i2N

Pi[k]:

The mean size of the active set over the entire trajectory is therefore
given by

�N =
1

K

K

k=1

nk:

The probability that the active set contains a given number of base sta-
tions can be expressed as follows:

PfjAkj = ng =
S�N ;jSj=n i2S

Pi[k]
j 62A

�Pj [k] (14)

whereNk is the set of neighbor cells at time k. The outage probability3

is the probability that the active set is empty and is given by:

Po[k] = PfjAkj = 0g:

Hence, the mean number of handoffs or update events over the entire
trajectory is given by

�Nu =
1

K

K

k=1 i2A

(PA [k] + PD [k]) =
1

K

K

k=1

�[k]:

The above performance metrics can be used to evaluate CDMA system
capacity (cf. [24], [25]), while capturing the effect of mobility on soft
handoff behavior.

IV. COMPUTATIONAL ALGORITHMS

The closed-form expressions for soft handoff probabilities derived
in Section III do not readily lend themselves to computation. In this
section, we develop efficient algorithms for computing the soft handoff
probabilities.

A. Non-Assignment Probability

We shall characterize the set of strings that correspond to the nonas-
signment event �Ei[k]. We recursively define the following sequences
of sets of strings:

Sk;HD Sk�1;HD �D

3We assume that the received pilots from base stations are independent of
each other.

where 1 � l � M � 1 and k � 2

S1;H fHg and S1;HD = ; (15)

and 1 � m �M � 1. To complete the recursive definition, we define

Sk;D
fDkg t k�1

m=1
Sk;HD ; 1 � k �M

Sk�MDM t M�1
m=1

Sk;HD ; k > M
(16)

and

Sk;H Sk�1;D �H [ Sk�1;H �H:

The following result, which can be proved by induction, establishes
that

1) Sk;HD (0 � m � M � 1) is the set of all strings of length
k that end in the substring HDm and for which nonassignment
occurs at time k.

2) Sk;D is the set of all strings of length k that end in D and for
which nonassignment occurs at time k.

Proposition 2: For k � 1 and 0 � m �M�1, the following hold:

�Ei[k] \ fSi[k nm+ 1] = HD
mg = fSi[k n k] 2 Sk;HD g (17)

and

�Ei[k] \ fSi[k] = Dg = fSi[k n k] 2 Sk;Dg: (18)

The set of strings corresponding to the nonassignment event �Ei[k] at
time k can be expressed as a disjoint union of sets as follows:

Sk Sk;H t Sk;D: (19)

The next corollary suggests a recursive computational algorithm for
computing the nonassignment probabilities. The proof follows imme-
diately from Proposition 2.

Corollary 1:

�Ei[k] = fSi[k n k] 2 Skg: (20)

We now introduce a family of operators defined on the space of func-
tions 	 : R ! R+ as follows:

Ak	(y)
A

	(x)fk(yjx)dx

Dk	(y)
D

	(x)fk(yjx)dx

Hk	(y)
H

	(x)fk(yjx)dx:

Here, fk(yjx) denotes the conditional density of Y [k] given that Y [k�
1] = x, which is Gaussian with mean ax +mi[k] � ami[k � 1] and
variance �2V (cf. (7)). Next, we define a family of M � 1 sequences of
functions

hk;D : R ! R+
; k � 1; 0 � m �M � 1 (21)

where R denotes the real line and we abbreviate hk;D as hk .

hk(y) fk(y);

hk;D (y) Dkhk�1;D (y) (22)
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with 1 � m � min(M � 1; k) and h1;D (y) 0. Here, fk(x) de-
notes the marginal (Gaussian) density of Y [k] (cf. (3)). An expression
for the probability of a drop event at time k is given as follows.

Proposition 3:

pk(D
M ) = PfSi[k n k] 2 Sk�MDMg =

D

hk;D (y)dy

for k � M .
Next, we introduce a sequence of functions gk;HD : R ! R+,

m = 0; . . . ;M � 2. For k � 2 define qk : R ! R+ as follows:

qk(y) hk;D (y) +

min(M;k)�2

m=1

gk;HD (y): (23)

For k � 1 define
gk(y)

D

qk�1(x)fk(yjx)dx+ gk;H(y) (24)

gk;H(y) Hkgk�1(y) (25)

gk;HD (y) Dkgk�1;HD (y) (26)

with 1 � m < min(M � 1; k) and

g1;HD (y) 0; 0 � m < M � 1:

Using the operator notation, the definition (24) may be written as

gk(y) Dkqk�1(y) +Hkgk�1(y): (27)

The following expression for gk;HD (y) can be derived by induction.
Lemma 3:

gk;HD (y) =
s2S s

f1;...;k(yyyk�1; y)dyyy

where 0 � m �M�2, yyy (y1; . . . ; yk�1) and dyyy dy1 � � � dyk�1.
The following result is an immediate consequence of Lemma 3.
Corollary 2:

PfS[k n k] 2 Sk;HD g =
D

gk;HD (y)dy;

for 1 � m � M � 1.
The next corollary follows from definitions (16) and (23), Proposi-

tion 3, and Corollary 2.
Corollary 3:

PfS[k n k] 2 Sk;Dg =
D

qk(y)dy:

Similar to Lemma 3, the following lemma can be proved by induc-
tion on k.

Lemma 4:

gk(y) =
s2S s

f1;...;k(y1; . . . ; yk�1; y)dy1 . . . dyk�1:

The next corollary follows immediately from Lemma 4.

Corollary 4:

PfS[k n k] 2 Sk;Hg =
H

gk(y)dy:

The cell nonassignment probabilities can then be expressed as follows.
Theorem 1:

�Pi[k] =
D

qk(y)dy +
H

gk(y)dy: (28)

Proof: The result follows directly from (19) and Corollaries 1, 3,
and 4.

B. Update Probabilities

In this section, we develop a recursive procedure for evaluating the
update probabilities. The add and drop events can be expressed in terms
of the assignment and nonassignment events as follows.

Proposition 4:

Ai[k] = �Ei[k � 1] \ fSi[k] 2 Ag (29)

Di[k] =Ei[k � 1] \ fSi[k nM ] 2 D
Mg: (30)

The probability of an add event can be expressed in terms of the func-
tions defined above for computing the assignment probability.

Theorem 2:

PA [k] =
A

gk(y)dy:

Proof: The result follows from Proposition 4, Corollary 1, and
Lemma 4.

To compute the probability of a drop event, we must consider the
set of strings resulting in assignment at time k � 1 and ending in the
substring DM . To that end, we define the following sets of strings (for
k � 1):

Fk;D Fk�1;D ; l � 1 (31)

Fk ~Sk�1 �H t Sk�1 � A; k � 1 (32)

~Sk

min(k;M)�1

m=0

Fk;D ; k � 1 (33)

with ~S0 ;. The following proposition implies that Fk;D (0 �
m � M � 1) is the set of strings that result in nonassignment at time
k and that end in the substring Dm.

Proposition 5:

Ei[k] \ fSi[k nm] = D
mg = fSi[k n k] 2 Fk;D g

for 1 � m � M � 1.
The next corollary expresses the drop event in terms of the set

Fk;D .
Corollary 5:

Di[k] = fSi[k n k] 2 Fk;D g:
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Fig. 2. Recursive computational scheme for assignment and add probabilities.

Fig. 3. Recursive computational scheme for drop probabilities.

To compute the drop probabilities, we introduce the following se-
quence of functions:

~qk(y)

min(k;M)�1

m=0

~gk;D (y); k � 1 (34)

~gk(y) Hk~qk�1(y) +Akfk�1(y) (35)

~gk;D (y) Dk~gk�1;D (y) (36)

for 1 � l � M � 1, k � 1, and ~g1;D (y) 0 for all y 2 R and
0 � m �M � 1. The next lemma can be proved by induction on k.

Lemma 5:

~qk(y) =

s2~S
s

f1;...;k(yyyk�1; y)dyyyk�1

~gk;D (y) =
s2F s

f1;...;k(yyyk�1; y)dyyyk�1

for 0 � m � k � 1.
Finally, we arrive at the next theorem, which gives an expression for

the drop probabilities. The proof of the theorem follows straightfor-
wardly from Lemma 5 and Corollary 5.

Theorem 3:

PD [k] =
D

~gk;D (y)dy; k �M + 1:

The assignment probabilities can also be computed directly in terms of
the functions ~qk(y) as follows.

Theorem 4:

Pi[k] =
D[H

~qk(y)dy �
D

~gk;D (y)dy +
A

fk(y)dy

for k � 1.

C. Efficient Implementation Schemes

Fig. 2 depicts an efficient recursive implementation scheme of The-
orems 1 and 2 for computing the nonassignment and add event proba-
bilities, respectively. The symbol z�1 indicates a delay of one sampling
interval between the input and output points. Each delay block of z�1 is
followedbyoneof the threeoperatorsA,D,H,oraspecified integration
operation. From Fig. 2, we see that computation of the add event prob-
ability requires 2M integration operations, where M is the number of
time steps in the drop timer interval. Computation of the nonassignment
probability requires2M +1 integrations. Fig. 3 depicts an implementa-
tion of Theorems 3 and 4 for computing the drop event and assignment
probabilities, respectively. From Fig. 3, we see that the computation of
both the assignment and drop probabilities requires M + 3 integration
operations. Therefore, computation of the assignment, add event, and
drop event probabilities at stepk requires a total of3M +3 integrations.

V. NUMERICAL RESULTS

The problem of dimensioning the handoff algorithm is to determine
an optimal set of values for the handoff parameters Ta, Td, and M ac-
cording to given performance criteria. In practice, handoff performance
metrics must be evaluated over a large range of values for the handoff
parameters in order to dimension the cellular network properly. We
present some representative results of applying the discrete-time anal-
ysis to obtain the handoff performance metrics of interest. Fig. 4 il-
lustrates the cellular network structure that is used for the soft handoff
performance evaluation. For our numerical computations, we set the
distance between two adjacent base stations to 2000 m and the main
system parameters as follows: �1 = 0 dB, �2 = 30 dB, �W = 6 dB,
do = 20 m, ds = 1 m. These values are typical for an urban environ-
ment (cf. [16]).

To validate the discrete-time analysis, we also show results obtained
using computer simulation. In our numerical studies, computation of
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Fig. 4. Cellular network scenario for soft handoff.

the assignment probability via the recursive procedure was about two
orders of magnitude faster than computer simulation for 95% confi-
dence intervals. To optimize the simulation procedure, pre-computed
sample paths were stored in a file, whereas the computational procedure
does not require any additional storage. The gain in efficiency achieved
by our computational method becomes particularly significant in mul-
tiple user, multiple service scenarios.

Within the triangle formed by BS5, BS8, and BS11 two sample
trajectories, Tr1 and Tr2 are shown. Both trajectories pass radially
through the point O at the intersection of cells 1, 2, and 3. In the nu-
merical results discussed below, we focus on trajectory Tr2. As the
mobile station moves along Tr2, we consider seven particular base sta-
tions: BS2, BS3, BS5, BS6, BS7, BS8 and BS9. Due to symmetry
relative to trajectory Tr2, the assignment probabilities for BS2, BS6,
BS7, BS8, and BS9 are the same as the corresponding assignment
probabilities for BS1, BS4, BS12, BS11, and BS10, respectively.

Fig. 5 illustrates the assignment probabilities for the seven selected
base stations as the mobile moves along trajectory Tr2. The param-
eters of the soft handoff algorithm are set as follows: drop threshold
Td = �94 dB, add threshold Ta = �92, and drop timer interval
M = 2. The dotted curves represent the assignment probabilities ob-
tained from simulation along the trajectory Tr2, while the continuous
curves obtained from our analytical model. Again, the analytical curves
match closely with those from simulation. Observe that the curves for
BS3 and BS5 are symmetrical about the halfway point, which can
also be deduced from the geometrical symmetry in the cellular struc-
ture. The curve for BS3 lies under the curve of BS5 since the BS3
is located at a greater distance than BS5 from the trajectory Tr2. Ini-
tially, BS8, BS7, BS6, and BS9 are assigned to the active set with
probabilities close to 0, which then increase monotonically as the mo-
bile approaches the ending point of the trajectory Tr2. The assignment
probability curve of BS2 starts with a value of approximately 0:1 and
increases monotonically as the mobile reaches the ending point of Tr2.

Fig. 6 shows the update probabilities for the same set of base sta-
tions that is considered for the trajectory Tr2. The figure shows the
results from simulation with the 95% confidence intervals shown ex-
plicitly. The curves from our analysis agree with the curves obtained

Fig. 5. Cell assignment probability along trajectory Tr .

Fig. 6. Active set update probability along trajectory Tr .

from simulation. As one would expect, the update probability curves
for BS3 and BS5 are symmetrical about the halfway point. For BS2,
the curve increases, reaches a peak value around 1200 m and then de-
creases monotonically to a minimum value around 2350 m after which
increases monotonically for the rest of the trajectory of about 350 m.
Along trajectory Tr2, the mobile moves closer toBS6,BS7,BS8 and
BS9. Hence, the update probability curves for these base stations in-
crease monotonically.

Figs. 7 and 8 show the assignment probability and update probability
curves for BS3 along trajectory Tr2 for different values of the drop
timer interval M . In Fig. 7, one sees that the assignment probability
curve increases asM is increased. On the other hand, as seen in Fig. 8,
the update probability decreases as M increases. Thus, the signaling
load can be decreased by increasing M , but doing so results in higher
resource utilization due to a larger active set size. It is interesting to note
that the rate of decrease of the update probability curve with increasing
M is higher than the rate of increase of the assignment probability
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Fig. 7. Assignment probability for BS along trajectory Tr for different
values of the drop timer interval.

Fig. 8. Update probability forBS along trajectory Tr for different values of
the drop timer interval.

curve. This suggests the existence of an optimum operating point for
the value ofM given a suitably defined cost function.

VI. CONCLUSION

We presented a discrete-time level-crossing analysis of soft handoff
performance for a mobile station travelling along a given trajectory in
cellular networks. We developed recursive computational procedures
to evaluate the cell assignment and update probabilities efficiently and
accurately. The handoff analysis is based only on sampled pilot signal
strength measurements received by the mobile station and is applicable
to arbitrary mobile trajectories. Dimensioning the handoff algorithm is
a complex and extremely time-consuming task, especially when using
computer simulation. Our approach provides an efficient computational
tool that can greatly simplify the task of dimensioning cellular net-
works, especially in multiple user/service scenarios. The physical layer
handoff analysis presented here can also be incorporated into higher
level simulation studies of overall network performance.

We have assumed that the handoff parameters are static as in the
IS-95 standard, but the analysis can be extended to adaptive handoff
algorithms that dynamically change the parameter values over time.
Traditionally, level-crossing problems have been studied in the con-
tinuous-time domain with asymptotic approximations and relatively
simple level-crossing rules (cf. [10]). The discrete-time formalism to
analyze handoff performance can in principle be applied to a larger
class of level-crossing problems.
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