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Explicit Causal Recursive Estimators for
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Abstract—AbivariateMarkov chain comprises a pair of random
processes which are jointly Markov. In this paper, both processes
are assumed to be continuous-time with finite state space. One of
the two processes is observable, while the other is an underlying
process which affects the statistical properties of the observable
process. Neither the observable, nor the underlying process , is
required to be a Markov chain. Examples of bivariate Markov
chains include the Markov modulated Markov process (MMMP),
the Markov modulated Poisson process (MMPP), and the batch
Markovian arrival process (BMAP). We develop explicit causal re-
cursions for estimating the number of jumps from one state to an-
other, and the total sojourn time in each state, of a general bivariate
Markov chain. Explicit causal recursions of these statistics were
previously developed for the MMMP and the MMPP using the
transformation of measure approach.We argue that this approach
cannot be extended to a general bivariate Markov chain. Instead,
we modify the approach developed by Rydén for noncausal estima-
tion of the same statistics of anMMPP, and use the state augmenta-
tion approach of Zeitouni and Dembo and a matrix recursion from
Stiller and Radons, to derive the causal recursions. The new recur-
sions do not require any numerical integration or sampling scheme
of the continuous-time bivariate Markov chain.

Index Terms—Markov processes, recursive estimation.

I. INTRODUCTION

A bivariate Markov chain comprises a pair of random
processes which are jointly Markov. In this paper, we

focus on bivariate Markov chains for which the pair of random
processes is finite-state and continuous-time. Each of the two
processes comprising the bivariate Markov chain need not
be Markov, and the two processes may jump simultaneously.
Only one of these two processes is assumed observable. The
distribution of the dwell-time of the observable process in
each state is phase-type [22]. Important examples of bivariate
Markov chains include the Markov modulated Poisson process
(MMPP) and its Markov modulated Markov process (MMMP)
generalization, see, e.g., [16], [17], [29], [31], and the Mar-
kovian arrival process (MAP) and its generalization in the form
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of a batch Markovian arrival process (BMAP), see, e.g., [5],
[20], [21]. Note that while the MMPP, MAP and BMAP have
countably infinite state spaces, they can be represented without
loss of generality as finite-state processes when modulo counts
are used. Bivariate Markov chains are common models arising
in applications such as the study of ion channel currents [2],
[4], [8], [27], traffic modeling [17], [20], network congestion
[33], [38], spectrum sensing in cognitive radio networks [19],
[24], [25], [35], and phylogenetics [6], [18], [26].
Bivariate Markov chains also occur in discrete time. When

the underlying process of a discrete-time bivariate Markov
chain is Markov, and the observable process comprises a
sequence of conditionally independent random variables, then
the bivariate Markov chain becomes a finite-alphabet hidden
Markov model (HMM). The dwell-time of the observable
process of the bivariate Markov chain in each of its states has
a discrete phase-type distribution while the dwell-time of the
observable process of an HMM has a geometric distribution.
Another important relation exists between certain types of con-
tinuous-time finite-state bivariate Markov chains and HMMs.
For example, the MMPP has an HMM representation, as was
first shown in [31]. A thorough review of bivariate Markov
processes, in discrete and continuous time, with finite as well
as continuous alphabet, may be found in [13]. In this paper,
we exclusively focus on finite-state continuous-time bivariate
Markov chains which, for brevity, we shall simply refer to as
“bivariate Markov chains.”
Given a sequence of observations from a process modeled

by a bivariate Markov chain, it is frequently of interest to esti-
mate three key statistics: the state, the number jumps from one
state to another, and the total sojourn time in each state. An esti-
mate of the average sojourn time in a given state can essentially
be obtained as a ratio of the total sojourn time in the state and
the number of jumps out of the state. Efficient online estima-
tors of these key statistics are needed in real-time applications
of bivariate Markov chain models. In the network congestion
application, for example, a path in a network is modeled as a
bivariate Markov chain wherein one or more of the underlying
states indicates a certain congestion level (cf. [38]). Real-time
routing decisions based on the mean time in a congested state or
subset of states need to be executed in an online fashion. A key
feature of causal recursive estimators is that estimation of the
statistics of the process, given its parameter, can be performed
online, without the need to store the entire training data. In the
cognitive radio application, frequency channels are modeled by
a bivariate Markov chain with an underlying chain representing
either the active or idle state of a primary system (cf. [25]). Here,
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a real-time decision on which channel a cognitive secondary
system should access could be based on a causal recursive esti-
mator of the mean sojourn time in the active state.
In this paper, we derive explicit causal recursive estimators

for the number of jumps from one state to another and the total
sojourn time in each state of the bivariate Markov chain. The
recursions are explicit in the sense that they do not require nu-
merical integration or sampling of the continuous-time bivariate
Markov chain. We also specialize the recursions for the MMMP
and the MAP. An explicit causal recursion for estimating the
state of the bivariate Markov chain was developed earlier in
[30], [39]. Previously, explicit causal recursions for the number
of jumps and the total sojourn time had been developed only
for the MMMP and the MMPP [11] using the transformation of
measure approach. The latter approach was used earlier in [9]
to derive causal recursions for the MMMP in the form of sto-
chastic integrals. Recursions of a similar form were developed
for the MMPP and implemented via a sampling scheme in [10].
The transformation of measure technique is not applicable to
the general bivariateMarkov chain, since the underlying and ob-
servable processes may jump simultaneously, and hence, cannot
be independent under any reference measure [12].
The derivation of the explicit causal recursions is based on

our earlier derivation of forward-backward or non-causal recur-
sions in [22], which in turn is based on Rydén’s earlier deriva-
tion for the MMPP in [32]. We follow that derivation and show
how it can be modified to provide the causal recursions. We
rely on the powerful state augmentation approach of [40], on
an expansion of the backward recursion as stated in [34], and
on the work of [37] for evaluating integrals of matrix exponen-
tials. In the state augmentation approach, the statistic of interest
is jointly estimated along with the state of the underlying unob-
servable process. This approach was used in [40] for estimating
the number of jumps of aMarkov chain observed in white noise,
and was later adopted in [9], [12], and [11].
The remainder of the paper is organized as follows. In

Section II, we define the continuous-time bivariate Markov
chain and discuss some of its key properties. The explicit
causal recursive estimators for the bivariate Markov chain are
developed in Section III. Specializations of these recursions for
the MMMP, MAP, and MMPP are presented in Section IV. In
Section V, a numerical example demonstrating the performance
of the causal recursive estimators is presented. Concluding re-
marks are provided in Section VI.

II. CONTINUOUS-TIME BIVARIATE MARKOV CHAIN

Consider a finite-state, homogeneous, separable, continuous-
time bivariate Markov chain

(1)

defined on a probability space. We assume, without loss of gen-
erality, that the state space of is given by .
For each state , we assume that takes values in

. The orders and are assumed known.
The state space of is then given by

(2)

Let . Note that is a subset of
. The process is assumed observable, while the

process is the underlying process. Such a bivariate Markov
chain may be obtained by applying an aggregating deterministic
function to a Markov chain [13], [22]. The processes and
may jump simultaneously. In addition, neither nor need be
Markov. With probability one, all sample paths of are right-
continuous step functions with a finite number of jumps in any
finite interval [1, Theorem 2.1].
The bivariate Markov chain is parameterized by a gener-

ator matrix

(3)

where the set of joint states is ordered lexicographically.
With denoting the probability measure on the given space,

(4)

for and .
The generator matrix can be expressed as a block matrix

, where
are matrices. We assume that and each of its block
diagonal submatrices , , are irreducible.
As an example of two non-Markovian processes that are

jointly Markov, consider the following situation. Let be
a Markov chain with state space . Let
where if and when . Let

where if and when .
The functions and are aggregating functions and hence
neither nor is Markov, see, e.g., [7]. However,
is in a correspondence with and hence is Markov.
Aggregated Markov chains are often encountered in many
practical applications such as in ion-channel modeling, see,
e.g., [2], [4], [8], [28].

A. Density of Observable Process

Assume that the observable process of a bivariate Markov
chain jumps at
where is an arbitrary time origin. Let de-
note the state of in the interval for .
Define to be the state of at the jump time
of . Let . For , let

denote the dwell-time of in state . It
was shown in [14, Lemma 3] that the sampled bivariate Markov
chain has a single irreducible set of states which may be
periodic. The remaining states are transient. Hence, has a
unique stationary distribution, with zero entries for the transient
states. Throughout the paper, we denote realizations of , ,
, , and by , , , , and , respectively.
The process is a Markov renewal process [22]. De-

fine for any ,

(5)

By homogeneity of the bivariate Markov chain,

(6)
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for all ’s. The semi-Markov kernel of is given by

(7)

The derivative of with respect to gives the transition
density . Let denote
the transition density matrix associated with the transition of
from to . We are also interested in the transition probability

(8)

and its transition matrix . Explicit
forms for and were derived in [8], [22], [27] as
follows:

(9)

and

(10)

To simplify notation in the sequel, we shall use to denote
probability as well as a density, as appropriate (cf. [32]). The
exact meaning of expressions involving should be clear
from the context. The density of can be ex-
pressed in terms of the initial distribution of and the transition
density matrix . For and , let

and let . From
the Markov renewal property, the density of the sample path
is obtained from the density of and is
given by

(11)

where denotes a column vector of all ones. Extension of the
likelihood (11) to an intermediate time instant
is also possible by using . The observable sequence

is stationary when is a member of the sta-
tionary distribution of the sampled bivariate
Markov chain for any .

III. EXPLICIT CAUSAL RECURSIONS

In this section, we develop explicit causal recursions for es-
timating the state, the number of jumps, and the total sojourn
time for the bivariate Markov chain. The recursion for the state
was originally developed in [30], [39]. It is given here in terms
of our notation and the context of this paper.

A. State Recursion

The conditional mean estimate of given
can be obtained from the conditional mean estimates

of the indicator functions

otherwise,
(12)

for . When is a jump point of , i.e., ,
, the conditional mean estimate of , , is

given by , and it can be obtained
by scaling the forward density .
The vector of forward densities, for all , follows re-
cursively from the product of the first factors in (11). Define

the row vector , and let
. We have

(13)

where

(14)

are the scaling constants. The scaled causal state recursions as
defined by (13) and (14) are equivalent to (26) and (27) in [22].1

As a byproduct, we can write the likelihood of as (cf. Equa-
tion (11))

(15)

B. Number of Jumps Recursion

Define the indicator function

otherwise.
(16)

The number of jumps of the bivariate Markov chain , from
state to state in , where , is given
by

(17)

where the sum is over the jump points of in . Following
the state augmentation approach of [40], define the row vector

(18)

and note that the conditional mean estimate of the number of
jumps is given by . Hence, we need only derive a causal
recursion for . Let denote a column vector with a one
in the th element and zeros elsewhere. Using (17), the th com-
ponent of , i.e., , is given by

(19)

This expression is evaluated in Propositions 1 and 2 below for
two separate cases, first when , and then for

, regardless of whether or not the underlying chain also
jumps at the same time, i.e., regardless of the values of and .
For the first case, the following integral arises.

(20)

1In [22, Eq. (26)], should be defined as , and the products of the
scaling constants starting from in the subsequent (29), (31), and (32), should
instead start from .
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where denotes matrix transpose. A similar integral was en-
countered in [22]. Each can be computed as follows:

(21)

From [37], we have

(22)

where

(23)

and denotes the lower left block of the referenced matrix.
Note that the definition of is similar to that given in [11, Eq.
(48)] for the MMMP.
For both cases, we will also find it convenient to define

(24)

for , with . A causal recursion
for in the second variable , where , is given as
follows:

(25)

Proposition 1:

(26)

for , with the initialization .
Proof: From [22, Eq. (49)],

(27)

Suppose and . Applying (13) and (15) to
the integrand of (27) with , we obtain

(28)

From (27), we have

(29)

Substituting (28) into (29) and applying (21), it follows that

(30)

Hence,

(31)

Using (25), Equation (31) can be recast in the form of a causal
recursion as follows:

(32)

Applying (9) and (22) in (32), we obtain (26).
For the second case, where , the sum in (19) can be

confined to the jump points of the observable process from
state to state , irrespective of jumps of . Hence,

(33)

Proposition 2:

(34)

for , with the initialization .
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Proof: Suppose is such that and .
Similarly to Proposition 1, 2

(35)

Substituting (35) into (33), we have

(36)

Hence,

(37)

Applying the causal recursions (13) and (25), Equation (37)
can be recast in the form of a causal recursion as follows:

(38)

The result (34) then follows by substituting (9) and (10) into
(38).
Note that in (34) equals the sum of over

all .

C. Total Sojourn Time Recursion

The total sojourn time of in state in the interval
is given by

(39)

2In the first two lines of [22, Eq. 59], should be changed to in four
places. These corrections do not change the end result.

and its conditional mean estimate is given by

(40)

A causal recursion for is obtained from a causal recursion
for

(41)

using . The th component of is given
by

(42)

and a causal recursion can be developed by a similar approach
to that used in the proof of Proposition 1.
Proposition 3:

(43)

for , and with the initialization .

Remarks

The non-causal estimators developed in [22] involve a
so-called backward variable , which is computed by
means of a backward recursion. We remark that the causal
and the non-causal estimators for the state, number of jumps,
and total sojourn time, respectively, compute precisely the
same estimates at time when each is based on the same set
of observations during . From [22, Eq. (28)], it is easy
to see that , assuming the length of the
observation interval is . Whereas is computed
using a backward recursion, is computed here, as
in [34], using the forward recursion given in (25). A similar
approach was used in [36], and references therein, to convert
the forward-backward recursions in the Baum-Welch algorithm
to forward-only recursions.
The main advantage of the causal recursions is that the ob-

servation data does not need to be stored, which yields an on-
line implementation; however, the computational complexity of
the causal recursions is higher than that of the non-causal recur-
sions in [22]. The non-causal recursions have a computational
complexity of , where is the number of observations,
or equivalently, per jump of the observable process.3. By
contrast, the causal recursions have a computational complexity
of per jump. To see this, note that the causal recur-
sions in Propositions 1–3 involve multiplication of a row
vector by an matrix, which yields a computational com-
plexity of per jump. The number of vector estimates that
need to be computed is dominated by in Proposition
2, i.e., . This yields a complexity of . In addi-
tion, the number of jumps recursion in Proposition 1 involves

3In [22], the complexity of the non-causal recursions was stated to be
, but the term is for all jumps. Hence, the actual complexity per

jump of the observable process is .
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the computation of the matrix exponential , which re-
quires arithmetic operations [23], for each .
Hence, the computational requirement due to the matrix expo-
nentials is per jump, which does not contribute materially
to the complexity of the number of jumps recursion.
We remark that the computation time requirement for the causal
recursions can, in principle, be reduced from to
per step, i.e., the same complexity as the non-causal recursions,
by executing the recursions and the computation of the matrix
exponentials in parallel.

IV. CAUSAL RECURSIONS FOR PARTICULAR MODELS

In this section, we specialize the explicit causal recursions to
three particular models of interest. These are the MMMP, the
MMPP, and the MAP. In all three cases, the underlying process
is an irreducible Markov chain. Hence, for all ,
and the generator of the underlying chain is given by [3]

A. MMMP

An MMMP is a special bivariate Markov chain
where is a Markov chain with generator , and
given is a nonhomogeneous Markov chain with gener-
ator when . The MMMP may
be viewed as a bivariate Markov chain with

(44)

(45)

The number of components of the generator matrix that need
to be estimated for anMMMP is , as opposed
to for the general bivariate Markov chain. For the
MMMP process, causal recursions were derived in [11] for the
state, number of jumps, and total sojourn time of the underlying
Markov chain, as well as for the conditional number of jumps
and total sojourn time of the observable process given any state
of the underlying Markov chain. We note that in the notation of
[11, Eq. (45)], the equivalent of includes an additive diag-
onal matrix which is eliminated by the scaling procedure. In the
remainder of this section we show that these recursions coincide
with the more general recursions developed in this paper.
1) State Recursion: The state recursion (13) is equivalent to

the scaled version of state recursion [11, Eq. (62)]. In this case,
the initial distribution of the sampled underlying Markov chain

is given by .
2) Number of Jumps Recursion: Let , , denote

the number of jumps of the underlying chain in . Since the
underlying and observable chains do not jump simultaneously,

can be expressed in terms of the estimators for the as-
sociated bivariate Markov chain as follows:

(46)

The corresponding vector estimate is given by

(47)

Clearly, . Applying (26) in (47), we have

(48)

Since for all whenever , (48) becomes

(49)

which is equivalent to the scaled version of [11, Eq. (63)].
3) Conditional Number of Jumps Recursion: Let ,
, denote the number of jumps in of the observable

chain from state to state while the underlying chain remains
in state . Since the underlying and observable chains of
the MMMP do not jump simultaneously, we have

for all and whenever . The
corresponding vector estimate is given by

(50)

Applying (34), we have

(51)

Noting that

(52)

we can write (51) as follows:

(53)

which is equivalent to the scaled version of [11, Eq. (65)]4.
4) Total Sojourn Time Recursion: The total sojourn time re-

cursion (43) is formally equivalent to the scaled version of the
recursion for the conditional total sojourn time estimation for
the MMMP given in [11, Eq. (66)].

4In the statement immediately following [11, Eq. (65)] regarding scaling
of this recursion, is normalized twice, once when it is replaced
by and then when the rhs of (65) is normalized by . The
correct statement is as follows: “Apply the rhs with replaced
by and replaced by to obtain

.” Numerical implementation of [11, Eq. (65)] was done cor-
rectly, as indicated here.
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5) Conditional Total Sojourn Time Recursion: The condi-
tional mean estimate of the total sojourn time of the bivariate
Markov chain in an underlying state is given by

(54)

The corresponding vector estimate is given by

(55)

Clearly, . Applying (43) in (55), we have

(56)

which is equivalent to the recursion [11, Eq. (64)] after scaling
is applied.

B. MMPP

The MMPP may be viewed as a special bivariate Markov
chain with , , and . When the
conditional Poisson rates of the MMPP are given by the di-
agonal terms of , then and

. Note that the number of components that need to
be estimated in for the MMPP is . The causal recursions
for the MMMP apply straightforwardly to this case. Clearly,

for the conditional number of jumps
recursion (53).

C. MAP

As discussed in [22, Section 2.4] , the MAP may be repre-
sented using a finite-state bivariate Markov chain ,
where represents the modulo-2 counts of the observable
process. Similarly to the MMPP, , , and

. Here, however, may be any rate matrix,
and and may jump simultaneously. A generalization of
the MAP is given by the BMAP for which the observable
process may have multiple arrivals at each arrival epoch. The
BMAP has a similar representation as a finite-state bivariate
Markov chain [22, Eq. (40)]. In the remainder of this sec-
tion, we shall focus on causal recursions for the MAP, but
recursions could also be developed straightforwardly for the
BMAP using the same approach. The parameter of the MAP
is given by , where and ;

for .
1) State Recursion: The state recursion follows straightfor-

wardly from (13) with the initial distribution of the underlying
Markov chain given by .
2) Number of Jumps Recursion: Let , , denote

the number of jumps in of the underlying chain that do not
coincide with a jump of the observable process. In terms of the
estimators for the associated bivariate Markov chain, we have

(57)

Next define the corresponding vector estimate

(58)

Clearly, . Applying (26) in (58), we ob-
tain the causal recursion

(59)

For the MAP, the matrix has the form

(60)

Let , denote the number of jumps in of the
observable process which may possibly coincide with a jump
of the observable process. In this case,

(61)

Define

(62)

Clearly, . Applying (34) in (62), we ob-
tain the causal recursion

(63)

for .
3) Total Sojourn Time Recursion: Let denote the total

sojourn time in of the underlying chain in state . Then
we have

(64)

The corresponding vector estimate is given by

(65)

Clearly, . Applying the causal recursion (43)
to the right-hand side of (65), we obtain

(66)
, where has the form given in (60).

V. NUMERICAL EXAMPLE

In this section, we demonstrate the performance of the causal
recursions (27), (34), and (43) for estimating the number of
jumps and total sojourn time statistics of a bivariate Markov
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Fig. 1. Normalized number of jumps, , and the conditional mean es-
timate .

chain. The recursions were implemented in Python using the
SciPy and NumPy libraries.
We consider the example of a bivariate Markov chain from

[22] with generator given by

(67)

Note that the bivariate Markov chain represented by this gener-
ator is not an MMMP, since is not a diagonal matrix, nor
is it a MAP, since . To demonstrate the performance
of the causal recursions, a realization of the bivariate Markov
chain consisting of jumps of the observable
process , including the initial jump at time , was gen-
erated. The corresponding observable sequence can be charac-
terized by , where denotes the time of the th
jump and is the state of just after time . For this example,
we have set .
Fig. 1 shows, for a single sample path of the bivariate Markov

chain, a plot of the normalized number of jumps from state
to state , i.e., , obtained from the generated data,
and its estimate, , obtained from Proposition 1, at the
observable jump times , . From the figure, we see
that the conditional mean estimate of the normalized number of
jumps follow closely the actual normalized number of jumps.
Similar behavior can be observed for normalized versions of the
other estimates and for different values of ,

.
To provide a more quantitative sense of the performance of

the estimators, we computed the empirical mean squared error
(MSE) for the normalized statistics. Figs. 2–4 show the empir-
ical MSE for the normalized estimates , , and

, respectively. In each case, 50 sample paths of the bi-
variate Markov chain were generated and 95% confidence in-
tervals were computed, as shown in the figures. For each of the

Fig. 2. MSE for .

Fig. 3. MSE for .

normalized estimates, the MSE converges rather quickly to a
small positive value. Similar performance was observed with
other examples of bivariate Markov chains. It should be em-
phasized that the mean squared errors in estimating the number
of jumps and the total sojourn time by the causal estimators of
this paper eventually achieve the performance of the fixed-in-
terval smoothed estimates of [22] when the observations have
been exhausted.
We remark that for a fixed time , the sum of the total sojourn

times over equals . Similarly, .
Therefore, the error in a particular total sojourn time estimate

is upper-bounded by . On the other hand, the number
of jumps, , is unbounded for fixed ; hence, the error in
the number of jumps estimate, , is unbounded. This ac-
counts for the significantly larger MSE results observed for the
estimated number of jumps in Figs. 2 and 3 compared to the re-
sults for the total sojourn time in Fig. 4.
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Fig. 4. MSE for .

VI. CONCLUSION

We have derived explicit causal recursions for estimating the
state, the number of jumps, and the total sojourn time for a bi-
variate Markov chain. Previously, non-causal recursions were
derived for these statistics in [22]. The explicit state recursion
wasoriginally developed in [30], [39]. In addition, explicit causal
recursions for the MMPP and the MMMP were developed in
[11] using a different approachwhich relies on transformation of
measure. We specialized our recursions for the MMMP, its the
special case theMMPP, and theMAP, and showed that the recur-
sions for the MMMP coincide with the recursions in [11]. Using
the same approach, similar recursions can be developed readily
for the batch Markovian arrival process (BMAP). The approach
is also applicable tomultivariateMarkov chains, which are com-
monly used in ion-channel current modeling [3]. We have also
demonstrated the performance of the causal estimators with a
numerical example.
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