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Local Averaging for
Fast Handoffs in Cellular Networks

Brian L. Mark, Member, IEEE and Alexe E. Leu, Member, IEEE

Abstract— We propose a local averaging technique for process-
ing the received pilot signal strength, which can significantly
improve handoff performance in cellular networks. In handoff
algorithms, the received pilot signal strength is typically averaged
to diminish the undesirable effect of the fast fading component.
Unfortunately, the averaging process can substantially alter the
characteristics of path loss and shadowing components, causing
increased handoff delay. The proposed local averaging method
provides significant improvement for handoff delay performance,
especially in the non-line-of-sight case, when the mobile station
turns around a corner. An important feature of local averaging
is that the handoff performance is insensitive to the speed of the
mobile station, such that velocity estimation is not needed. We
develop efficient numerical procedures to compute the handoff
performance metrics under local averaging.

Index Terms— Cellular systems, radio propagation, commu-
nication system performance, handoff algorithms, smoothing
methods, velocity measurement.

I. INTRODUCTION

IN cellular networks, the handoff algorithm determines the
connectivity of a mobile station (MS) to an active set of

base stations. In this paper, we focus on the handoff process
at the physical layer, in which handoff decisions are based on
measurements of pilot signal strengths received from candidate
base stations. The pilot signal strength is modeled by three
components: path loss, shadowing, and fast fading. The signal
measurements are typically processed using averaging filters
to reduce the fast fading fluctuations and hence, the number
of unnecessary handoffs experienced as the MS moves in the
network.

Ideally, the processed signal strength should closely track
the contribution of the two propagation attenuation compo-
nents, i.e., path loss and shadowing. Unfortunately, conven-
tional averaging methods tend to substantially alter the path
loss and shadowing statistics encountered in the received
signal, resulting in large handoff delays. Under conventional
averaging, handoff decisions are made at the sampling instants
such that each handoff decision is based on an average of the
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Fig. 1. Line-Of-Sight (LOS) and Non-LOS (NLOS) trajectories in a
microcellular network.

signal measurements at the current and past handoff instants.
When the MS travels at higher speeds, the distance between
handoff instants increases proportionately and consequently,
the averaged signal measurements do not track the actual path
loss and shadowing components of the pilot signal.

This problem becomes especially acute when the mobile
station leaves the line-of-sight (LOS) of a base station to
which it is assigned. Fig. 1 shows a LOS trajectory from
base station BS0 to BS2 and a non-LOS (NLOS) trajectory
from BS1 to BS2. Corner effects, which have been verified
by measurements [1], are characterized by a 20-30 dB drop
of signal level in 10-20 meters and appear when the MS
turns around a corner and loses the LOS path to the BS.
In corner effect scenarios, the handoff decision is based on
an overly deteriorated version of the pilot signal strength. To
avoid deterioration of the pilot signal strength, the window size
used in conventional averaging schemes should ideally be a
function of the velocity of the MS. Velocity adaptive handoff
algorithms [2], [3] adjust the window size dynamically based
on the estimated speed of the mobile station. However, such
algorithms require accurate velocity estimation, which may
not always be feasible in practice (cf. [4]).

In this paper, we propose a local averaging technique for
processing the received signal strength measurements used to
make handoff decisions. Local averaging has the desirable
feature of being relatively insensitive to the speed of the MS,
obviating the need for accurate velocity estimation or adaptive
adjustment of the averaging window length. In local averaging,
the received signal is sampled at a faster rate than the rate at
which handoff decisions are made. That is, the sampling time
interval is chosen to be smaller than the handoff decision
interval, as opposed to conventional averaging in which the
signal is sampled at the handoff decision instants. Handoff
decisions are based on a local average of the signal samples
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Fig. 2. Framework for handoff analysis.

occurring between successive handoff decision epochs. Local
averaging reduces the fast fading fluctuations of the received
signal strength without substantially altering the path loss and
shadowing components of the signal.

By examining the properties of the locally averaged signal
strength, we show why local averaging yields superior hand-
off performance. Further, we develop an efficient numerical
procedure for evaluating handoff performance under local
averaging. Our numerical results confirm that local averaging
significantly improves handoff performance with respect to
conventional averaging methods. Moreover, handoff perfor-
mance under local averaging is relatively insensitive to the
speed of the MS such that there is no need for velocity
estimation.

Approximate methods for evaluating the performance of
hysteresis-based handoff algorithms using conventional aver-
aging techniques were developed in [2], [5], [6]. These studies
of handoff performance showed that the tradeoff between
number of handoffs and handoff delay depends strongly on
the size of the averaging window. The choice of window
size also depends on the sampling interval. In [7], a discrete-
time handoff analysis approach was developed that provided
new insight into the effect of averaging on hard handoff
performance. In particular, averaging distorts the path loss
and shadowing components of the signal, which increases the
handoff delay. This observation motivated the present study
on local averaging.

A key assumption made in a number of handoff algorithms
proposed in the literature [8], [9], is that the fast fading com-
ponent can be removed from the sample pilot signal strength
measurement through low pass filtering without affecting the
path loss and shadowing components of the signal propaga-
tion model. However, the impact of low pass filtering (i.e.,
averaging) is usually not taken into account. Our proposed
local averaging technique in effect reduces the fast fading
fluctuations without appreciably modifying the path loss and
shadowing components. Thus, local averaging can be applied
to improve the performance of any handoff algorithm that uses
sampled pilot strength measurements. In the present paper,
we focus on the class of hysteresis-based handoff algorithms
due to their simple implementation in practice and analytical
tractability.

The corner effect was studied in [3], where it was concluded
that a short averaging window and a large hysteresis level
should be used to accommodate rapid changes in the mean
signal strength and to avoid unnecessary handoffs. The handoff
algorithms proposed in [3] adapt the averaging window length
to the speed of the mobile station. The pattern recognition-
based algorithm in [10] improves handoff performance in the
presence of corner effects, but it too relies on the assumption

that the velocity of the mobile station can be estimated
accurately so that the averaging window can be adjusted
proportionately. In [2], an adaptive averaging methodology for
handoff is developed, which also relies on velocity estimation.
The local averaging technique proposed in the present paper
significantly improves handoff performance in corner effect
scenarios without relying on knowledge of the mobile velocity.

The remainder of the paper is organized as follows. Sec-
tion II describes a discrete-time framework for handoff analy-
sis, which provides the basis for evaluating the impact of aver-
aging on handoff performance. Section III introduces the local
averaging technique and gives an important result concerning
the statistics of the locally averaged signal strength. Section IV
develops a recursive procedure for calculating the handoff and
cell assignment probabilities under local averaging. Numerical
results showing the performance gains achievable with local
averaging are presented in Section V. Finally, the paper is
concluded in Section VI.

II. A FRAMEWORK FOR HANDOFF ANALYSIS

In this section, we describe the underlying signal propa-
gation model assumed in the paper and present a conceptual
framework (cf. [7], [11]) for analyzing the handoff algorithm
in terms of the five components illustrated in Fig. 2: sampler,
averaging filter, subsampler, classifier, and handoff automa-
ton. The first three components perform the task of sampling
and averaging the pilot signal. The last two components
comprise the actual handoff decision algorithm, which takes
the processed pilot signal strength samples as inputs and
produces a decision at each handoff decision epoch. The
handoff framework provides a basis for making performance
comparisons among different handoff algorithms with respect
to the averaging technique used. In particular, we explain the
concept of local averaging versus conventional averaging in
the context of this framework.

A. Propagation Model

The cellular network consists of a set of base stations. The
ith base station, BSi, located by a position vector bi, lies
at the center of its associated cell i. The coverage area of
cell i is determined by the pilot signal strength received from
BSi. The received signal strength from the ith base station is
modeled in dB representation as follows [12]:

Yi(t) = Γi(t) + Wi(t) + Ri(t), (1)

where Γi(t), Wi(t), and Ri(t) represent, respectively, the path
loss, lognormal shadowing, and fast fading components.
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For LOS propagation we assume a two-slope path loss
model [13], given by

ΓLOS,i(t) = νi − 10μi log10(||r(t) − bi||)
− 10βi log10

(
1 +

||r(t) − bi||
g

)
, (2)

where νi is the base station transmit power, μi and βi deter-
mine the path loss exponent, and g is called the breakpoint.
Typical parameter values for an urban environment are: μi =
2, βi = 1 or 2, and 150 m ≤ g ≤ 500 m. For NLOS
propagation, we assume the following model proposed by
Grimlund [1]:

ΓNLOS,i(t) = ΓLOS,i(t)u(−vt + Dc) + [ΓLOS,i(Dc/v)
+ ΓLOS,i(t − Dc/v)]u(vt − Dc), (3)

where u(t) is the unit step function, v is the mobile speed, and
Dc is the distance from the base station to the corner of a street
block, e.g., in the NLOS trajectory shown in Fig. 1, Dc =
255 m. In the NLOS model given in (3), LOS propagation
is assumed until the mobile rounds the corner of an obstacle,
after which LOS propagation is assumed from an imaginary
transmitter located at the corner having power equal to that
received from the serving base station at the corner.

The shadowing component, Wi(t), is a Gaussian process
with an exponentially decaying autocorrelation function [14]:

RWi(τ) = σ2
Wi

exp
(
−vτ

d0

)
, (4)

where σWi is the standard deviation of the shadowing signal
strength, v is the mobile speed, and the constant d0 is called
the decay factor. The fast fading component, Ri(t), is the
logarithmic scale representation for the envelope of a complex
process zi(t) = zi,I(t) + jzi,Q(t):

Ri(t) = 10 log10

√
|zi,I(t)|2 + |zi,Q(t)|2, (5)

where the in-phase and quadrature components zi,I(t) and
zi,Q(t) are independent Gaussian random processes. The two
components, zi,I(t) and zi,Q(t), are independent when the
angle of incidence of the arriving plane waves is uniformly
distributed over [−π, π]. This model is commonly referred to
as Clarke’s two-dimensional isotropic scattering model [15].
In the NLOS scenario, zi,I(t) and zi,Q(t) are independent,
identically distributed zero-mean Gaussian random processes
and the magnitude of the received complex envelope has a
Rayleigh distribution at any time t. In the LOS case, zi,I(t)
and zi,Q(t) are independent Gaussian random processes with
non-zero means and the magnitude of the received complex
envelope has a Ricean distribution. As will be discussed in
Section III-B, the proposed local averaging technique reduces
the fast fading component in both NLOS and LOS scenarios.

B. Sampler

The received pilot signals are sampled at discrete time
instants tn = nτs where n is a nonnegative integer and τs

is the sampling interval. The sampling distance is defined by
ds = vτs, where v is the mobile speed. In the discrete-time

representation, the received signal strength from the ith base
station at time tn is given by

Yi[n] = Γi[n] + Wi[n] + Ri[n], (6)

where Yi[n] � Yi(tn), Γi[n] � Γi(tn), Wi[n] � Wi(tn), and
Ri[n] � Ri(tn). When the sampling interval satisfies

τs ≥ 0.38λc/v, (7)

where λc is the carrier wavelength, the fast fading samples
{Ri[n]} can be treated as independent, identically distributed
Rayleigh or Ricean random variables (cf. [15]). We shall as-
sume throughout the paper that the sampling interval satisfies
(7).

C. Averaging Filter

The purpose of the averaging filter is to reduce the fast
fading component Ri[n] in the received signal strength Yi[n].
Let {fav[n]}n≥0 denote the discrete-time averaging window.
We assume that

∑∞
n=0 fav[n] = 1. The averaged pilot signal

strength of BSi at time n is denoted by

Y i[n] � fav[n] � Yi[n] = Γi[n] + W i[n] + Ri[n], (8)

where � denotes discrete-time convolution and the averaged
versions of the path loss, shadowing, and fast fading compo-
nents are denoted by Γi[n], W i[n], and Ri[n], respectively.

D. Subsampler

The time interval between handoff decisions is denoted by
τh. In practice, the handoff interval cannot be chosen to be
too small since the bandwidth for signaling is limited. For
example, in the GSM standard, τh = 0.48 s. We shall assume
that τh is an integer multiple of the sampling interval τs,
i.e., τh = qτs where q ≥ 1. Handoff decisions are based
on the value of the averaged pilot signal strength Y i[n] at the
handoff decision instants n = lq, where l ≥ 0 is an integer.
To analyze handoff performance, it is convenient to consider
the subsampled sequence

Xi[k] � Y [kq] = μi[k] + Si[k] + Zi[k],

where μi[k] � Γi[kq], Si[k] � W i[kq], and Zi[k] � Ri[kq]
are the subsampled versions of the path loss, shadowing,
and fast fading components after averaging. In conventional
handoff algorithms, the sampling interval and handoff decision
interval are the same, i.e., q = 1, and there is no need to
subsample the signal Y i[n].

We now define the concept of local averaging in contrast to
the conventional method of averaging the pilot signal strength
in handoff algorithms. Local averaging is defined by the
following two properties:

1) The sampling interval is less than the handoff interval,
i.e., q > 1.

2) The averaging filter defined by fav[n] satisfies fav[n] =
0 for n ≥ q. Equivalently, the averaging filter has finite
support of length Nav < q.

In other words, the signal value Xi[k] used in making the kth
handoff decision is a local average of the sampled pilot signal
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strength values Yi[n] in the range (k−1)q < n ≤ kq. By con-
trast, in conventional averaging, the signal value Xi[k] is an
average of the pilot signal strength values taken at the handoff
decision instants. We shall show that handoff performance can
be improved significantly by replacing conventional averaging
with local averaging.

E. Signal Classifier

The role of the signal classifier is to map the processed pilot
signal, Xi[k], into a sequence of symbols. The definition of the
signal classifier depends on the particular handoff algorithm.
In the remainder of the paper, we shall focus on the class
of hysteresis-based hard handoff algorithms (cf. [5]). In this
type of handoff algorithm, the mobile station (MS) selects
one of two candidate base stations, BSi and BSj , based on
comparing the relative signal strength XΔ[k] = Xi[k]−Xj[k]
to hysteresis levels hi and −hj . If the MS is assigned to BSi at
time k−1, a handoff to BSj occurs at time k if XΔ[k] ≤ −hj .
Conversely, if the MS is assigned to BSj at time k − 1, a
handoff from BSj to BSi occurs at time k if XΔ[k] ≥ hi.

The hysteresis levels partition the real line into three disjoint
intervals defined as follows:

I = [hi,∞), H = (−hj, hi), J = (−∞,−hj], (9)

where I is called the assignment region for BSi, H is the
hysteresis region, and J is the assignment region for BSj .
The handoff behavior of the MS can be couched in terms of
a classification of the value XΔ[k] into one of these three
intervals. The assignment regions at system initialization time
t0 are I0 = [0,∞) and J0 = (−∞, 0).

The signal classifier maps the received signal XΔ[k] into a
symbol L[k] for k ≥ 1 defined on the alphabet S = {I, H, J}
as follows:

L[k] =

⎧⎨
⎩

I, if XΔ[k] ∈ I,
H, if XΔ[k] ∈ H,
J, if XΔ[k] ∈ J ,

(10)

for k ≥ 1 and

L[0] =
{

I0, if XΔ[k] ∈ I0,
J0, if XΔ[k] ∈ J0.

(11)

We shall treat subsequences of the sequence {L[k]}k≥0 as
strings over the alphabet S. For L ∈ S, we denote by Lk the
string L . . . L (k times), when k ≥ 1 and L0 denotes the null
string.

F. Handoff Automaton

The handoff mechanism can be specified by a finite automa-
ton A = (Q, Σ, ν), where:

• Q = {qi, qj}, where state qi represents assignment of the
MS to BSi and state qj represents assignment to BSj .

• Σ = {I, H, J} is the input alphabet.
• ν is the state transition function, ν : Q × Σ −→ Q, that

assigns the next state given the current state and input
symbol. The transition function for hysteresis-based hard
handoff, ν(q, l), is defined as follows:

ν(q, l) �

⎧⎨
⎩

qi, if l = I ,
q, if l = H ,
qj , if l = J .

(12)

III. PROPERTIES OF THE LOCALLY AVERAGED SIGNAL

The signal propagation model discussed in Section II-A is
defined in terms of the path loss and statistical characteriza-
tions of the shadowing and fast fading components. Ideally,
the handoff decision should be determined by the path loss and
shadowing components of the received signal strength, since
the fast fading fluctuations occur on a very short time-scale.
Hence, the ideal averaging method for optimum handoff per-
formance would eliminate the fast fading component without
altering the path loss and shadowing components.

Conventional averaging methods can substantially modify
the path loss and the statistical characteristics of the shadowing
component, which may result in poor handoff performance
especially when the mobile turns around corners. In such
situations, the sudden changes in path loss and shadowing tend
to be smoothed out too much by the averaging filter, making
it difficult to track the true path loss encountered by the pilot
signal. In this section, we show that local averaging essen-
tially preserves the characteristics of path loss and shadowing
components of the received pilot signal while still reducing
the fast fading component to a sufficiently small level.

A. Path Loss Component

The concept of local averaging can be formalized in terms
of local averages defined as follows:

〈Γ, uk〉 �
∫

Γ(t)uk(t)dt,

where {uk} is a collection of nonnegative averaging functions,
which satisfy

supp uk ⊂
[
tk − δ

2
, tk +

δ

2

]
and

∫
uk(t)dt = 1,

where supp uk denotes the support of uk. Intuitively, one
should be able to obtain a good approximation of the original
signal Γ(t) from the local averages if δ is sufficiently small.
Indeed, results have been obtained (cf. [16]) which provide
sufficient conditions on δ and the sampling interval τs for
Γi(t) to be uniquely reconstructed from local averages. In
particular, suppose that the averaging functions are even and
nonincreasing on [0, δ

2 ], e.g.,

uk(t) =
1
δ
1[tk− δ

2 ,tk+ δ
2 ](t),

where 1A denotes the indicator function on the set A. In [16]
(Theorem 2.3), it is shown that a function Γ(t), bandlimited to
[−Ω, Ω] can be uniquely reconstructed from the local averages
〈Γ, uk〉 with tk = kπ

Ω if 0 < δ < 1.8830453π
Ω . This result can be

viewed as a generalization of the classical Shannon sampling
theorem.

The local averaging scheme described in Section II may be
viewed as a special case in which the averaging functions are
defined as follows:

uk(t + tk) =
1

Nav

Nav∑
k=1

δ(t−kτs−Navτs/2),

where δ(t) denotes the Dirac delta function, τs is the sub-
sampling interval, and Nav is the number of samples used for
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Fig. 3. The shadowing autocorrelation scaling factor α(Nav, v) for a
rectangular averaging filter.

local averaging. By appealing to the result of [16], one sees
that the local averaging scheme essentially preserves the path
loss component of the received signal strength measurements.

B. Autocovariance Function

Let WΔ[n] � Wi[n]−Wj [n] denote the nth sample of the
relative shadowing component prior to averaging. Let SΔ[k] �
Si[k] − Sj [k] and ZΔ[k] � Zi[k] − Zj [k] denote the relative
shadowing and fast fading component samples after averaging
at the kth handoff decision epoch. The following proposition
shows that under local averaging, the autocovariance function
KXΔ(k) of the process {XΔ[k]} is essentially the same as the
autocovariance function KWΔ(k) of the relative shadowing
component, {WΔ[kq]}.

Proposition 1: Under local averaging with an averaging
filter fav[n],

KXΔ(l) = KSΔ(l) + KZΔ(l), (13)

where KSΔ(l) = α(Nav, v)KWΔ(lq) and KZΔ(l) =
β(Nav)δ[lq] with

α(Nav, v) =
Nav−1∑
j=0

Nav−1−j∑
l=−j

fav[l+j]fav[j]e−lvτs/d0 , (14)

β(Nav) =
50

3(ln 10)2
fav[0], (15)

KWΔ(lq) = σ2
WΔ

e−lqvτs/d0 , (16)

where σ2
WΔ

= 2σ2
Wi

and δ[k] denotes the Kronecker delta
function defined by δ[0] = 1 and δ[k] = 0 for k 
= 0. Here, v
denotes the MS speed, and d0 is the decay factor associated
with the autocorrelation function of the shadowing component.

Proposition 1 (see Appendix A for a proof) implies that the
process {SΔ[k]} can be expressed in terms of a first-order
autoregressive (AR) model as follows:

SΔ[k] = ãSΔ[k − 1] + U [k], k ≥ 0, (17)

where {U [k]} is a zero mean, stationary white Gaussian
process with variance σ2

U and

ã =
√

α(Nav, v)e−vτhdo , σ2
U = (1 − ã2)σ2

WΔ
.

The AR representation (17) of SΔ[k] greatly simplifies the
handoff analysis as we shall see in the next section.

For concreteness, consider the case when the averaging
filter is rectangular, i.e., defined by fav[n] = 1/Nav, n =
0, 1, · · · , Nav−1. In this case,

α(Nav, v) =
1

N2
av

Nav−1∑
l=−Nav+1

(Nav − |l|)elvτs/d0 . (18)

Fig. 3 plots the scaling factor in (18) with Nav ranging
from 1 to 15. From the figure, we observe that the variation
of the surface is at most 2% from minimum value of 1,
when the MS speed ranges from 1 m/s to 20 m/s. Since
α(Nav, v) ≈ 1, we have that KSΔ(l) ≈ KWΔ(lq). Thus,
the statistical properties of the shadowing component are
essentially invariant under local averaging. For the rectangular
averaging window, β(Nav) in (15), which determines the
variance of the residual fast fading component, is inversely
proportional to the parameter Nav. Hence, local averaging can
be parameterized so as to reduce the fast fading component
substantially. We remark that this property holds for both the
LOS and NLOS fast fading models discussed in Section II-A.

IV. HANDOFF ANALYSIS

In this section, we develop numerical procedures to calcu-
late the handoff performance metrics of interest when local
averaging is employed.

A. Classifier Output String

The output of the signal classifier at each time k is a symbol
L[k] from the alphabet S = {I, H, J}, representing the
assignment region. As the mobile moves along a trajectory, the
classifier outputs a string of letters {L[k] : k = 0, . . . , K}. We
use the following notation to denote the substring consisting
of L[k] and the preceding r−1 characters in the output string:

L[k\r] � (L[k − r + 1], . . . , L[k]). (19)

Let Sr be the Cartesian product of the set S with itself, r
times. We denote the probability that the string L[k\r] ∈ Sr

occurs at the output of the signal classifier at time k as follows:

pk(L[k\r]) � P{XΔ[k\r] ∈ L[k\r]}, (20)

where XΔ[k\r] = (XΔ[k − r + 1], . . . , XΔ[k]).
To evaluate probabilities of the form (20), we introduce a

family of operators F = {Ik,Hk,Jk}k≥0 defined on the space
of probability density functions (pdfs) Ψ : R → [0, 1]. The
operators I0, J0, and H0 are associated with the assignment
regions I0, J0, and H0 � ∅, respectively. For k ≥ 1, the
operators Ik, Jk, and Hk are associated with the assignment
regions I, J , and H, respectively. The operator Lk ∈ F is
defined as follows (cf. [7]):

LkΨ(s) =
∫∫

u+z∈L

Ψ(u)fk+1(s|u)fZk−1(z) du dz, (21)
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where Lk corresponds to the particular assignment region in
the set {I,H,J , I0,J0} associated with Lk . Here,

fk(s|u) =
1

σU

√
2π

exp
{
− (s − τ)2

2σ2
U

}

is the conditional density of μΔ[k]+SΔ[k] given that μΔ[k−
1] + SΔ[k − 1] = u, and fZk−1(z) denotes the pdf of the
residual relative fast fading component, ZΔ[k]. Note that
fZk

(z) = fZi,k
(z) � fZj,k

(−z), where fZi,k
(z) and fZj,k

(z)
are the pdfs of Zi[k] and Zj [k], respectively. Hence, fZk

(z)
is an even function. Applying the central limit theorem, the
pdf fZk

(z) can be approximated by a Gaussian pdf with mean
zero and variance 50π2

3Nav(ln 10)2 .
By using the fact that the pdf fZk

(z) is an even function,
one can show that the operator Hk can be simplified as
follows:

Proposition 2:

HkΨ(s) =
∫
H

Ψ(u)fk(s|u)du.

Proposition 2 shows that the operator Hk is invariant with re-
spect to the pdf, fZk

(z), of the residual fast fading component,
ZΔ[k]. This property does not hold for the other operators in
F . The probability in (20) can be expressed compactly as
follows:

Proposition 3:

pk(L[k\r]) =
∫
L[k]

LkLk−1 . . .Lk−r+1fk−r+1(s)ds,

where L[k] is the interval associated with the symbol L[k].
Proposition 3 follows from the first-order AR representation
of SΔ[k] given in (17) and the assumption that {ZΔ[k]} is
a sequence of independent random variables, which follows
from the sampling condition (7).

B. Cell Assignment and Handoff Probabilities

The key performance metrics of interest are the cell as-
signment and handoff probabilities. We denote by Pi[k] and
Pj [k] the probability that the mobile is assigned at time k
to base stations BSi and BSj , respectively. The assignment
probabilities can be expressed as follows [7]:

Pi[k] = pk(I0H
k) +

k∑
r=1

pk(IHr−1), (22)

Pj [k] = pk(J0H
k) +

k∑
r=1

pk(JHr−1). (23)

Similarly, we denote the handoff probability at time k from
BSi to BSj and from BSj to BSi by Pij [k] and Pji[k],
respectively. The cell handoff probabilities for k ≥ 1 can be
expressed as follows [7]:

Pij [k] = pk(I0H
k−1J) +

k∑
r=2

pk(IHr−2J), (24)

Pji[k] = pk(J0H
k−1I) +

k∑
r=2

pk(JHr−2I). (25)

To calculate the assignment and handoff probabilities effi-
ciently, we define a sequence of functions {gk(s), k ≥ 1} as
follows:

gk(s) � Ik−1fk−1(s) + Hk−1gk−1(s), k ≥ 2, (26)

with the initialization g1(s) = I0f0(s). The probability of
assignment to BSi can be computed recursively as follows1.

Proposition 4:

Pi[k] = pk(I) +
∫

H

gk(s)ds, k ≥ 1, (27)

with the initial condition Pi[0] = p0(I0). The probability
pk(I) is given as follows:

pk(I) =
∫∫

s+z∈I

fk(s)fZk
(z) ds dz, k ≥ 0. (28)

The proof follows from Propositions 2 and 3, together with
expression (23) for the assignment probability and defini-
tion (26). Proposition 4 provides an efficient procedure for
computing the assignment probabilities. Note that the second
term on the right side of (27) does not depend on the
residual relative fast fading component. The dependence of the
assignment probabilities on the residual fast fading component
is completely captured by the term pk(I).

The handoff probability Pij [k] can also be expressed2 in
terms of the functions gk(s).

Proposition 5:

Pij [k] =
∫∫

s+z∈J

gk(s)fZk
(z)ds dz, k ≥ 2,

Pij [1] = p1(I0J).

C. Crossover Point and Mean Number of Handoffs

Two important handoff performance metrics that can be
derived from the assignment and handoff probabilities are the
crossover point and the mean number of handoffs (cf. [5], [7]).
The crossover point C is defined for the straightline trajectory
connecting two base stations BSi and BSj as the point at
which the probability of the mobile station being assigned to
BSi drops below 0.5:

C = argmin{1 ≤ k ≤ K : Pi[k] < 0.5}. (29)

The mean number of handoffs, Nho, along a trajectory in
which handoffs occur between two candidate base stations
BSi and BSj is given by

Nho =
K∑

k=1

(Pij [k] + Pji[k]) . (30)

1The result for assignment to BSj is analogous.
2The result for handoff from BSj to BSi is analogous.
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Fig. 4. Mean number of handoffs and crossover point for NLOS scenario
using CAexp(10).
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scenario using CAexp(10).

V. NUMERICAL RESULTS

In this section, we present numerical results illustrating
handoff performance under local averaging for both line-
of-sight (LOS) and non-line-of-sight (NLOS) trajectories, as
shown in Fig. 1. For the handoff scenarios considered in our
study, the path loss is assumed to follow the two-slope model
discussed in Section II-A with μi = 2, βi = 2 and g = 150 m
for i = 0, 1, 2, 3. For the NLOS trajectory, the corner effect is
assumed to take place 5 m into the corner, so that the mobile
moving from BS0 to BS1 experiences the corner effect at a
distance of 255 m from BS0. As discussed earlier, the corner
effect occurs as the mobile turns around the corner of a street
block, resulting in a large drop in received signal strength from
the serving base station over a short distance.
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Fig. 6. Mean number of handoffs (HOs) and crossover point (COP) for
NLOS scenario using LArect(10).

We assume correlated lognormal shadowing with a standard
deviation of σWi = 6 dB. The hysteresis level is assumed
to be independent of the base station and is denoted simply
by h. The decay factor d0 in (4) is set such that shadows
are decorrelated to 0.1σ2

Wi
at 46 m, i.e., d0 = 19.98 m.

The sampling time interval for handoff decision instants is
chosen as τh = 0.48 s, which is the same as in the GSM
standard [17]. Performance curves were obtained over a range
of mobile speeds, i.e., 2, 6, 10, and 14 m/s.

Figs. 4 and 5 show the handoff performance curves when
conventional exponential averaging is used in the NLOS and
LOS scenarios, respectively. The exponential averaging filter
is given by

fav[n] =
e−n/Nav

1 − e−1/Nav
, n = 0, 1, · · · ,

where Nav = 10. We denote this averaging technique by
CAexp(10). In the NLOS scenario, the mean number of
handoffs is approximately one over the entire range of hys-
teresis values. Here, the exponential averaging filter is able to
eliminate the effect of fast fading with respect to the mean
number of handoffs. The main point to observe from Figs.
4 and 5 is the large spread in the crossover point curves,
indicating a high sensitivity to the mobile speed, in both the
NLOS and LOS scenarios.

Figs. 6 and 7 show the handoff curves in the NLOS and LOS
scenarios when local averaging with a rectangular window
with Nav = 10 sample points is used. The averaging filter
in this case is denoted by LArect(10). The mean number of
handoffs under conventional averaging is smaller than when
local averaging is applied, as should be expected. However,
a much better tradeoff between the mean number of hand-
offs and the crossover point can be achieved with the local
averaging technique. For example, if the hysteresis value lies
in the range 5 − 10 dB, the mean number of handoffs for
the NLOS scenario is approximately one, while the crossover
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Fig. 7. Mean number of handoffs (HOs) and crossover point (COP) for LOS
scenario using LArect(10).

point lies in the range 245 − 255 m for the entire range of
mobile speeds. In the LOS case, for the same hysteresis range,
the mean number of handoff lies in the range 1 − 4 and the
crossover point lies in the range 252 − 280 m. Observe that
when conventional averaging is used, there is no hysteresis
value in the NLOS scenario that can be chosen to achieve a
crossover point less than 260 m. In the LOS scenario, the best
crossover point performance is achieved when h = 0 dB, in
which case the crossover point lies in the range 260− 310 m,
corresponding to a mean number of handoffs in the range
1 − 4. We point out that the mean number of handoffs under
local averaging could be further reduced using a drop timer
mechanism (cf. [18]). Our results show that local averaging
achieves superior handoff performance over a wide range of
mobile speeds without the need for velocity estimation.

VI. CONCLUSION

We proposed a local averaging technique for handoff al-
gorithms to reduce handoff delay. The local averaging tech-
nique is able to track sudden changes in the received signal
strength and does not require adaptation to the mobile station
velocity. We presented a general framework for analyzing
handoff performance with respect to the averaging method
and developed an efficient numerical procedure to evaluate
the performance of hysteresis-based handoff algorithms em-
ploying local averaging. Our numerical results showed that
the local averaging technique significantly improves handoff
performance for both line-of-sight (LOS) and non-line-of-
sight (NLOS) mobile trajectories. The performance gain with
respect to conventional averaging increases with the speed
of the mobile. By reducing the impact of corner effects,
local averaging can greatly improve handoff performance in
microcellular environments.

APPENDIX

A. PROOF OF PROPOSITION 1

The autocovariance function of XΔ[k] can be expressed as

KXΔ(l) = KSΔ(l) + KZΔ(l) (31)

= KWΔ
(lq) + KRΔ

(lq), (32)

where (31) follows from independence of the processes
{SΔ[k]} and {ZΔ[k]} and (32) follows from a property of
subsampling. We have that

KWΔ
(m) = fav[m] � fav[−m] � KWΔ(m) (33)

= α(Nav, v)KWΔ(m), (34)

where α(Nav, v) is defined in (14). Equation (33) follows from
a property of discrete-time linear filters, while (34) is derived
using (16). Assuming that the sampling condition of (7) is
satisfied, the samples RΔ[k] can be considered independent,
so that KRΔ(m) = 50

3(ln 10)2 δ[m]. We then have

KRΔ
(m) = fav[m] � fav[−m] � KRΔ(m) (35)

= β(Nav)δ[m], (36)

where β(Nav) is defined in (15). Combining (32), (34), and
(36) yields the result.
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