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Abstract—A new statistical model, in the form of a hidden
bivariate Markov chain observed through a Gaussian channel, is
developed and applied to spectrum sensing for cognitive radio.
We focus on temporal spectrum sensing in a single narrowband
channel in which a primary transmitter is either in an idle or
an active state. The main advantage of the proposed model,
compared to a standard hidden Markov model (HMM), is that it
allows a phase-type dwell time distribution for the process in each
state. This distribution significantly generalizes the geometric
dwell time distribution of a standard HMM. Measurements taken
from real data confirm that the geometric dwell time distribution
characteristic of the HMM is not adequate for this application.
The Baum algorithm is used to estimate the parameter of
the proposed model and a forward recursion is applied to
online estimation and prediction of the state of the cognitive
radio channel. The performance of the proposed model and
spectrum sensing approach are demonstrated using numerical
results derived from real spectrum measurement data.

Index Terms—Cognitive radio, spectrum sensing, hidden
Markov model, bivariate Markov chain, Baum algorithm.

I. INTRODUCTION

PECTRUM scarcity in wireless communications can be
S addressed, to some extent, through cognitive radio, with-
out increasing the allocated bandwidth. In this regard, a critical
aspect of cognitive radio is the ability to sense the wireless
environment for unused portions of the spectrum. Over the
past decade, several paradigms for spectrum sensing have
emerged. In the temporal spectrum sensing paradigm, the
cognitive radio senses a given channel for idle time intervals of
the primary or licensed transmitter, to allow a secondary user
to temporarily access the channel during such intervals without
causing harmful interference to the primary system [1]. An
alternative to temporal sensing is spatial spectrum sensing,
which capitalizes on the geographical distance and propaga-
tion loss between the primary and secondary systems [2].
In wideband spectrum sensing, the focus is on the detection
of idle spectrum across a band of frequencies [3]. Many
of the spectrum sensing schemes proposed in the literature
incorporate some form of collaboration among the cognitive
radio nodes to improve sensing performance [1], [4]. Reviews
of recent progress and issues in the area of spectrum sensing
can be found in [5], [6].
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In this paper we focus on temporal sensing of a single nar-
rowband channel licensed to a primary transmitter that alter-
nates between active and idle states with randomly distributed
state dwell times. As an example, Fig. 3 in Section V-A
shows a two-hour snapshot of a paging signal, obtained from
real spectrum measurements [7], where the active and idle
states can be clearly distinguished. This paper makes several
contributions to temporal spectrum sensing. A new statistical
model, in the form of a discrete-time hidden bivariate Markov
chain, is proposed to characterize the transmission pattern
of a primary user. We derive properties of the model and
show that the dwell time in a given state has a discrete
phase-type distribution, which is more suitable for modeling
a cognitive radio channel than the geometric dwell time
distribution of a standard hidden Markov model (HMM).
Empirical evidence presented in [8] and in this paper (see
Section V-A) suggest that the active and idle periods of the
bursty transmissions of a wireless local area network are
not geometrically distributed. To incorporate the effects of
propagation loss and lognormal shadowing into the model, we
assume that the bivariate Markov chain is observed through a
memoryless Gaussian channel. The resulting hidden bivariate
Markov model (HBMM) may be viewed as an extension of
the standard HMM.

We apply the Baum algorithm [9] to estimate the parameter
of the HBMM given spectrum measurement data. An HBMM
parameter estimate can be used in two ways: (i) to generate
simulated data for performance evaluation of cognitive radio
networks; (ii) as input to a forward recursion for estimating
and predicting the state of a primary transmitter in real-time.
The estimated and predicted states from the forward recursion
are used by the cognitive radio to make spectrum access
decisions. The proposed HBMM model and HBMM-based
spectrum sensing scheme are validated using real spectrum
measurement data from [7]. The performance of the HBMM-
based spectrum detector is compared to that of an energy
detector, which is a simple spectrum sensing scheme based on
comparing the received signal strength to a threshold (cf. [10]).

Most of the existing work on temporal spectrum sensing has
applied the more standard univariate Markov chain to model
the state process (cf. [11]-[16]). In [8], a continuous-time
semi-Markov process was proposed as a model for the state
process, but no estimation algorithms were developed. Our
work may be seen as a generalization of some prior cognitive
radio models in the form of hidden Markov processes. In [11],
[12], a standard HMM in the form of a univariate Markov
chain observed through a memoryless Gaussian channel was
applied to cognitive radio. In [14], it was validated empirically
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that in the 928 — 948 MHz paging band, spectrum occupancy
of the primary user follows a Markovian pattern. In [15], a
standard HMM with a finite number of states and a finite
output alphabet was used. The adequacy of such a model
was questioned in [17]. In a recent paper, optimality of
a log-likelihood detector based on a standard HMM was
studied [13]. A review of HMMs can be found in [18].

The hidden bivariate Markov model proposed here may be
viewed as an instance of a hidden semi-Markov model. In
the latter model, the dwell time of the process in each state
is not necessarily geometrically distributed. Ferguson [19]
proposed to supplement the standard HMM with an explicit
durational distribution whose parameter is estimated along
with the parameter of the HMM. An overview of hidden semi-
Markov models, including HMMs with explicit durational
models, can be found in [20]. An advantage of the model
proposed here is that estimation of its parameter is done
through the Baum algorithm, which is significantly simpler
than an algorithm for estimating an explicit durational model.
The explicit durational model allows more control over the
exact form of the durational distribution, but this advantage is
often hard to exploit since the desired form of this distribution
is not typically known a priori in applications.

The remainder of the paper is organized as follows. An
overview of the proposed system model for spectrum sensing
is given in Section II. In Section III, we describe the HBMM
and develop some of its key properties. In Section IV, we
present the Baum algorithm for estimating the parameter of
the HBMM and develop forward recursions for state estima-
tion and prediction. In Section V, we give some numerical
examples to evaluate the proposed model in spectrum sensing
applications using data derived from real spectrum measure-
ments. In Section VI, we provide concluding remarks.

II. SYSTEM MODEL

In this section, we discuss the application of the proposed
HBMM to temporal spectrum sensing.

A. Hidden bivariate Markov model

We denote a discrete-time bivariate Markov chain by {Z; =
(X¢,S:),t=0,1,...}. The process { X;} is referred to as the
state process, while {S;} is the underlying process. The value
of {X;} at time ¢ represents either the idle (X; = 1) or active
(X; = 2) state of the primary transmitter. The role of the
underlying process {.S;} is to induce a phase-type distribution
on the dwell times of {X;} in the idle or active states. The
number of states, r, that {S;} may take on corresponds to the
number of phases in the phase-type distribution. We refer to
r as the order of the bivariate Markov chain. The bivariate
Markov chain is discussed more formally in Section III-A.

We assume that the wireless propagation environment is
characterized by a standard path loss with lognormal shadow-
ing model. For a receiver at a distance § from the primary
transmitter, the overall log-distance path loss with shadowing,
measured in dB, is given by [21, pp. 40-41],

- o
Lp(5) = Lp(50) + IOKZIOglO <5—0>:| +6(dB)a é > 50, (1)
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initial parameter estimate

¢=(r,G,u,R)
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sequence Baum Algorithm estimate
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Fig. 1. Block diagram of parameter estimation procedure.

where Jp denotes the close-in reference distance, L, (dp)
denotes the average log-distance path loss at the reference
distance do, x denotes the path loss exponent, and €(4p) rep-
resents random shadowing effects. The average log-distance
path loss L,(dp) is typically calculated using a free-space
path loss formula or through field measurements. The path
loss exponent « varies for different propagation environments.
The random variable €gp) is assumed to be normal with
zero mean and variance o2. We have ignored fast fading,
since it can be reduced effectively by an averaging filter (cf.
[22]). Based on the propagation model (1), the received signal
strength Y3, in units of dBm, is conditionally Gaussian given
the state X;. Hence, the observable process {Y;} is obtained
by observing the state process {X;} through a Gaussian
memoryless channel. This results in the proposed HBMM.

B. Parameter Estimation

The HBMM parameter, denoted by ¢ = (7, G,pu,R),
consists of an initial probability distribution 7, a transition
matrix G, a vector of mean observed signal strengths p, and a
vector of observed signal strength variances R. An appropriate
model order can be determined by choosing a value of r that
yields the best fit of the data in terms of the state dwell time
distributions. Higher values of r generally allow more accurate
modeling of the dwell-time distributions, but also require more
observation data to avoid overfitting of the model. The impact
of the choice of r is studied numerically in Section V.

In Section IV-B, we apply the Baum algorithm to estimate
the HBMM parameter from real data in the maximum like-
lihood sense. Given an initial parameter estimate ¢ and a
sequence of signal strength observations {Y;,t = 0,...,T},
a parameter estimate ngS with higher likelihood is computed.
The procedure is depicted in Fig. 1. The parameter estimate
¢? could then subsequently be used to generate simulated data
for performance evaluation of cognitive radio systems. Of the
components in the parameter estimate qAS, the most critical is
the estimate G of the transition matrix, which determines the
dynamics of the primary transmitter state process. Different
propagation models and shadowing variance can be repre-
sented by adjusting /& and R as appropriate, while retaining
the same G. In Section V, we present some numerical results
using this approach.

C. Spectrum Sensing

In the spectrum sensing application, time is divided into
slots. Each time slot consists of a sensing interval followed by
a (longer) transmission interval. During the sensing interval,
spectrum measurements are collected and processed by the
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Fig. 2. Block diagram of state estimation and prediction procedure.

cognitive radio, and then a decision is made regarding the
state of the primary transmitter on the channel. If the channel
is detected as being idle, the cognitive radio may transmit
during the transmission window. Otherwise, the cognitive
radio remains silent during the transmission window. In Sec-
tion IV-C, we develop a forward recursion to compute an
estimate )A(Hm‘t € {1,2}, where m > 0, of the primary
transmitter state at time ¢ + m given the observations up to
and including time ¢. Our approach to spectrum sensing of a
cognitive radio channel consists of estimating the parameter
of an HBMM from training data using the procedure in Fig. 1,
and then applying this parameter into the recursion for state
estimation and prediction from any given test sequence. Since
spectrum sensing is performed online, it is important that the
state estimation and prediction procedure be computationally
efficient. For this reason, smaller values of the HBMM model
order r are preferred. The procedure is illustrated in Fig. 2.

In practical hardware implementations, there exists a latency
between the time the channel is sensed and the time when
the cognitive radio can begin or stop its data transmission
on the channel, according as the channel is sensed as idle or
busy at the current time [23], [24]. With the proposed m-step
predictive detector, a cognitive radio can begin vacating the
channel several time slots in advance of the actual arrival of
the primary user and thus avoid collision with the primary
user. The predictive capability of the proposed detector also
allows the cognitive radio to prepare to access the channel in
advance of the departure of the primary user from the channel,
resulting in higher utilization of the temporal spectrum holes.
In a system with multiple channels, the predictive information
provided by the HBMM-based detector could be used in
a channel selection scheme to minimize the overhead of
switching among different channels.

III. HIDDEN BIVARIATE MARKOV MODEL

In this section, we describe the HBMM and develop some of
its properties. We use capital letters to denote random variables
and lower case letters to denote their realizations. We use
the notation vl’“ to denote a sequence {vj, vj41,...,05}. We
also use the generic notation of P(-) for probability measure
and p(-) for a density or probability mass function (pmf) as
appropriate.

A. Bivariate Markov Chain

Let {Z; = (X4, St),t = 0,1,...} denote a discrete-time,
finite-state, homogeneous bivariate Markov chain. We assume
without loss of generality that the state process {X;} takes
values in X = {1,...,d}, and that the underlying process
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{S;} takes values in S = {1,...,r}. In the spectrum sensing
application considered in this paper, we always have d = 2,
i.e., there are two states representing the active and idle states
of the primary transmitter. The bivariate Markov chain {Z;}
takes values in Z = X x S. The state pairs (a,i) € Z
are ordered lexicographically. Let G = {gq»(ij)} denote the
transition matrix of the bivariate Markov chain, where

9ab(ij) = P(Z11 = (b, 5) | Zi = (a,19)). 2)

The transition matrix G is conveniently written as a block
matrix G = {Gup, a,b € X}, where Gop = {9a6(i), 1,7 € S}
is an r x r matrix. We assume that G and {G..,a € X}
are irreducible. The underlying process {S;} is Markov with
transition matrix @ if and only if Zbex Gap = @ indepen-
dently of a. A similar condition can be given for the state
process {X;} to be Markov. Let I denote the r X r identity
matrix. From the Perron-Frobenius theorem and Exercise 7
in [25, p. 536-537], the spectral radius of G,, denoted by
Aaa, satisfies 0 < Ayq < 1. From [25, p. 531, Theorem 2],
for each a € X, the matrix I — G, is an M-matrix, i.e., it
is monotonic (nonsingular with nonnegative inverse), and has
nonpositive off-diagonal elements. Since G is irreducible, it
has a unique stationary distribution 7 satisfying 7 = 7G' [26,
Theorem 6.9.21]. The process {Z;} is stationary if and only
if P(Zy = (a,i)) = ma-

The probability distribution of the state process of the
bivariate Markov chain, {Xy,..., X7}, can be obtained
as follows. Suppose that the state process jumps at times
T < Th < Ty < < Ty where T, = 0. For
n=0,..., N, define the sampled state process {X,, = X7, },
the sampled underlying chain {S’n = St }, and the sampled
bivariate Markov chain {Zn = Zp,}. Forn = 1,... N,
let AT,, = T,, — T,,—1 denote the dwell time of the state
process {X;} in state X,,_;. Note that {X,} can be obtained
from {X’n,ATn} and vice versa. Hence, when Ty = T,
the probability distribution of {X;,t = 0,...,7} can be
obtained from that of {X,, Ty, X1,...,Tv,Xy}. By the
Markov property of {Z,}, we have

= Zn+1, A111z+1 = Tn+1 |
Zo=20;Tp =tn,...,To = to)
- P(Z7L+1 = Zn+1; Azjn—i—l = Tn+1 | Zn - Zn) (3)

Zn = Zny--

for any positive integer 7,,+1. Hence, {(Zn, T,)} is a discrete-
time Markov renewal process. The pmf of {(AT},, Z,),n >
0}, and hence of {(AT,, X,,),n > 0}, can thus be obtained
from products of the transition probabilities {P(Znﬂ =
Zn+1,ATn+1 = Tn+1 | Zn = Zn)} for n = 0,...,N - 1,
and the initial distribution of Zy = Zo. Let fo(r) =
{fe0(7),i,j =1,...,r} denote an r x r matrix with its (i, j)
element given by

ab(T) _ P(Zl =(b,j),ATh =71 | ZO = (a,1))

j
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{a}72

71 = (a,k) | Zo = (a,1))

=Y P(Z-=(bj). X5 ' =

k=1

—ZP =(b,j), ATy =7—1|Z = (a,k))

- P(Zy = (a, k) | Zo = (a,1)). )

It follows, by repeated applications of the argument in (4),
that

[(r) = G Ga. )
Let V,, = (ATn,Xn) denote the nth observation of the
sampled bivariate Markov chain, and let v,, = {P(Zy =
(zo,1),i = 1,...,7}. Then, the pmf of the state process of

the bivariate Markov chain is given by
N

S UN) = Vg, H fEn=1®n ()1

n=1

p(zo,v1, . (6)
where 1 denotes a column vector of all ones, and we have
used the fact that Zy = Zj.

Let G = {Gab, a,b € X} denote the transition matrix of the
sampled bivariate Markov chain {Z,}. By summing f%(r)
in (5) over all positive integers 7 we obtain

Gab = (I = Gaa) *Gapy, a#b. %)

By definition, G, is a zero matrix. Suppose that Jaali, i) >0
for all (a,4) € Z. Then, we can write G4 = D + G}, where
D is a diagonal matrix with positive diagonal elements, and
G?, is irreducible. Let O denote the r x r zero matrix. From
[25, p. 533, Exercise 1], G”.! > 0, and hence

ZG

Arguing as in [27, Lemma 3], it can be shown that G has a
single closed set of recurrent states which may be periodic.
Thus, G has a unique stationary distribution v with zero entries
for the transient states. This distribution satisfies v = vG.
The distribution v may be written more explicitly as follows.
For each (a,i) € Z, let vo; = P(Zy = (a,i)), and let
Vo = (Va1,Va2,---sVayr). Then, v = (v1,...,v4). When
Vg, 1n (6) is consistent with the stationary distribution v, then
the sampled bivariate Markov chain is stationary with pmf
given by (6). Note that we have introduced two stationary
distributions, 7 for {Z;} and v for {Z,}. The two stationary
distributions are related by v « 7 - diag{(I — G11),...,(I —
Gaa)} (cf. [28]).

Next, we obtain an expression for the dwell time distribution
of the state process {X;} in a given state. For state a € X,
let uy(n) = {P(S, = i|X, = a),i =1,...,r} and w, =
> bbta Gabl. Using (5), we have

P(AT, =m | X,_1=a)=

Z P(AT, =m, Zn = (b,4) | anl = (a,1))
b#a,i,j
“P(Sp_1=i|Xn 1 = a) = ua(n — 1)G™ tw,, (9)
for m > 1;n = 1,2,.... This is a discrete phase-type
distribution with r phases and parameter (u,(n — 1), Gaq).

(I = Gaa)™ ®)
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The phase-type distribution can, in principle, approximate a
given nonnegative distribution to within any desired level of
accuracy (cf. [29, pp. 47-50]).

B. Conditional Gaussian Observation Model

The bivariate Markov chain {Z;} is observed through a
Gaussian memoryless channel. Let {Y;} denote the output pro-
cess of the channel. The random variables {Y;,t = 0,1,...}

are conditionally independent given {X;, ¢t = 0,1,...}, i.e.,
for any non-negative integer 7',
T
ps 125) = [Ipwe|a). (10)
t=0

Furthermore, for any ¢, p(y: | x:) is normally distributed
with mean p,, and covariance matrix R,,. When Y; is a
scalar random variable, then R, is referred to as afct which
is simply the conditional variance of Y; given x;. Note that
we conditioned Y; on X; rather than on Z;, since the latter
conditioning would have resulted in a standard HMM. Let
u = {pa,a =1,...,d} and R = {Ry,a = 1,...,d}. The
usual parameter of the proposed model is ¢ = (7, G, u, R).
In this parameter, m denotes any distribution of Z,, and
not necessarily the stationary distribution, which is hard to
estimate. Nevertheless, it is well known that the transitional
effects due to the use of this distribution die out with time.

IV. PARAMETER AND STATE ESTIMATION ALGORITHMS

In this section, we detail the forward-backward recursions
and the Baum algorithm for estimating the parameter of the
HBMM. We also develop forward recursions for estimating
and predicting the state process.

A. Forward-Backward Recursions

For t € {0,...,T}, let a(zt,y§) denote the density of
(Z:,Y?). Define the 1 x rd vector of such densities as
ar = {a((a,1),98),...,a((a,r),ys),a = 1,...,d}. Define
an rd x rd block diagonal matrix B(y;), with its diagonal
blocks given by {p(y: | X; = a)I,a € X}. Then the forward
recursion is given by

ag =7B(yo); @ =a1GB(y), t=1,...,7. (11)

Similarly, let S(y/,, | z) denote the density of y/,, given
Zy = z;. Define the 1 x rd vector of such densities as 3; =

{6(%,‘,1;1 | (avl))a"'aﬁ(yal | (CL,’I")),CE = lvad} Then
the backward recursion is given by
ﬁT :1I7 ﬂt :ﬂt+1B(yt+1)Gla t:T_1770 (12)

where ' denotes matrix transpose. The likelihood of the
observed signal is given by ar1 or more specifically,

T
p(yo ) [1(@Bw)

t=1

(13)

To ensure the numerical stability of the forward-backward
recursions, an embedded scaling procedure is implemented,
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see, e.g., [18, Section V.A]. The scaled forward recursion is
given by

B a;—1GB
i (y0)7 g, = (yt)7 .
Co Ct

1,...,T, (14)

where ¢ = wB(yo)l, and ¢; = @&_1GB(y:)1 for
t =1,...,T. Clearly, the scaled forward recursion satisfies
a(ze, y§) = p(z¢ | y). The scaled backward recursion is given
by

Br—1 § - Bt+1B(yt+1)G"

Ct

t=T-1,...,0. (15)

The computational complexity of the forward and backward
recursions is O(d?r?), or O(r?) when d = 2, for each step.
The scaled and unscaled forward vectors are related by &y =
ot/ TT4—o cx- The likelihood in (13) can be expressed in terms
of the scaling coefficients as follows:

T T
p(yg) = orl = (H Ct) arl=]e. (16)
t=0 t=0

B. Parameter Estimation

Estimation of the parameter of the HBMM can be done
by extending the Baum algorithm [9], see, e.g., [18, Section
VIL.C]. In this section we make explicit the dependence of all
probability functions on the parameter of the HBMM. For a
given parameter value, say ¢, a new parameter value, say ¢?, is
obtained from re-estimation formulas. These formulas rely on
the conditional probabilities p(z;—1,2: | yd;0), t =1,...,T,
which can be efficiently calculated as follows:

p(zt—1, 2t | yg; o) =
d(ztflayéil)ﬂ(yg;l | Zt) [G]zt_hzt p(yt | xt)

Zzt_l,zt d(’zt*h yé_l)B(yg;l | Zt) [G]zt_l,zt p(yt | xt)’
A7)

where [G], . denotes the (2;—1,2) entry of the transition
matrix G. In terms of the conditional probabilities in (17), the
re-estimation formulas are given by

Tai = (20 = (a,7) | ya; ), (18)

23:1 p(ztfl = (aai)azt = (baj) | yg7¢)

Jav(if) =
19)

When the bivariate Markov chain is observed through a noisy
channel with conditional density p(y; | z;) = N (ia,,02,),
then the estimate of {(uq,02),a € X} is given by

oYz = (ad) |43 9) ye
LYY p(a = (a,1) | w5 9)
52— TicoXia Pzt = (@1) [ 98:6) (e — )
‘ St iy Pz = (a,9) | T 0)

; (20)

ey

Z(bu’)ez 25:1 p(zi—1 = (a,i),z¢ = (b, 7) | Z/gﬂb).
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C. State Estimation and Prediction

Suppose that the parameter of the HBMM is ¢ and that
{X:} has two states, i.e., d = 2, such that X; = 1 represents
the idle state of the primary user while X; = 2 represents its
active state. The parameter ¢ is either given or is a parameter
estimate. It is easy to see that

P(zem | ¥6; ) = Y p(ze | b O (Zeem | 215 9)

= Z d('zta yé) [Gm]ztﬂzﬂ_m ) (22)

Zt

for m > 0 and ¢ > 0. As mentioned above, the complexity
of the forward recursion for computing (2, yf) is O(d?r?)
per step. Since G™ can be pre-computed, the computational
complexity of the forward recursion (22) is also O(d?r?), or
O(r?) when d = 2. A detection scheme for the state process of
the bivariate Markov chain at time t+m, given y@, is obtained
from

oL i p(mem =1 y5:6) 27,
tmlt 2, otherwise,

where using (22) we can calculate

p(xt+m =1 | yév(b) = Z p(zt+m = (175t+m) | yé;(b)v

St+m

(23)

(24)
and 0 < v < 1 is a decision threshold. The computational
complexity of the detector given by (23) consists of O(r?)
multiplications. When vy = .5, this detector implements the
maximum a-posteriori (MAP) decision rule for testing whether
Xiym = 1 or X¢tpy = 2 given y§ and the parameter ¢. By
varying the value of v we obtain a receiver operating character-
istic (ROC) curve as shown in the next section. The detection
scheme (23) can be couched in terms of the log-likelihood
ratio (LLR), as was done in [13] for a detector based on the
standard HMM, by setting v = e/Lir /(1+4e%Lr) where 0111
is the threshold against which the LLR is compared.

V. NUMERICAL RESULTS

In this section, we present some numerical examples based
on real spectrum measurement data to demonstrate the appli-
cation of the HBMM to spectrum sensing.

A. Spectrum Measurement Data

In selecting the real data for this work, we have exam-
ined spectrum occupancy measurements collected by Shared
Spectrum Company during the first week of September 2009
[7]. The data was collected using an antenna located on the
rooftop of a building in Vienna, Virginia. The elevation of the
antenna was 28.96 meters, with latitude of 38.9260 degrees,
and longitude of —77.2456 degrees. The measurements were
collected over a spectrum band from 30 MHz to 3 GHz once
every 137.83 seconds for a duration of 86.835 hours. This
fixes the time slot in our proposed model at 137.83 seconds.
The number of data samples for each frequency bin was
approximately 2268. Out of 32 frequency bands collected,
we have considered measurements in one spectrum band with
bandwidth ranging from 928 MHz to 1 GHz. There were 501
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Real data at 931.888 MHz
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Fig. 3. 2-hour snapshot of spectrum measurement data from paging band.

frequency bins collected in this band, which resulted in a
frequency resolution of 144 kHz. The integration time for the
data samples was 160 ms. Further details on the equipment
setup and measurements can be found in [7].

Within the bandwidth of 928 MHz to 1 GHz, we have
selected the spectrum measurements in a paging band with
a center frequency of 931.888 MHz. Since the frequency
resolution is 144 kHz, the selected spectrum measurements
contain all signals that have frequencies in the range from
931.816 MHz to 931.960 MHz. The total time for collecting
and processing the data samples in the paging band of interest
was about 5 s. In addition, a relatively small amount of addi-
tional time would be needed to compute the sensing decision
Xt+m|t for the time slot via (23). In the spectrum sensing
application, the remainder of the 137.83 s time slot would
be allocated for the transmission interval. From the paging
database [30], we found only one registered paging tower in
the vicinity with an assigned frequency between 931.816 MHz
and 931.960 MHz. This paging tower has a call sign KNKI478
and is located in McLean, Virginia. The elevation of the
tower’s antenna is 57.6 meters, with coordinates 38.9223
degrees latitude and —77.2289 degrees longitude [31]. The
assigned frequency for this tower is 931.9375 MHz and the
channel bandwidth is 20 kHz. The maximum effective radiated
power (ERP) of the transmitter was I' = 690 watts. The radius
of the associated macro-cell ranges from 1 to 30 km.

In Fig. 3, a two-hour snapshot of the spectrum measurement
data in the time domain is shown. Although the signal may
appear to be approximately periodic in this figure, it is not
periodic or even quasi-periodic, since the dwell times in the
active and idle states are randomly distributed, as evidenced
by the empirical dwell time distributions presented in Fig. 5.
Fig. 4 shows a histogram of the power levels from the paging
band data. Since these signals were recorded using highly
elevated antennas for the transmitter and receiver, over a line-
of-sight path of 1.5044 km, identifying the idle and active
periods is trivial, and can be done using a simple energy
detector. The threshold for this detector was set based on
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the noise level of the spectrum band and noise figure of the
receiver. This threshold is shown in Fig. 4. Applying an energy
detector to the data, we have identified the idle periods and
calculated the empirical distributions of the idle and active
dwell time periods. These distributions are shown in Fig. 5.

B. Parameter Estimation From Real Data

We applied the Baum algorithm detailed in Section III to
the real spectrum measurements discussed above to obtain an
estimate of the parameter of an HBMM for various values
of the model order ». We used all available samples of the
real data, i.e., T = 2268 samples, for this estimation. The
algorithm was initialized by a randomly chosen parameter
¢o and it was terminated when the relative difference in
consecutive log-likelihood values was smaller than 107,
Using the estimated parameter, we calculated the dwell time
distribution (9) for the active and idle states of {X;}. We
found that the choice of » = 10 resulted in a close fit to the
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empirical dwell time distribution, as shown in Fig. 5. Note that
both dwell time distributions deviate significantly from that of
a geometric distribution. For the case r = 10, the estimated
values of the initial distribution 7, and transition matrix G,
may be found in [32].

The estimated means and variances of the two conditional
Gaussian output distributions in this case were given by

= (1, p2) = (—112.4026, —45.6073),

R = (02,03) = (14.2279, 3.1357). (25)

The corresponding conditional Gaussian densities are shown
in Fig. 4. Note that histogram in Fig. 4 represents the empirical
distribution of the measured power levels irrespective of the
primary transmitter state. Thus, the shape of the conditional
Gaussian density estimates will not in general match that
of the histogram. The larger variance estimate in the idle
state is due to the presence of intermittent adjacent channel
interference with power in the range [—100, —85] dBm. Since
this interference power is closer to the mean power in the
idle state than that in the active state, it effectively contributes
to the estimate of the conditional density in the idle state,
resulting in a larger variance estimate, but has negligible
impact on the density estimate in the active state.

The parameter ¢ = (7, G, u, R) was then used to generate
simulated data to evaluate the performance of spectrum sens-
ing using the state estimation and prediction algorithms as will
be discussed in the next subsection. Although the numerical
results presented here are based on data pertaining to a single
channel, we have done an extensive study of other channels
captured in the spectrum measurement data. The particular
channel that we selected required a relatively high model
order, i.e., 7 = 10, to achieve a close match of the empirical
dwell time distributions. The majority of the other channels
required much smaller orders of HBMM for accurate modeling
of the dwell time distributions. In this sense, the particular
paging channel that was chosen was the most difficult to
model accurately and hence may be considered a worst-case
representative of all the channels appearing in the spectrum
measurement data.

It should be noted that the dwell time distribution depends
also on the duration of the time slot, which in this case
was 137.83 s, due to the 3 GHz bandwidth over which the
original spectrum data was collected. A smaller time slot
would generally result in higher correlation between consecu-
tive time slots and consequently dwell time distributions that
are very different from the geometric distribution. We also
note that when the time slot is smaller, the accuracy of the
state predictor XHm‘t for values of m > 1 becomes more
important in practical spectrum sensing scenarios.

C. Spectrum Sensing Performance

Next, we present numerical results to demonstrate the
performance of our proposed spectrum sensing approach. To
assess the performance of the proposed detector, the true
state sequence of the channel must be known. Since this
sequence is usually not available for real data, we simulate
the observation sequence using the high order (r = 10)
HBMM parameter ¢ = (7, G, u, R) obtained in the previous
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subsection. As noted previously with respect to Fig. 5, the
state dwell time distributions corresponding to this parameter,
which are determined by the bivariate Markov chain parameter
(7, G), match closely with the empirical distributions. There-
fore, the simulated observation sequences generated using this
parameter are expected to provide an accurate representation,
in a statistical sense, of the actual primary transmitter state
process.

We distinguish between two representative scenarios. In the
first case, there exists a line-of-sight between the primary user
transmitter and the cognitive radio receiver. We refer to this
case as spectrum sensing under no shadowing, although in
reality there is some random noise in the measurements. This
situation is essentially the same as the one in which the real
spectrum data was obtained. Here, state estimation can be
performed accurately with a simple energy detector. On the
other hand, the energy detector does not provide predictive
information, so we will focus on the m-step prediction per-
formance. In the second scenario, we assume that the cogni-
tive radio receiver is located farther away from the primary
transmitter. This results in higher path loss and shadowing
effects in the reception of the primary signal compared to the
real data measurements under no shadowing case. We refer
to this case as spectrum sensing under shadowing effects.
For this situation, we modified the parameter (u, R), of the
conditional Gaussian densities to generate new training and
testing data. The new training data was used to re-train the
low order model, which was then tested on the new testing
data. In this case, the performance of the energy detector can
be compared meaningfully against the model-based detector
for state estimation.

1) Under No Shadowing: We used the HBMM parameter
¢ of order r = 10 derived from the real spectrum data to
generate a simulated observation sequence with T = 2268
samples. This observation sequence constituted the training
data from which the parameter of a lower order HBMM
was estimated using the procedure of Fig. 1. We used three
different orders given by r = 1, 2, 5. In all cases, the estimated
parameter values of the conditional Gaussian densities were
very close to the corresponding values obtained for the high-
order model in (25) (see [32]).

Next, the parameter ¢ was used to generate a new simulated
observation sequence with 7' = 2268 samples. This observa-
tion sequence constituted the test data that was used to evaluate
the performance of spectrum sensing using the lower order
models based on the state detector/predictor of Fig. 2. Fig. 6
shows the probability of error, as a function of the threshold ~y
in (23), of the one-step prediction using parameter estimates
obtained for d = 2 and r = 1, 2, 5. All values of the decision
threshold v satisfying the inequality v < p(ztym = 1 | y§; @)
result in the estimate )A(Hm‘t = 1 and therefore lead to
the same prediction error P.. For a given realization of the
processes {Y;} and {Z;}, p(zi4m = 1| yd; ¢) take on a finite
set of values, which results in the staircase curves in Fig. 6,
i.e., the prediction error performance is constant over certain
ranges of the threshold ~. For comparison purposes, the figure
also shows the one-step prediction performance obtained when
the true parameter (r = 10) used to generate the test data
was applied in detecting the state sequence from this data.
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Fig. 6. Under no shadowing: One-step state prediction performance obtained
using parameter estimates with » = 1,2,5 and using the true parameter
(r = 10).

Practically, this represents the highest achievable performance.
We note that there is a significant performance improvement
when using the HBMM with r» = 2 compared to using the
standard HMM, which corresponds to » = 1. Improvement is
also seen when the order r is increased from 2 to 5. When
r = 5, the performance is nearly as good as in the case when
the true parameter is used to detect the state sequence of the
primary user.

In Fig. 7, the performance of m-step prediction applying the
HBMM parameter estimate with » = 5 is shown. The curves
show the probability of prediction error vs. the detection
threshold + for m = 1,2,5,10. Consider the special case
where v = 0.5. We observe that the prediction performances
for m = 1 and m = 2 are similar. However, a major
performance degradation is observed when m = b5, and
especially in the case m = 10, as would be expected. Although
not shown here, the m-step prediction performance when
r = 2 is significantly worse than the case of » = 5 shown
in Fig. 7.

In Fig. 8, the dwell time distributions of the state process
of the HBMM, as calculated from (9) using the parameter
estimates corresponding to models of orders r = 1,2,5 and
the true parameter of order r = 10 are compared. Clearly,
the geometric dwell time distribution of the HMM does not
provide a good approximation. When r = 2, the dwell
time distribution in the idle state lines up closely with the
distribution corresponding to the high order model, but the
dwell time distribution in the active state is very far from that
of the high order model. When r = 5, a good approximation
is also obtained for the active state dwell time distribution.

2) Under Shadowing Effects: To accommodate the effects
of higher path loss and shadowing, we modified parameter of
the Gaussian output density, (i, R), in the estimated parameter
of the high order HBMM, and generated new training and
testing sequences that were subsequently used to train and
test the low order HBMMs. Only the means and variances of
the conditional Gaussian distributions of the high order model
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parameter estimates with » = 1,2, 5 and using the true parameter (r = 10).

were modified, while the initial distribution and transition
matrix, (7, G), were kept as in Section V-C1.

We applied the propagation model given in (1) with § =
15 km; &9 = 1.5044 km, which was the original distance
between the transmitter and receiver under no shadowing case;
Kk = 5, which is an appropriate value for the shadowed urban
area of McLean, Virginia; and 062 = 64. With these values,
10k logy (% = 49.9364 dB. This loss affects the mean of
the received signal Y; at time ¢ in the active state. Given ug =
—45.6073 dBm at distance &g in (25), this mean becomes po —
49.9364 = —95.5437 dBm at distance . Thus, the received
signal Y; in the active state in this case is normally distributed
with mean —95.5437 dBm, and variance given by o3 + 02 =
3.1357 4+ 64 = 67.1357. To summarize, the parameter of the
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conditional Gaussian densities was adjusted from (25) to

1= {—112.4026, —95.5437}, R = {14.2279, 67.1357},
(26)

for the modified model, while the parameter of the underlying
bivariate Markov chain was kept the same.

Under the model (26), Fig. 9 shows ROC curves for state
estimation using the energy detector and the HBMM-based
detector using parameter estimates with r = 1,2, and 5. We
remark that compared to the energy detector, the HBMM-
detector requires some additional overhead to compute the
forward recursion for )A(Hm‘t (see Section IV-C), but for
moderate values of r, this would be insignificant relative to
the integration time and other processing overhead required
by both detectors. We observe that the HMM-based detector
performs only slightly better than the energy detector. When
r is increased to 2, the detection performance improves
significantly. A noticeable improvement is also seen in going
from r 2tor 5. The improved performance with
increasing value of r can be attributed to more accurate
characterization of the dwell time distributions. We also note
that the ROC curve for » = 5 is very close to the best possible
curve obtained by applying the true parameter (r 10) in
the detection procedure. Thus, very good spectrum sensing
sensing performance can be achieved using a relatively low
order HBMM.

Fig. 10 shows the performance of m-step prediction for the
HBMM using a parameter estimate with » = 5. Similar to
the no shadowing case, the prediction performance decreases
as the number of steps m increases. Comparing Fig. 7 and
Fig. 10, we notice that fading and shadowing effects have
slightly degraded the performance of the proposed detection
scheme.

VI. CONCLUSION

We proposed an approach to temporal spectrum sensing
of a narrowband channel in which the received signal is
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Fig. 10. Under shadowing effects: m-step prediction performance using a

parameter estimate with » = 5 and m = 1,2, 5, 10.

modeled by a discrete-time bivariate Markov chain observed
through a memoryless Gaussian channel. In contrast to a
simple energy detector, the detector based on the proposed
HBMM can predict the state at a future time instant. Our
numerical results based on real spectrum measurement data
show that the HBMM-based detector leads to more accurate
state estimation and prediction than a detector based on a
standard hidden Markov model (HMM) or an energy detector,
particularly in scenarios with high path loss and/or strong
shadowing effects.
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