Online Appendix to: Reduction of Closed Queueing Networks for Efficient Simulation

JOHN F. SHORTLE, BRIAN L. MARK, and DONALD GROSS George Mason University

This document is a supplement for the article by Shortle et al. [2009]. The supplement gives a small numerical example to illustrate the network reductions given in the main article. The purpose is to aid the reproducibility of the results given there.

This supplement gives a small numerical example to illustrate the network reductions given in Shortle et al. [2009]. The purpose is to aid the reproducibility of the results given in the main article.

Table I shows parameters for a 12-node network. The routing probabilities were obtained from flight data over a one-month period at 12 airports. Specifically, $p_{i,j} \propto n_{i,j}$, where $n_{i,j}$ is the observed count of flights from airport *i* to airport *j*. This network is intended for illustration, not to actually model the air transportation system. The first four nodes represent major airports, while the remaining nodes represent moderately sized airports. A natural choice for C is $\{1, 2, 3, 4\}$. The remaining network parameters are chosen somewhat arbitrarily: the number of customers (airplanes) in the system is M = 120; the service parameters μ_i and c_{si}^2 , are given in the table. Table II shows the approximate queueing metrics obtained using Algorithm A. Table III shows the results of Reduction 1 applied to the sample network. Table IV shows the results of Reduction 2 to the sample network. The table only shows the transition probabilities from C to \mathcal{R}^* .

		1	2	3	4	5	6	7	8	9	10	11	12	μ_i	c_{si}^2
\mathcal{C}	1		.17	.17	.05	.02	.07	.05	.09	.15	.09	.12	.02	46	.5
	2	.14	—	.18	.14	.01	.11	.10	.08	.08	.03	.06	.07	55	.5
	3	.23	.30		.11	—	.05	.05	.03	.09	.03	.08	.03	31	.5
	4	.15	.44	.25	—	—	.06	—	.02	.06	.02	—	_	17	.5
\mathcal{R}	5	.32	.21	.01	.02	—	—	.02	.32	.10	_	—	—	22	.5
	6	.19	.33	.10	.05	—		.10	.06	.10	.02	.05		22	.5
	$\overline{7}$.16	.34	.09		—	.12		.04	.14	.03	.06	.02	22	.5
	8	.26	.25	.07	.02	.06	.07	.05	—	.11	.07	.02	.02	22	.5
	9	.26	.19	.12	.03	.01	.08	.10	.07	—	.07	.06	.01	22	.5
	10	.41	.13	.10	.03	—	.03	.04	.09	.14	—	.03	—	22	.5
	11	.34	.20	.19		—	.06	.06	.02	.09	.02	—	.02	22	.5
	12	.15	.54	.14	_	—	_	.05	.04	.03		.05	_	22	.5

Table I. Example Network: Routing Probabilities $p_{i,j}$ and Service Parameters

© 2009 ACM 1049-3301/2009/06-ART10 \$10.00 DOI 10.1145/1540530.1540531 http://doi.acm.org/10.1145/1540530.1540531

ACM Transactions on Modeling and Computer Simulation, Vol. 19, No. 3, Article 10, Publication date: June 2009.

App-2 • J. F. Shortle et al.

Table II. Approximate Intermediate Variables for Example Network Using Algorithm A

Node	1	2	3	4	5	6	7	8	9	10	11	12
λ_i	41.15	48.24	30.34	14.24	2.37	16.18	14.51	14.02	21.89	9.90	14.14	6.18
ρ_i	0.89	0.88	0.98	0.84	0.11	0.74	0.66	0.64	0.99	0.45	0.64	0.28
c_{ai}^2	0.93	0.91	0.94	0.96	0.99	0.97	0.97	0.97	0.96	0.98	0.97	0.98
c_{di}^2	0.59	0.59	0.52	0.64	0.99	0.71	0.76	0.78	0.50	0.88	0.77	0.94
$p_{i,\mathcal{R}}$	0.61	0.54	0.36	0.16								
$p_{\mathcal{R},i}$	0.39	0.40	0.17	0.03								
$c^2_{a\mathcal{R},i}$	0.93	0.93	0.97	0.99								

Table III. Reduction 1 Applied to Example Network

$\hat{p}_{i,j}$	1	2	3	4	\mathcal{R}^*	μ_i
1	—	0.17	0.17	0.05	0.61	46
2	0.14	_	0.18	0.14	0.54	55
3	0.23	0.30	—	0.11	0.36	31
4	0.15	0.44	0.25		0.16	17
\mathcal{R}^*	0.39	0.40	0.17	0.03	_	64.598

Table IV.	Reduction	2 Applied	to Example	e Network

$\hat{p}_{i,j}$	1*	2^{*}	3^*	4*
1	0.240	0.245	0.105	0.020
2	0.212	0.217	0.093	0.018
3	0.141	0.145	0.062	0.012
4	0.063	0.064	0.028	0.005
μ_{i^*}	26.507	27.139	11.635	2.192
$c_{si^{*}}^{2}$	0.930	0.933	0.966	0.989

REFERENCES

1

SHORTLE, J. F., MARK, B. L., AND GROSS, D. 2009. Reduction of closed queueing networks for efficient simulation. *Trans. Model. Comput. Simul.* 19, 3.

ACM Transactions on Modeling and Computer Simulation, Vol. 19, No. 3, Article 10, Publication date: June 2009.

Ť.