
10

Reduction of Closed Queueing Networks for
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This article gives several methods for approximating a closed queueing network with a smaller one.
The objective is to reduce the simulation time of the network. We consider Jackson-like networks
with Markovian routing and with general service distributions. The basic idea is to first divide
the network into two parts—the core nodes of interest and the remaining nodes. We suppose that
only metrics at the core nodes are of interest. The remaining nodes are collapsed into a reduced
set of nodes, in an effort to approximate the flows into and out of the set of core nodes. The core
nodes and their interactions are preserved in the reduced network. We test the network reductions
for accuracy and speed. By randomly generating sample networks, we test the reductions on a
large variety of test networks, rather than on a few specific cases. The main conclusion is that the
reductions work well when the squared coefficients of variation of the service distributions are not
all small (that is, the network is not close to being deterministic) and for nodes where the utilization
is not too high or too low.
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1. INTRODUCTION

The objective of this article is to develop algorithms for reducing the size of
large queueing networks, for the purposes of more efficient network simula-
tion. In many queueing networks, performance metrics are of interest only at
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Fig. 1. Basic network reduction approach.

a small number of nodes in the network. The other nodes are of interest only
to the extent that they influence the performance metrics at the core nodes.
The basic approach is to divide a queueing network into two subnetworks: C
and R (Figure 1). Subnetwork C contains the core nodes of interest, and sub-
network R contains the remaining nodes. The goal is to approximate R with
a smaller subnetwork R∗, such that simulation of C with R∗ approximates the
simulation of C with R. The performance metrics of C should be similar in both
networks, but the performance metrics in R∗ and R do not necessarily need to
correspond.

The key idea of this article is to match the first two moments of the flows
fromR∗ to C with those fromR to C. That is, the service distributions and routing
probabilities of the reduced network are chosen so that the first and second
moments of the arrival processes from R∗ to C match (are approximations to)
the corresponding moments of the arrival processes from R to C in the original
network. The main reduction we propose includes one node in R∗ for each node
in C.

The motivation for this research is simulation of the National Airspace Sys-
tem (NAS). The NAS contains about 30 large hub airports (e.g., Atlanta), about
30 medium-sized hub airports (e.g., Cleveland), about 50 small hub airports
(e.g., Colorado Springs), about 600 other airports with scheduled flights, and
thousands of other public-use airports. On a typical weekday, there are about
5,000 commercial flights in the air at one time, plus many general aviation
flights, unscheduled business flights, and so forth. Detailed full-scale simula-
tions of the NAS can be quite time consuming. For example, Yousefi et al. [2003]
simulated commercial and general aviation flights in the northeast United
States using the Total Airport and Airspace Modeler (TAAM).1 The simula-
tion, running in a deterministic mode, took about 8 hours of computer time to
generate 24 hours of simulated time. Thus, running TAAM multiple times in a
stochastic mode is extremely time consuming. Methods are needed to simulate
these large systems, with an appropriate balance of accuracy and speed.

This article gives algorithms for constructing reduced approximations of
large Jackson-like networks with general service distributions. A high fidelity
simulator like TAAM is quite complex, so we do not suggest that these Jackson-
like networks can be used to replicate a model like TAAM. The purpose here is
to test core ideas on these simpler networks and later to extend the research to
more complex simulations.

1Preston Aviation Solutions, http://www.preston.net/products/TAAM.htm.
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A unique feature of this research is that we test our network reductions on
sample networks that are randomly generated. By automating this process, we
can test the reductions on hundreds or thousands of networks, rather than on
individual test cases, as is often done.

This article is organized as follows: Section 2 contains a brief summary
of related research in queueing network approximations and large-scale net-
work simulations. Section 3 gives preliminary definitions and specifies notation.
Section 4 presents a reduction algorithm and gives an example application of
the algorithm to a simple network. Section 5 applies the reduction algorithm
to a large set of randomly generated networks. Section 6 considers the benefits
gained in simulation.

2. RELATED LITERATURE

There is a wide body of literature on the approximation of queueing networks.
This section highlights general approaches that are related to the approxima-
tions given in this article.

Decomposition Methods. These methods consist of decomposing a network
into smaller subnetworks and then analyzing each subnetwork separately. Typ-
ically, the sub-networks consist of individual queues. Examples of single-queue
decompositions are given in Gelenbe and Pujolle [1998], Kuehn [1979], Bitran
and Tirupati [1988], Reiman [1990], and Whitt [1983b, 1983a]. An example of
a multi-queue decomposition is given in Dai et al. [1994]. A popular approach
is a two-moment parametric decomposition approximation implemented in the
Queueing Network Analyzer (QNA) [Whitt 1983b, 1983a]. In this approach, a
network is approximated as a set of individual isolated GI/G/1 queues. The
method solves a series of balance equations to approximately match the first
and second moments of the arrival and departure processes at each queue.
Then, assuming the arrival process to each queue is a renewal process, perfor-
mance metrics at each queue are computed using approximation formulas for
the GI/G/1 queue. The fundamental assumption is that the superposition of
interdeparture processes from upstream nodes flowing to a downstream node is
approximately a renewal process (e.g., Whitt [1982]). Many variations based on
this two-moment decomposition approximation have also been proposed (e.g.,
Suresh and Whitt [1990] and Whitt [1995]).

Aggregation Methods. These methods simplify a network by aggregating sub-
networks into individual nodes. The characteristics of the individual nodes are
determined from the local, isolated behavior of the subnetworks. The global
system behavior is determined by analyzing the network of aggregated nodes.
In other words, these methods analyze the interaction of global variables be-
tween subnetworks separately from the interaction of local variables within
subnetworks. An example of an exact aggregation method is Norton’s theo-
rem [Chandy and Georganas 1975; Chandy et al. 1975]. Consider an M -node
closed Jackson network that is divided into two subnetworks: C = {M } and
R = {1, . . . , M − 1}. Norton’s theorem says that R can be aggregated into a
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single node, Req, having a state-dependent service rate. This aggregation also
works when C contains more than one node, provided the network satisfies
a particular routing structure [Boucherie and van Dijk 1993]. Further gen-
eralizations exist for multiple customer classes and state-dependent routing
[Boucherie and van Dijk 1993; Boucherie and Stewart 1998]. When an aggre-
gation method provides exact results, the network is said to be decomposable.
Curtois [1975, 1977] has given conditions under which aggregation methods
provide approximately accurate results (see also Bolch et al. [2006]). Such sys-
tems are said to be quasi-decomposable.

Heavy Traffic Methods. These methods are based on the principle that the
queue length process of certain networks in heavy traffic can be approximated
by reflected Brownian motion (RBM) (e.g., Reiman [1984]). First, one deter-
mines the RBM associated with the queueing network in question [Harrison
and Nguyen 1990], and then one numerically calculates the stationary distri-
bution of the RBM [Dai and Harrison 1992]. This is called the QNET method
[Harrison and Nguyen 1990; Dai and Harrison 1993; Dai et al. 1997]. One prob-
lem is that the computational requirement grows significantly in the size of the
network (though hybrid decompositions methods can mitigate this problem, as
discussed in Dai et al. [1994]).

Large-Network Simulation. Much research on large-network simulation has
been motivated by telecommunications and Internet applications. In this do-
main, network size can be extremely problematic. For example, Riley and
Ammar [2002] conservatively estimate that it would take a year of CPU time
to simulate 100 seconds of activity on the Internet (based on 2002 data). Many
large-network simulations make use of Internet-specific protocols (e.g., Nicol
et al. [2003] and Riley [2003]), and are not appropriate in other contexts. Also,
fluid models (e.g., Liu et al. [1999, 2003]) work well to approximate high volume
communication channels, but are not suitable in the aviation domain, where
the volume of flights is not high enough to justify the fluid approximation.
An overview of large-network simulation is given in Nicol et al. [2005]. Another
common approach is parallelization (e.g., Cowie et al. [1999] and Rao and Wilsey
[1999]). We do not consider parallelization methods here. This is because we
improve simulation speed by reducing the size of the network. Thus, parallel
methods can be applied equally well to the original and reduced networks.

This article uses elements of both aggregation and decomposition. The ap-
proximations use aggregation in the sense that we reduce a subnetwork, R, to
a smaller subnetwork, R∗. Thus, the approximate network is smaller than the
original network. The approximations use decomposition in the sense that the
queueing parameters for R∗ are determined using decomposition algorithms.
Two key differences are:

—We convert the original network into two subnetworks of multiple queues,
rather than into multiple subnetworks of individual queues. The purpose is to
preserve key interactions within the core subnetwork, C. Most decomposition
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methods separate the network into individual queues.2 Also, most aggrega-
tion methods reduce subnetworks to single queues.

—We simulate the final reduced network. In contrast, most aggregation and
decomposition methods compute approximate results analytically.

In summary, the end result of our approximation is a reduced network that is
analyzed using simulation, rather than through approximate numerical meth-
ods. Simulation is used so that the approximations can be extended to more com-
plex network models in the future. For example, a departure schedule where
customers leave at scheduled times (or later if delayed) can be modeled well
with simulation but not with a Jackson network. This article specifically deals
with Jackson-like networks, while future work will extend the application of
the methods to more general models.

3. PRELIMINARIES AND NOTATION

This section defines notation and fundamental algorithms used throughout this
article. We also give an example network to illustrate concepts.

Consider a closed Jackson-like network consisting of N nodes and M cus-
tomers with general service times. Assume that each node i, has a single server
with general service distribution Gi. (The methods in this article generalize
to networks of multiserver queues, but we only test single-server cases here).
Let Si denote a random service time at node i. A customer who completes
service at node i transitions to node j with probability pi, j . All service times
and transitions are independent. Further, divide the network into two sets of
nodes, C and R, where C contains the core nodes of interest and R contains the
remaining nodes. Assume that C contains NC ≤ N − 2 nodes. In the envisioned
applications, we expect that NC � N .

In the aviation context, the nodes might represent airports, runways, gates,
and flight corridors. For example, during a single flight, an airplane departs
its gate, enters a departure queue, departs, flies through several air sectors en
route to the destination, lands on a runway, and then goes to a gate. Each of
these phases can be considered a queue with a limited resource. For example,
if an air sector is too crowded, controllers may delay an airplane from entering
that sector by extending its flight path. Similarly, if there are not enough gates
at an airport upon arrival, an airplane must wait until a gate becomes free.
In a sector, the service distribution is typically defined as the unimpeded time
it takes an airplane to traverse the sector. At a gate, the service time is the
time it takes to unload and then reload the airplane with passengers. At a
runway, the service time is the minimum required separation between aircraft.
Transition probabilities in the network represent the frequencies with which
airplanes transition from one node to another and could be determined by flight
schedules. However, a key difference is that this article investigates networks

2Dai et al. [1994] give a decomposition method that divides a network into subnetworks of multiple
queues. However, the groupings are based on similar traffic intensities. In this article, the groupings
are predefined, possibly based on known interactions—for example, shuttle flights back and forth
between a city pair—and may contain nodes with a diverse range of traffic intensities.
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Table I. Network Notation

N Number of nodes in network
NC Number of nodes in C
M Number of customers in network
pi, j Transition probability from i to j

Inputs Gi Service distribution at i
Si Random service time at i
μi Service rate at i: μi ≡ 1/E[Si]
c2

si SCV of service distribution at i: c2
si ≡ Var[Si]/E2[Si]

λi Throughput at i
Inter- ρi Utilization at i: ρi ≡ λi/μi

mediate c2
aj SCV of inter-arrival times to j

Variables c2
di SCV of inter-departure times from i

c2
di,aj SCV of inter-event times: departures from i arriving to j

Outputs Wqi Mean waiting time in queue at i

where node transitions are random, versus predetermined transitions governed
by aircraft schedules.

Table I defines parameters associated with the network. The first set are
considered inputs. The second set are internal traffic descriptors. These are not
given explicitly, but must be computed through analysis of the network. They
are used as intermediate variables in the process of obtaining the final results.
The last set, Wqi, is considered outputs. These are the performance metrics that
the practitioner is trying to estimate. In the table, SCV refers to the squared
coefficient of variation (variance / mean2).

The focus of this article is to efficiently estimate the performance metrics in
Table I using simulation. However, to do this, we will make use of analytical
approaches for approximating the intermediate variables. These approaches
will be used in constructing reduced networks as approximations to the original
networks (Section 4). Then, we will simulate the reduced and original networks
and compare speed and accuracy (Section 6). The rest of this section describes
analytical techniques used in this process.

If all service distributions are exponential, then network performance met-
rics can be computed exactly using well-known algorithms, such as Buzen’s
algorithm or mean value analysis (e.g., Gross and Harris [1998]).3 If the ser-
vice distributions are general, an approximate analytical method can be used,
such as a parametric decomposition approximation, for example, Whitt [1983b,
1983a], Kim [2004].

The following algorithm describes a method to approximate λi, ρi, c2
aj , c2

di,
and c2

di,aj (in Table I). This is a variation of the two-moment parametric approx-
imation in Whitt [1983b, 1983a]. The purpose of approximating these metrics
is not to obtain the metrics themselves, but to create a reduced network as an
approximation to the original network. The reduced network is then simulated
(Section 6), with the goal of estimating quality of service metrics like Wq for
the core nodes in C.

3To download Queueing Theory Software QTS, a computer implementation of these algorithms,
see ftp://ftp.wiley.com/public/ sci tech med/queueing theory/.
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Algorithm A. Approximate λi , ρi , c2
aj , c2

di , and c2
di,aj (in Table I).

(1) Approximate λi and ρi : For the moment, assume that all service distributions are
exponential (the network is a closed Jackson network). Calculate λi and ρi from
the standard flow-balance equations using Buzen’s algorithm or mean value anal-
ysis. For an open network, λi is exact for general service distributions because the
flow-balance equations are independent of the service distributions. Therefore, this
approximation for λi is accurate when the original closed network is well approxi-
mated by an open network.4

(2) Approximate c2
aj : Solve the following system of equations for c2

aj (e.g., Kim [2004],
Equation 6). The equations are linear in c2

aj . These equations essentially represent
a second moment flow balance between the nodes.

c2
aj = 1

λ j

∑
i

λi pi, j (pi, j [ρ2
i c2

si + (1 − ρ2
i )c2

ai] + 1 − pi, j ), j = 1, . . . , N . (1)

The equations can be derived from the following queueing, splitting, and superpo-
sition formulas (e.g., Whitt [1983b], Equations 38, 36, and 315):
(a) Queueing:

c2
di = ρ2

i c2
si + (1 − ρ2

i )c2
ai , (2)

(b) Splitting:
c2

di,aj = pi, j c2
di + (1 − pi, j ), (3)

(c) Superposition:

c2
aj = 1

λ j

∑
i

λi pi, j c2
di,aj . (4)

These equations are approximate relationships. (3) is exact under Markovian rout-
ing of a renewal process.

(3) Approximate c2
di and c2

di,aj : Use (2) and (3).

(4) Approximate the following quantities using values for λi and c2
di,aj obtained previ-

ously.
(a) The throughput from R to C is

λR ≡
∑
i∈R

∑
j∈C

λi pi, j . (5)

(b) The routing probabilities from a node i, to any node in R (or C) are

pi,R ≡
∑
j∈R

pi, j , pi,C ≡
∑
j∈C

pi, j . (6)

Thus, pi,R + pi,C = 1, for any node i.
(c) The aggregate routing probabilities from R to a node j ∈ C are

pR, j ≡ 1
λR

∑
i∈R

λi pi, j . (7)

Thus,
∑

j∈C pR, j = 1.

4A similar approach adapting open approximations to closed networks is the fixed population
mean (FPM) method [Whitt 1984]. In this approach, the closed network is first converted to an
open network by changing one node to a source/sink. The system is then analyzed as an open
network using a parametric decomposition, where the external throughput, λ, is chosen so that
the expected number of customers in the network equals M . Both methods rely on the assumption
that the closed network is well approximated by an open network.
5QNA uses a modified version of (2) and (4).
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(d) The (approximate) SCV of the arrival process to a node j ∈ C, due to flows only
from R, is

c2
aR, j ≡ 1

λR · pR, j

∑
i∈R

λi pi, j c2
di,aj . (8)

This is the superposition formula (4), where the summation is taken only over
nodes in R; furthermore the normalizing constant (λR · pR, j ) represents the
combined flow from R to j , rather than the total flow (λ j ) through j .

This algorithm can also be extended to multiserver queues. The splitting
equation (3) and superposition equation (4) remain the same, but the queueing
equation (2) is changed to account for multiple servers (e.g., Whitt [1983b],
Equation 39). The combination of these equations leads to an appropriately
modified version of (1).

4. NETWORK REDUCTIONS

This section presents two network reductions. The first reduction involves col-
lapsing all nodes in R into a single node R∗, as shown in Figure 2. We define
the routing probabilities and service rates in the reduced network to achieve
approximately the same throughput in C for the original and reduced networks.
This is specified precisely below. For notation, we use a hat (ˆ) to denote param-
eters in the reduced network.

Reduction 1.

(1) Collapse all nodes in R to a single node R∗ (see Figure 2).
(2) Routing probabilities in the reduced network are:

p̂i, j = pi, j , i ∈ C, j ∈ C,
p̂i,R∗ = pi,R, i ∈ C, see (6),
p̂R∗, j = pR, j , j ∈ C, see (7).

(3) Service rates in the reduced network are:

μ̂i = μi, i ∈ C.

For the node R∗, μ̂R∗ is chosen so that λ̂R∗ = λR; see (5). (This can be done,
for example, using a binary search on μ̂R∗ . Given a value for μ̂R∗ , λ̂R∗ is
determined by applying MVA to the reduced network. A binary search is
applied by varying μ̂R∗ until the resulting λR∗ equals λR. Initial low and
high values for μ̂R∗ can be λR and 2λR.) The service distribution family
for node R∗ is set to the service distribution family corresponding to the
node j ∈ R with maximum throughput to C (that is, the j that maximizes∑

i∈C λ j pj ,i).

Typically, the value for μ̂R∗ found in step 3 is just slightly larger than λR.
This is because if R is a large subnetwork, then there is a high probability that
there is at least one customer in the single node R∗. So ρ̂R∗ is slightly less than
1. Thus, μ̂R∗ = λ̂R∗/ρ̂R∗ is slightly greater than λR when λ̂R∗ = λR.

Reduction 1 is similar to variations of Norton’s theorem in which a group
of nodes in a network are replaced by a single node—for example, Boucherie
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Fig. 2. Reduction 1.

Fig. 3. Reduction 2.

and van Dijk [1993]. The method given in that article is exact; however, it only
works under very specific conditions on the routing structure of the network.
Essentially, the condition requires that there is only one node in R that is an
entry point from C and only one node in R that is an exit point to C. The precise
conditions are slightly more general, but this is the basic idea. The conditions
do not typically hold for the networks in this article, except in the case where C
consists of a single node.

Figure 3 shows the basic idea for our second reduction. Each node i in C has
a corresponding node i∗ in R∗. Node i∗ controls the flow of customers into i. By
choosing an appropriate service rate for i∗, we can approximately match the
first two moments of the arrival stream into node i, with respect to the original
network. In contrast, Reduction 1 matches the average flows into each node,
but does not have enough degrees of freedom to match the second moment of
flows to each node in C.

Reduction 2.

(1) Collapse all nodes in R to a subnetwork, R∗, consisting of NC nodes (see
Figure 3).

(2) Routing probabilities in the reduced network are:

p̂i, j = pi, j , i ∈ C, j ∈ C,
p̂i∗, j ∗ = 0, i∗ ∈ R∗, j ∗ ∈ R∗,
p̂i, j ∗ = pi,R · pR, j , i ∈ C, j ∗ ∈ R∗, see (6) and (7),
p̂i∗, j = δi, j , i∗ ∈ R∗, j ∈ C,
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where δi, j = 1 if i = j , 0 otherwise. These equations completely specify the
routing probability matrix P̂ = [ p̂i, j ] of the reduced network.

(3) The service distributions in C are the same in both networks. In particular,
the first two moments are equal, so

μ̂i = μi, i ∈ C,
ĉ2

si = c2
si, i ∈ C.

(4) For i∗ ∈ R∗, set:

ĉ2
si∗ = c2

aR,i, see (8).

To determine μ̂i∗ , let μ̂i∗ = b·λR·pR,i, for each i, where b is a scaling constant.
Choose b so that λ̂R∗ = λR (that is, to match the throughput out of R∗ in
the reduced network with the throughput out of R in the original network).
The appropriate value of b can be found, for example, using a binary search
with initial high and low values of 1 and 2. The service distribution family
for node i∗ is set to the service distribution family corresponding to the
node j ∈ R with maximum throughput to i (that is, the j that maximizes
λ j pj ,i for fixed i). (In this article, we consider service distributions from the
Weibull, lognormal, and gamma families.)

The choice for μ̂i∗ is motivated in a similar manner as in Reduction 1. As-
suming that ρ̂i∗ is slightly less than 1, then μ̂i∗ = λ̂i∗/ρ̂i∗ is slightly greater than
λ̂i∗ . Ideally, we would like λ̂i∗ = λR · pR,i, which is the throughput from R to i
in the original network. Thus, μ̂i∗ should be slightly greater than λR · pR,i. The
value b in step 4 allows us to adjust μ̂i∗ slightly upward.

Similarly, the choice for ĉ2
si∗ gives an approximate match of the SCV of the

arrival process from R∗ to i in the reduced network to the SCV of the arrival
process from R to i in the original network. This is because when ρ̂i∗ ≈ 1,
the SCV of the departure process from i∗ to i (or equivalently from R∗ to i) is
approximately the SCV of the service distribution of i∗. More specifically, in the
reduced network,

ĉ2
aR∗,i = 1

λ̂R∗ · p̂R∗,i

(
λ̂i∗ · ĉ2

di∗,ai

) = λ̂i∗ · ĉ2
di∗

λ̂R∗ · p̂R∗,i
≈ λ̂i∗ · ĉ2

si∗

λ̂R∗ · p̂R∗,i
= ĉ2

si∗ = c2
aR,i.

The first equality is (8) applied to the reduced network, with the summa-
tion applied to nodes in R∗, and using p̂ j ∗,i = δ j ,i. The next equality follows
since ĉ2

di∗,ai = ĉ2
di∗ from (3), since p̂i∗,i = 1. The next approximation follows

since ĉ2
di∗ ≈ ĉ2

si∗ from (2), assuming that ρ̂i∗ ≈ 1. The next equality follows
since p̂R∗,i = λ̂i∗/λ̂R∗ , by definition, using (7) applied to the reduced network. The
last equality substitutes the assigned value ĉ2

si∗ ≡ c2
aR,i from Reduction 2, step 4.

We note that both reductions require solving a Jackson network exactly.
Thus, there is no benefit in using the reductions to analyze a Jackson network
(where the service distributions are exponential). The benefit occurs when the
service distributions are general and analytical solutions are not available. In
this case, the simulation time for the reduced network is less than the simu-
lation time for the original network. The analytical computations required in
these reductions is not typically problematic. For example, we have used MVA
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to solve a 500-node closed Jackson network in about 23 seconds on a 2 GHz PC.
While the reductions require the analytical solution of a possibly large Jackson
network, they eliminate the requirement to simulate a large network.

For the purpose of reproducibility, the supplement for this article [Shortle
et al. 2009] gives a small example network and shows the results of the associ-
ated network reductions.

5. EXPERIMENTAL RESULTS USING ANALYTICAL METHODS

In this section, we test Reduction 1 on a large number of networks. To do this,
we create an automated process that generates random networks and applies
the reduction to each network.

While there are many ways to create random networks, we seek a method
yielding something similar in structure to the existing national network of
airports. In particular, we want networks that have a relatively small number
of hub nodes and a relatively large number of feeder nodes. We can generate
such networks based on the theory of scale-free networks (for an introduction
to these networks, see Barabási and Bonabeau [2003]).

Scale-free networks arise from the following two principles describing how
a network grows over time (e.g., Albert and Barabási [2002]):

(1) Growth. The network grows by the successive addition of nodes to the net-
work. (This is different than starting with a fixed number of nodes and then
growing the network by the successive addition of edges.) Edges are added
to the network only when connecting a new node to existing nodes.

(2) Preferential attachment. When adding a new node to the network, it is
preferable to connect it node to nodes that already connect to a large number
of existing nodes.

We apply these principles using the following algorithm (adapted from Albert
and Barabási [2002]):

Algorithm B.

Inputs: N (number of nodes) and k (1 ≤ k ≤ N − 1), a connectivity factor controlling
the sparseness of the network (higher values of k yield more edges in the network).
Output: A network of N nodes and their connecting edges. Edges are undirected.

(1) Initialization. Start with an initial network of k nodes, where each node is connected
via an edge to every other node except itself.

(2) For i = k + 1, k + 2, . . . , N :
(a) Growth. Add a new node i to the network. Node i is connected to the existing

network as follows:
(b) Preferential attachment. Randomly connect the new node to k nodes from the

existing set of nodes in the network. The probability of connecting to a given
node is proportional to the degree of that node.

Algorithm B generates a set of nodes and edges, but does not specify tran-
sition probabilities or service rates, nor does it apply the approximations de-
scribed previously. The following algorithm describes a complete procedure for
doing this.

ACM Transactions on Modeling and Computer Simulation, Vol. 19, No. 3, Article 10, Publication date: June 2009.



10:12 • J. F. Shortle et al.

Algorithm C.

Inputs: N (number of nodes), k (connectivity parameter), M (number of customers
in network), B (maximum number of nodes in C).

(1) Generate a random network (nodes and edges) using Algorithm B.
(2) For each node i, assign transition probabilities (from i) uniformly to those nodes

connected to i. Specifically, let di be the degree of node i. Let b1, b2, . . . , bdi be the
indices of the nodes connected to i. Randomly generate (di − 1) independently iden-
tically distributed uniform variables on [0, 1]. Sort these random variables and call
them a1 < a2 < · · · < adi−1. Define a0 ≡ 0 and adi ≡ 1. Let the transition probability
from i to bj be aj − aj−1.

(3) Specify the service distribution at each node. (Details on this step will be discussed
later.)

(4) Choose the nodes in C. First determine NC, the number of nodes in C, drawn uni-
formly from {1, 2, . . . , B ≤ N −2}. Then randomly choose NC nodes, where each node
has an equal probability of being selected.

(5) Create a reduced network.
(6) Compare performance metrics between the original and reduced networks.

By repeating Algorithm C many times, we can test the performance of the
reductions over a large number of networks. In the following examples, we
assume that all nodes have exponential service and we apply Reduction 1.
Under this setup, it is possible to test the accuracy of the network reductions
exactly, using MVA.

Effects of Server Utilization. Figure 4 shows an example in which we generate
500 random networks. The original networks all have N = 12 nodes, M = 120
customers, and service rates μi = 1. The connectivity factor is k = 5 and the
maximum number of core nodes is B = 10. Each point in the figure represents
one node in C from one of the 500 randomly generated networks.6 The y-axis
specifies the relative error in Wq for a particular node (|Ŵ q − Wq|/Wq). The
x-axis specifies the traffic intensity, ρ, of that node in the original network. For
low values of ρ, the relative error is quite small. However, the relative error
increases substantially when ρ is close to 1.

Effect of Number of Customers. Figure 5 shows a similar set of experiments in
which we vary the number of customers in the network. The input parameters
are N = 30, k = 2, B = 28, and service rates μi = 1. We vary the number of
customers: M = 10, M = 100, M = 1000. For each value of M , we generate
75 random networks. Although the figure contains a large number of points,
one can see roughly three bands, corresponding to the cases M = 10, 100, and
1000. As the number of customers increases, the accuracy of the approximation
improves.

This can be explained as follows:

6For a given network, the number of nodes in C is randomly chosen from {1, 2, . . . , 10}, with an
average value of 5.5. Thus, the figure contains approximately 500 · 5.5 = 2750 points.
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Fig. 4. Sample results for Reduction 1.
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Fig. 5. Effects of varying the number of customers.

As the number of customers increases, the closed network behaves more like
an open network, because the node with the highest congestion effectively acts
like an infinite source and sink for the remaining nodes. For open Jackson net-
works, the performance metrics at a node i depend only on the service rate, μi,
and the throughput, λi, which are approximately the same for the original and
reduced networks.

Effect of Core Size. Figure 6 shows the dependence of relative error on the
number of nodes in C. In this example, we generate 500 networks with param-
eters N = 30, B = 28, k = 5, and M = 200. For a given node, the x-axis is the
number of nodes, NC, in C, for a particular node within one of the 500 networks.
The figure shows results on both a standard scale and a logarithmic scale. The
logarithmic scale (on the right) does not reveal any noticeable trend in accuracy
as a function of NC. On the other hand, the linear scale shows improving accu-
racy as NC increases (at least for NC ≥ 6 or so).7 In other words, the worst-case

7Each point in the figure corresponds to one node in C in one of the 500 networks. Thus, networks
with smaller NC yield fewer points in the figure. The fact that the lowest NC do not yield the
worst-case accuracy values is probably an artifact of not enough data points in this region.
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Fig. 6. Network reduction as a function of NC , the number of nodes in C, using Reduction 1.

nodes are improving as NC increases, but the typical nodes (that is, near the
median in accuracy) do not show a noticeable trend. We expect some improve-
ment for larger NC, since the approximation eliminates fewer nodes from the
original network. However, this trend is only visible for the extreme points.

6. EXPERIMENTAL RESULTS USING SIMULATION

This section considers queueing networks with general service distributions.
Since exact analytical solutions are not available, we use simulation to assess
the accuracy of the network reductions. As in the previous section, we generate a
set of random networks, apply a reduction to each network, and then assess the
results collectively. We generate and analyze each network using Algorithm C,
but we now use simulation in step 6, rather than exact formulas.

Comparison of Reductions 1 and 2. Figure 7 shows a comparison of Reduc-
tions 1 and 2. For each graph in the figure, we generate 200 random networks
with parameters N = 12, M = 120, k = 2, and B = 5. The graphs are differen-
tiated by the SCV of the service distribution within each network. The service
distribution at each node is a Weibull distribution with a mean of 1 and SCV =
1.0, 0.5, 0.25, or 0.111, as specified. The y-axis is |Ŵ q − Wq|/Wq , where the ex-
pected queue waiting times are estimated using simulation. For each network,
we run 20 simulation replications, where each replication has a run length of
50,000 time units and a warm-up length of 1,000 time units. The lengths of
95% confidence intervals for Wq and Ŵ q are less than 0.01 (1% of the average
service time) for node utilizations less than 0.8, though the confidence intervals
can grow significantly as the utilization approaches 1.

The figure shows two trends. First, the accuracy degrades as the service
distribution SCV becomes smaller, or as the service distribution becomes more
deterministic. Second, Reduction 2 generally performs better than Reduction 1,
particularly for smaller SCV values in the service distribution.

Table II shows the median and average simulation speed-up for the 200
networks (where speed-up is defined to be the time to simulate the original
network divided by the time to simulate the reduced network). Reduction 1
is slightly faster than Reduction 2. This is expected because the reduction in-
volves fewer nodes. Also, there is no noticeable trend in the speed-up factor as
a function of the SCV of the service distribution. Finally, the average speed-up
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Fig. 7. Effects of varying the squared coefficient of variation for service distributions.

Table II. Simulation Speed-Up for Sample Networks

Reduction 1 Reduction 2
SCV Median Average Median Average
1.0 2.8 6.8 2.2 5.2
0.5 2.9 6.3 2.5 4.9
0.25 2.8 8.2 2.6 4.5
0.111 3.1 7.2 2.5 6.7

is much larger than the median. This is due to a small number of networks
with extremely large speed-up factors. The remaining experiments all involve
Reduction 2.

Other Service Distributions. The previous example assumed Weibull service
distributions for all nodes. This example (Figure 8) shows the effect of varying
the family of service distributions. There are four sets of experiments. In the
first set, all service distributions are chosen from the Weibull family, as be-
fore. The second and third sets are similar, but with gamma and lognormal
families replacing the Weibull family. In the last set, the service distribution
for each node is randomly chosen from the Weibull, gamma, and lognormal
families, with equal probability. In addition, the mean and SCV of the service
distribution for each node is randomly chosen according to: 1/μi ∼ Unif[0.5, 2],
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Fig. 8. Effects of varying the family of service distributions.

Fig. 9. Service distributions with SCVs greater than 1.

c2
si ∼ Unif[0.5, 0.75]. The other parameters are: 70 networks in each graph,

N = 50, M = 500, k = 3, B = 10, simulation time 100,000, warmup time
10,000. The network reductions with the Weibull and gamma families show
similar results. The lognormal family results in worse accuracy. This may be
because the lognormal is a heavy-tailed distribution. The mixed case inherits
a mixture of results from the specialized cases.

High SCV. Figure 9 shows an example in which the service SCVs are greater
than 1. For each node, the service SCV is randomly chosen between 1 and 2.5
(c2

si ∼ Unif[1, 2.5]). The other parameters are: 100 networks, N = 30, M = 200,
k = 3, B = 10, service family is Weibull, 1/μi ∼ Unif[0.5, 2], simulation time
100,000, warmup time 10,000. The figure shows that although the results are
not as good as with exponential service, the accuracy does not suffer from the
same kinds of problems as networks that have very low SCVs.

Variable SCV. Figure 10 shows an example in which the service SCV is
randomly chosen over a wide range (c2

si ∼ Unif[.05, 1]). In comparison with
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Fig. 10. Service distributions with SCVs between .05 and 1.

Fig. 11. Core nodes in C have high utilizations.

Figure 7, the results are closest to the SCV = 0.5 case, not the SCV = 0.111
case. In other words, having all low service SCVs can lead to very poor results,
but having some low service SCV’s does not seem to lead to the same poor
results. The other parameters for this example are: 100 networks, N = 30,
M = 400, k = 3, B = 5, service distribution is Weibull, 1/μi ∼ Unif[0.5, 2],
simulation time 100,000, warmup time 10,000.

Small C. Figure 11 investigates cases where C is relatively small and contains
high utilization nodes. The number of core nodes, NC, is chosen randomly be-
tween 2 and 5, where the total number of nodes is N = 50. The actual nodes in C
are chosen to be the nodes with the highest utilizations. The other experimen-
tal parameters are: 100 networks, M = 300, k = 3, service family is Weibull,
1/μi ∼ Unif[0.5, 2], csi2 ∼ Unif[0.5, 1], simulation time 100,000, warmup time
10,000. The example shows that the performance is not significantly different
than other results seen earlier. The median speedup for this example is 9.8.
This speedup factor is higher than results seen in Figure 7. The reason is that
this example has a smaller number of nodes in C and a higher number of nodes
in R, even though the nodes in C are more congested in this example.

In general, we have not observed any noticeable effect due to the bottleneck
node (the node with the highest utilization) being located in C or in R. The key
predictor in accuracy at a given node seems to be the utilization at that node,
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Fig. 12. Comparison of smaller and larger networks.

Table III. Median Relative Error for
200 Sample Networks

Parametric
SCV Reduction 2 Decomposition
1.0 0.01 0.02
0.5 0.06 0.11
0.25 0.12 0.23
0.111 0.17 0.42

regardless of whether the bottleneck node is in C or in R. This can be partially
observed in Figure 11, since the bottleneck node is in C for every network in
this example, yet the results, as a function of ρ, are not much different than
previous results, where the bottleneck node is usually not in C.

Larger and Smaller Networks. This example compares larger and smaller
networks. The larger networks have N = 30 nodes and M = 5, 000 customers,
while the smaller networks have N = 10 nodes and M = 120 customers.
Common parameters are: 200 networks, k = 2, B = 5, Weibull service families,
μi = 1, 20 replications, simulation time 10,000,000, warmup time 100,000.
Figure 12 shows a sample comparison, where the service SCV is 0.111. The
figure reveals no discernable difference. Cases with other SCVs show essentially
the same thing. (One exception is the case, SCV = 1.0, which is much more
accurate for the larger networks, consistent with the analytical results given
previously in Figure 5.) The median speedup for the larger networks is 6.8
compared to 2.5 for the smaller networks. As expected, the reductions are more
efficient for larger networks. The lengths of 95% confidence intervals for Wq
and Ŵ q are less than 0.0001 for node utilizations less than 0.8 and less than
0.01 for node utilizations less than about 0.95.

Comparison with Parametric Decomposition. This example compares Reduc-
tion 2 with the parametric decomposition using (1)–(4). Although both methods
use (1)–(4), a key difference is that Reduction 2 maintains the network inter-
action between nodes in the core set C, whereas the decomposition approach
models the nodes as isolated queues. Table III shows sample results compar-
ing the median relative error using both methods. As expected, Reduction 2
is more accurate. However, the decomposition approximation does not require
simulation, so it can be computed almost instantly.
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The parameters used in this example are: 200 networks, N = 12, M = 120,
k = 2, B = 5, Weibull service distributions, fixed c2

si as shown in the Table, 20
simulation replications, simulation time 50,000, warmup time 1,000.

The parametric decomposition method is implemented as follows:
The closed network is converted to an open network, as described in Whitt

[1984]. The first-moment parameters, λ j , are obtained by solving standard flow
balance equations. The second-moment parameters, c2

aj , are estimated by solv-
ing the linear system of equations in (1). Finally, the waiting time at an in-
dividual node j , is estimated using the derived values λ j and c2

aj , as input to
standard approximation formulas for the GI/G/1 queue [Whitt 1983b].

Asymptotic Analysis. We now discuss the speedup magnitudes that are pos-
sible using these reductions. Both reductions try to replicate transitions from
C → C, C → R, and R → C, while eliminating transitions from R → R. As-
suming the simulation time is linear in the number of transitions, the speedup
factor is roughly:

Rate of all transitions in network
Rate of transitions from C → C, C → R, and R → C .

If we also assume that the rate of transitions out of a node is proportional to
the degree of the node, then the speedup factor is at least:

Total degree of all nodes in the network
2 × (Total degree of nodes in C)

.

(The denominator counts transitions from C → R, R → C, and double counts
transitions from C → C.)

To complete a rough asymptotic analysis, we assume that a network grows in
the scale-free manner described in Section 5. Albert and Barabási [2002] have
shown that the proportion, pj , of nodes with degree j , approximately follows a
power law, pj ≈ Cj −α, for some constant C. As an approximation, we replace
the discrete power law with a continuous density function f (x) ≈ Cx−α. In the
worst case, the nodes in C are the nodes with the highest degree. Then for some
value K , the fraction of nodes in C is:

NC

N
≈

∫ ∞

K
Cx−αd x ∝ K −(α−1).

Thus, K ∝ (N/NC)1/(α−1). The total degree of nodes in C is roughly:
∫ ∞

K
xN (Cx−α) d x ∝ N K −(α−2) ∝ N

(
N
NC

)−(α−2)/(α−1)

.

Since the total degree of all nodes in the network scales as N , the speedup
factor scales as (N/NC)(α−2)/(α−1). Albert and Barabási [2002] have found from
simulation experiments that the parameter α is about 3, regardless of the con-
nectivity factor used to grow the network. So if NC is fixed, the speedup scales
with

√
N . If NC/N = N−β , the speedup scales with Nβ/2. More generally, the

speedup may be greater, since we have made pessimistic assumptions through-
out the analysis. Further, if the network grows in a manner that is not as
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favorable towards high-degree connections, the speedup factor will be greater,
since the network growth is more likely to add connections within R.

7. CONCLUSIONS

This article gave several methods for reducing a closed queueing network to a
smaller one. The networks considered in this article were closed Jackson-like
networks with Markovian routing and general service distributions. The basic
idea was to divide the network into two parts: the core nodes of interest, C, and
the remaining nodes, R. One reduction collapsed all nodes in R into a single
node. Another collapsed R into a small set of nodes R∗. The parameters in R∗

were chosen to approximately match input flows into C, compared with the
original network.

By randomly generating sample test networks, we tested the reductions on
hundreds of networks, rather than on only a few specific cases. The networks
were evaluated based on the relative accuracy in estimating the mean wait in
queue Wq at each node. The following types of networks were tested in this arti-
cle. Networks were generated randomly using scale-free algorithms, tending to
yield networks with a small number of highly connected nodes and a large num-
ber of nodes with low degree. All nodes had a single server. Weibull, gamma,
lognormal, and exponential service distributions were considered. Mean service
rates varied from 0.5 to 2, and service SCVs varied from 0.05 to 2.5. Network
sizes ranged from 12 to 50 nodes, with customer sizes ranging from 120 to 5,000.
The experiments did not cover every combination of all variables, but attempted
to provide a representative sample.

In the experiments conducted, the network reductions yielded poor approxi-
mations for nodes with utilizations near 1 or near 0 (the problems near 0 were
partially related to the denominator of the relative error being small), or when
the SCVs of all service distributions were low (less than 0.25), or when some
of the service distributions were lognormal. The network reductions yielded
modestly good results (relative errors less than about 20%) in other cases when
service-distribution SCVs were not all less than 0.25, when service distributions
were Weibull or gamma, and when node utilizations were moderate (between
0.2 and 0.8). Excellent results were achieved with exponential service, though
such networks do not need simulation to analyze in the first place. Factors that
did not influence the accuracy of the results were the size of the core set C,
the size of the overall network, or whether or not the bottleneck node was in C
or R.

The speedup was primarily related to the number of transitions withinR that
were eliminated by using the reduced network. Networks with large sets,R, and
small sets, C, tended to have large speedup factors. All experiments confirmed
a trend that the speedup is inversely related to the number of nodes in C, for
a fixed total number of nodes. Median speedups observed ranged from about 2
to 20.

There are multiple avenues for future work based on this research. One is to
investigate more complicated subnetwork structures for R∗ as a way to approxi-
mate network dynamics outside the core nodes. Another is to analyze networks
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with more complex routing logic—for example, networks with scheduled de-
partures. In such networks, simulation within the core set of nodes, C, becomes
more critical.
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