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Abstract—We develop a computationally efficient online pa-
rameter estimation algorithm for temporal spectrum sensing of a
cognitive radio channel using a hidden bivariate Markov model.
The online estimator is based on a block-recursive parameter esti-
mation algorithm developed by Rydén for hidden Markov models.
This approach requires the score function only. We develop an
efficient method for computing the score function recursively and
extend Rydén’s approach to hidden bivariate Markov models.
The advantage of the hidden bivariate Markov model over the
hidden Markov model is its ability to characterize non-geometric
state sojourn time distributions, which can be crucial in spectrum
sensing. Based on the hidden bivariate Markov model, an estimate
of the future state of the primary user can be obtained, which
can be used to reduce harmful interference and improve channel
utilization. Moreover, the online estimator can adapt to changes
in the statistical characteristics of the primary user. We present
numerical results that demonstrate the performance of temporal
spectrum sensing using the proposed online parameter estimator.

Index Terms—Cognitive radio, spectrum sensing, hidden
Markov model (HMM), online estimation, recursive estimation.

I. INTRODUCTION

ADIO spectrum has become an increasingly scarce com-

munication resource due to the explosive development
of wireless technologies. At the same time, spectrum mea-
surement studies have shown that significant portions of the
wireless spectrum are highly underutilized [8]. Cognitive radio
enables secondary (unlicensed) users to utilize spectrum holes
of primary (licensed) users, either because the primary user
(PU) is idle or because the PU’s location is sufficiently far from
the secondary user (SU). In the first scenario, the SU performs
temporal spectrum sensing to detect idle periods of the PU. In
the second scenario, the SU determines the maximum transmis-
sion power that can be used in a given frequency band without
causing harmful interference to PUs [16], [19], [27].

We focus here on temporal spectrum sensing for a narrow-
band channel. In this scenario, the PU’s transmitter alternates
between an active state, in which it transmits a signal onto the
channel, and an idle state. A cognitive radio senses the channel
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by monitoring the received signal and inferring the active or idle
state of the PU. Various approaches to spectrum sensing have
been proposed in the literature, including matched filter de-
tection, energy detection, and cyclostationary feature detection
(cf. [34]). The matched filter detector requires prior knowledge
of the modulation scheme used by the PU. Cyclostationary fea-
ture detectors perform much better under low SNR conditions,
but are more computationally demanding and typically require
long sensing intervals.

None of the aforementioned approaches to spectrum sensing
provides the capability of forecasting the future state of the PU.
By anticipating that the PU will change from the idle to the
active state, a cognitive radio could vacate the channel well
before such an event occurred, thereby reducing the potential
interference to the PU. In [24], an approach to model-based
temporal spectrum sensing was proposed based on a hidden
bivariate Markov model (HBMM). In this context, the HBMM
consists of an underlying bivariate Markov chain, which models
the state sequence of the PU (i.e., active or idle), together
with an observation model, which characterizes the lognormal
shadow fading of the channel between the PU and the cognitive
radio. Forward recursions developed in [24] are used to com-
pute estimates of the current state of the PU, as well as predicted
estimates of futures states. The HBMM is closely related to the
more familiar hidden Markov model (HMM) (cf. [7]). A key
benefit of the HBMM for the spectrum sensing application is
that the sojourn times of the PU in the active and idle states
could be modeled by discrete phase-type distributions, whereas
in an HMM the model for sojourn times is limited to geometric
distributions. The ability of the HBMM to characterize general
state sojourn times is important for accurate prediction of the
future state of a PU.

In the temporal spectrum sensing scheme proposed in [24],
the Baum algorithm [2] is applied to training data to estimate
the HBMM parameter. The HBMM parameter estimate is then
used to perform state estimation and prediction via forward
recursions. This approach was shown to perform well on real
spectrum measurement data with respect to estimation and
prediction error probabilities. Due to the offline nature of the
Baum algorithm, however, it cannot adapt to changes over time
in the wireless channel or in the underlying statistics of the PU
transmission pattern.

In this paper, we develop an online parameter estimation
scheme for the HBMM and apply it to temporal spectrum
sensing. The estimation and prediction accuracy of this scheme
is comparable to that of the offline Baum-based parameter
estimator in [24]. Since the estimator is recursive, it is able to
adapt to slow changes in the statistical behavior of the PU’s
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transmission pattern. The operational assumption here is that
the state sequence representing the PU active/idle intervals is
quasi-stationary. That is, the sequence may be conceptually
divided into segments such that each segment is drawn from
a possibly different stationary sequence. The proposed online
HBMM parameter estimator is based on a block-recursive
parameter estimation scheme originally developed by Rydén
for HMMs [25]. We adopt a method due to Willy et al. [32]
to estimate the score function of the HBMM. Together with the
state estimation and prediction recursions presented in [24], the
HBMM parameter estimator forms the basis for a fully online
scheme for temporal spectrum sensing.

Much of the prior work on model-based temporal spectrum
sensing relies on the more traditional univariate Markov chain,
either in discrete-time or continuous-time, to model the PU.
Several papers have used the standard HMM to jointly model
the PU state and the effect of the channel. A recent paper by
Li et al. [17], develops a sequential particle filtering approach
for joint estimation of the current state of the PU and of
the channel. In [17], a two-state discrete-time Markov chain
model for the PU is assumed and the channel is modeled by
a finite state Markov chain to characterize time-variant small-
scale fading. Empirical results presented in [9], [24] provide
evidence of the non-geometric nature of the active and idle
periods of a PU. In [9], a continuous-time semi-Markov process
was proposed as a model for the PU. Unlike the hidden semi-
Markov model [33], the HBMM does not require explicit speci-
fication or estimation of the state sojourn time distributions. We
mention that the HBMM and related models have been applied
in other applications, such as unsupervised image segmentation
(see, e.g., [14]).

The remainder of the paper is organized as follows. In
Section II, temporal spectrum sensing based on the HBMM
is discussed. In Section III, we develop an online parameter
estimation algorithm for HBMMs and discuss its application
to spectrum sensing. In Section IV, we present numerical
results to demonstrate the performance of the proposed online
spectrum sensing scheme. In Section V, we provide some
concluding remarks.

II. SPECTRUM SENSING BASED ON A
HIDDEN BIVARIATE MARKOV MODEL

In this section, we briefly review the framework for spectrum
sensing proposed in [24], focusing on the role of the HBMM
and estimation of the HBMM parameter.

A. System Model

The PU alternates between an active state, in which a signal
of fixed output power is transmitted over a narrowband channel
and an idle state, in which no signal is transmitted. The wireless
propagation environment is assumed to be governed by a stan-
dard path loss with lognormal shadowing model. For a receiver
at a distance J from the PU, the overall log-distance path loss
with shadowing, measured in dB, is given by [20, pp. 40—41]

- 1)
Ly(6) = Lyp(bo) + 10k logy, <60) +em, 0>0dp, (1)
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where &y denotes the close-in reference distance, L, (&) is the
average log-distance path loss at the reference distance g, & is
the path loss exponent, and €4 is the shadowing noise, which
is assumed to be a Gaussian random variable with zero mean
and variance o2. We ignore fast fading since it can be reduced
effectively by an averaging filter (cf. [18]).

We shall assume a discrete-time model. Let Y;, denote the
received signal power at time & from the PU, measured in units
of dBm, by the cognitive radio. Let X} denote the transmission
state of the PU at time k. We use X = 1 to signify the idle
state, i.e., no transmission by the PU and X = 2 to indicate
the active state, i.e., transmission by the PU. Under the path
loss model in (1), Y depends on X, as follows:

X =1
Y, = 1 + €148, k ) 2)
po + €248, Xp =2,

where p, represents the mean received signal power in dBm
and €, gp is a zero-mean Gaussian random variable with vari-
ance o2 representing the associated shadowing noise, when the
transmission state of the PU is a € {1, 2}. The signal power p,
results from the transmit power in state a and the path loss from
transmitter to receiver, as expressed in the deterministic part
of (1).

Typically, the sequence Y of received signal powers un-
dergoes pre-processing at the front-end of the receiver. For
example, usually some form of averaging is applied to the
received signal power samples to diminish the effect of fast
fading in the wireless propagation environment (cf. [18]). After
applying averaging, the front-end becomes essentially the same
as that of a classical energy detector. With a slight abuse of
notation, we shall refer to the output of the receiver front-end
as Y = {Yj},_,. In this case, the form of relation (2) remains
valid, i.e., Y is conditionally Gaussian given X.

B. Hidden Bivariate Markov Model

In the literature on spectrum sensing, the PU state sequence
X is commonly assumed to be a Markov chain (cf. [1],
[9]-[11], [23], [28]). In this case, the joint process (Y, X) is
an HMM (see, e.g., [7] for a review of HMMs). HMMs have
been applied as models for a cognitive radio channel in several
papers, e.g., [1], [11], [23], [28]. A limitation of the HMM,
however, is that the Markov assumption on the state sequence
X restricts the sojourn time in a given state to be geometrically
distributed. On the other hand, empirical studies have shown
that the state sojourn time distributions are often not adequately
characterized by geometric distributions. For example, in [9],
a continuous-time semi-Markov process was proposed as a
model for the state process, while in [29], source traffic models
with lognormal and extreme value sojourn time distributions
were studied.

The HBMM adopted in this paper is a trivariate process
(Y, X, S), where Y denotes an observable process with con-
tinuous alphabet and the underlying sequence, Z = (X, S), is
a finite state bivariate Markov chain. In this setup, the auxiliary
process S, together with the PU state process X, form a Markov
chain, such that X alone is not Markov, and consequently, its
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sojourn time in each state has a phase-type distribution. Such
distribution is far more general than the geometric distribution
of the HMM, as we elaborate below. For a general HBMM,
we denote the state-space of X by X ={1,...,d} and the
state-space of S by S={1,...,r}. The state-space of Z is
given by Z = X x S. The processes Y and S are assumed to be
conditionally independent given X. In addition, Y given X is
a sequence of independent, identically distributed (iid) random
variables.

Let f(y;0,) denote the conditional density of Y} given
X = a, where 6, is a parameter depending on a € X. In the
spectrum sensing application, the form of f(y;6,) depends on
the particular channel model and receiver front-end assumed.
Under the setup of (2), f(y;0,) is a Gaussian density and
in this case, we set 0, = (14,04,), where u, and o, denote
the mean and standard deviation in state a. The d-tuple 6 =
(0, : a € X) specifies the conditional Gaussian parameters of
the HBMM. Different channel models and receiver front-ends
could be accommodated within the HBMM framework by mod-
ifying the form of f(y;0,) appropriately. We remark that the
assumption that Y is conditionally independent given X could
be relaxed by characterizing the observable process as a vector
process Y = {Y,}, where the random vector Y, captures
correlations among consecutive components of the process Y.
For example, to capture pairwise correlations in the observable
process, one could define Y,, = (Yo,,—1,Y2,), n=1,2,....
Nevertheless, the simple Gaussian-based HBMM was found to
be quite accurate in modeling real spectrum measurement data
[22], [24].

Let P denote the underlying probability measure. The initial
distribution of the bivariate Markov chain Z is denoted by
the 1 x dr row vector 7 = [m(4;) : (a,1) € Z], where 7, ;) =
P(Zy = (a,1)), and lexicographic ordering of the bivariate
states is assumed. The transition probability matrix of Z is
denoted by the dr x dr matrix G = [gas(2j) : (a,i), (b, ) €
Z), where gu,(ij) = P(Z2 = (b, j)|Z1 = (a,1)). The transition
matrix can be expressed as a block matrix G = [Gyp : a,b €
X], where Gop = [gap(i,7) 14,5 € S] is an r x r matrix. We
assume that the matrices G and G, a € X, are irreducible and
that the diagonal elements of GG are positive.

Statistical properties of discrete-time bivariate Markov
chains are discussed in [5, Chapter 8], [24]. In particular, the
sojourn time of the process X in each state a € X has a discrete-
time phase-type distribution. Suppose that X jumps at some
time k. Let (, denote the conditional distribution of Sj, given
that X = a. Then the probability mass function of the sojourn
time of X in state a is given by

pt]a) =G (I = Gua)l, t=12,..., (3
where 1 denotes a column vector of all ones and I denotes an
identity matrix of a given dimension. This is a discrete phase-
type distribution with parameter ((,,Gaq) [21, p. 46]. The
family of phase-type distributions is dense in the set of distri-
butions on {0,1,2,...} [15, p. 54] and includes convolutions
as well as mixtures of geometric distributions. Thus, a phase-
type distribution can approximate any given state sojourn time
distribution arbitrarily closely. Increasing the number of states
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of the process S allows more degrees of freedom in the phase-
type sojourn time distribution.

The parameter of the HBMM is specified by ¢ = (7,0, G).
We note that the number of elements in the parameter ¢ could
be reduced, since each row of G sums to one. However, there is
a practical benefit to retaining the entire matrix G as part of the
HBMM parameter (see Section IV-A). When an HMM (Y, X)
is used instead of the HBMM, Y given X is assumed to have the
same distribution as in the HBMM. The initial distribution 7 is
given by the 1 x d vector 7 = [, : a € X] withw, = P(X; =
a), and the transition matrix G is given by G = [gap : a,b € X],
where g, = P(X2 = b| Xy = a). Clearly, the HMM parameter
represents a special HBMM for which r = 1.

C. State and Parameter Estimation

In the spectrum sensing approach developed in [24], a train-
ing sequence of signal strength measurements from a cognitive
radio channel is used to estimate the parameter of an HBMM
in the maximum likelihood sense using a batch expectation-
maximization algorithm [3], which is essentially the Baum
algorithm [2]. The Baum algorithm involves both forward and
backward recursions and iterates over a given sequence of
observations. Given an HBMM parameter estimate, ngS, forward
recursions can be used to estimate the current state and predict
a future state of the PU, given the current and past observa-
tion data. In Section III, we develop a block-recursive online
algorithm, which updates the HBMM parameter estimate after
every m samples, where m denotes the block size. To perform
state estimation and prediction in conjunction with the online
parameter estimator, the same forward recursions developed in
[24] can be applied, except that the HBMM parameter used
in the recursions is dynamic, rather than static. This results in
a fully online approach to temporal sensing, which does not
require a training phase.

We next provide a brief outline of the state estimation and
prediction scheme developed in [24]. To simplify notation,
given a sequence {yy, }, we denote a subsequence {y, ..., Yn},
k <n, by y;;. When k£ =1, we denote the subsequence y7
simply by y™. Given an HBMM parameter ¢, the conditional
probability of the bivariate state Z; given y*, denoted by
po(2|y"*), follows straightforwardly from the forward recur-
sion for an HMM, (see, e.g., [24, Eq. (14)]). For an integer
7 > 0, the conditional probability of the bivariate state Zj ,
given yk is obtained from (see, e.g., [24, Eq. (22)])

Po(zitr [ 97) = Y 1oz | 9°) po(2ir | 20)

2ZLEL

= aler y)G oz 4)

2ZLEL

where a(zx, y*) = pg(2x|y*) is computed using the scaled for-
ward recursion for an HMM. Define a dr x dr block diagonal
matrix B(yy), with its diagonal blocks given by {p(yx| X, =

a)I,a € X}, for k =1,2,.... The scaled forward recursion is
given by (cf. [24, Eq. (14)])
B ap_1GB
a = TP o 0GBl oy g )
C1 Ck

where ¢; = 7B(y1)1, and ¢, = ax_1GB(yx)1.
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A detection scheme for the state of the PU at time k + 7
given the observation sequence " is specified as follows
(cf. [24, Eq. 23)]):

(6)

X _ L, if Zsk+fesp¢(zk+‘r:(1a5k+7)|yk)277;
otk 2, otherwise,

for k =1,2,..., where 1 is a decision threshold, 0 < 7 < 1.
The detection scheme is a maximum a posteriori (MAP) detec-
tor when 7 = 0.5. When 7 = 0, ka‘k = Xk‘k is an estimate
of the current state X;,. WhenT =1,2, ..., Xk+7—\k is the 7-step
predicted estimate of the state X, .. The current and predicted
state estimates X k+r| can be directly applied to make dynamic
spectrum access decisions.

The main thrust of the present paper lies in developing
an online algorithm to update the parameter estimate used
in (6) at regular intervals. A fully online temporal spectrum
sensing is obtained by executing (6) at each time step k with
¢ replaced by the most recent HBMM parameter estimate én
computed by the online parameter estimator given by (8) in
Section III. The state estimation/prediction scheme (6) and the
online parameter estimator (8) run in parallel. To quantitatively
assess the performance of the online temporal spectrum sensing
scheme, a receiver operating characteristic (ROC) curve can be
obtained by determining the false alarm and missed detection
probabilities for the scheme (6) corresponding to each value
of n in the interval (0,1). Examples of such ROC curves are
presented in Section I'V.

III. ONLINE PARAMETER ESTIMATION ALGORITHM

In this section, we develop an efficient online parameter
estimation algorithm for the HBMM. The algorithm extends
an earlier online algorithm developed by Rydén for HMMs
[25]. Other recursive parameter estimation schemes for HMMs
have been proposed in the literature, notably the schemes
proposed by Holst and Lindgren [12] and Krishnamurthy and
Moore [13]. In contrast to these schemes, Rydén’s algorithm is
block-recursive and has lower computational complexity, as it
does not involve scaling matrices. Moreover, numerical results
presented in [25] show that estimates obtained using Rydén’s
scheme had much smaller variances than those obtained via the
Holst-Lindgren procedure.

A. Rydén’s Block-Recursive Estimator for HMMs

Consider an HMM (Y, X)), where X is a time-homogeneous
Markov chain with state-space X = {1,...,d} and Y is a se-
quence of conditionally independent random variables given X .
In practice, the effect of the initial probability distribution 7 on
the Markov chain quickly fades and accurate estimation of 7 is
not necessary. Therefore, we parametrize the HMM by the row
vector ¢ =[fiq, 0, gab : @, b € X]. The total number of elements
in ¢is givenby L =2d+d?, so we may write p=[¢y : £=1,...,
L]. We also denote the space of HMM parameters by ® CR”.

Rydén’s algorithm operates on a block of observation data at
a time. Let m denote the block size and let

dlogpy(y™)

XY™ 0) = 90

)
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be the score function associated with the joint density of Y™
under the parameter ¢, denoted by pg(y™). Here, x is the
1 x L gradient row vector of logp,(y™) with respect to ¢.
Rydén’s recursive parameter estimator is based on a stochastic
approximation algorithm of the following form:

Gni1 =g [c?m + PnX (yﬁ",ﬁim; %)] : ®)

where 1Ig denotes a projection operator, which is a mapping
into a compact, convex set G C ®. In the recursion (8), $n+1
is the (n + 1)-st estimate of the HMM parameter, computed
as a function of the observation samples Ynm+1;- - -, Y(nt1)m
and the nth estimate ¢,,. The sequence {v,} is defined by
Yn = yon ¢ for some 7 > O and ¢ € (1,1]. Under some mild
assumptions, Rydén proved that the sequence {qgn} converges
to a point lying in the set of Kuhn-Tucker points for minimizing
the Kullback-Leibler divergence defined over G. Assuming that
the estimator (8) is consistent, it converges at a rate n~%2 with
a < 1. Under some additional, relatively mild assumptions,
Rydén showed that the averaged estimator

_ 1 < .

¢n = - ¢k‘ (9)
converges at rate n~ /2 and is asymptotically normal. For
convenience, we will simply refer to (8) as the online parameter
estimator, with the understanding that the estimates gﬁn are
averaged according to (9).

In practice, convergence of a parameter estimator could be
measured in terms of a relative distance between consecutive

parameter estimates, since the value of the true parameter is
unknown. For example, one could use

”d’nflA_qbn” < win, (10)
[[énl]
where || - || denotes a norm and wy, is an appropriate threshold.

For comparison, we note that convergence of the batch Baum
algorithm could be assessed through a relative distance between
consecutive values of the likelihood function, which is readily
available. Such likelihood function is not available for the
online algorithm.

B. Online Parameter Estimator for HBMM

We next extend Rydén’s algorithm by deriving a recursive
procedure for computing the score function of an HBMM
(Y, X, S), based on the approach of Willy et al. [32], which
was originally developed for MMPPs. This results in an on-
line parameter estimator for the HBMM. We remark that the
theoretical convergence results established by Rydén for his
recursive parameter estimation algorithm for the HMM carry
over to the HBMM case, since an HBMM (Y, X, S), as defined
in Section II, is mathematically equivalent to an HMM (Y, U),
where U is a univariate Markov chain with state space U
isomorphic to Z = X x S. In spite of this mathematical equiva-
lence, the specific details of the application of the HBMM yield
the desired sojourn time phase-type distribution for this model,
which is the primary advantage of the HBMM compared to
the HMM.
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The HBMM is parametrized by
(a,i),(b,7) € Z].

We also denote the parameter by ¢ = [¢y : £ = 1,..., L], with
L = 2d + d*r?. The score function for the observed sequence
y"™ is the 1 x L row vector given by

(b = [Ntu Oq, gab(ij) :

1 0

" p) = ——r e (Y™

X0 = ym gt

1 9
= > o aape (V" zm = (b.4) . (1D

(g Poy™) 00
Let H,,(y™; ¢) denote a dr x L matrix whose (v, ) element is

given by

L0
TN a 7Zm
Po(y™) 5¢ep¢ Y

where (b, j)€Z suchthatv = b(r — 1) + jandl€{1,...,L}.
Then the score function can be obtained from

X" ¢) =1Hn(y™; ¢),

where ’ denotes matrix transpose. Applying the conditional in-
dependence of the observation sequence Y given the underlying
Markov chain Z yields [H,, (y"™; ¢)],,, as

L0 > pe (™

Py (y™) Oy iz

[Hm(ym; ¢)]u£ = =(b,4)), (12)

(13)

Zm—-1 = (G'?Z)) fiajb(ym; ab)

1 1
= m—1 Z m—1
Po(ym |y™=0) St Po(y™ )

0 717 Zm-1 = (a,z)) f%b(ym, ob)] )

s [P (y™ (14)

where f] (Ym: 06) 2 gap(i5) f (Ym; 0p). Comparing (12) and
(14), a recursive procedure for computing H,,(y™; ¢) can be
obtained as follows:

[Hm(ym m 1; ¢)]u2

L5 fim

(a 1)EZ

- FE Y O) + Em-1(a, i) o fzjb(ym;%)}, 15)

elots

where v = a(r — 1) + 4 and

§m<bvj) ép¢(zm = (b’j) | ym)

Y (@ i) fE (ymi O0), (16)
™ (a,i)eZ
Cm £pg(ym | y™ )
= > > Guale, i) ymi). (A7)
(a,i)€Z (b,j)EZ
Let &, be a1l x dr row vector given by
Em = [Em(a,i) : (a,i) € Z] (18)
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and define a dr x dr matrix
F(ym) = [f5 Wmi0b) : (a,0), (b,5) € 2] (19)
Then (16) and (17) can be expressed more compactly as
= €1 Flum), 20)
and
cm = Em-1F(ym)1, (2D

respectively. Equation (15) can then be expressed in matrix
form as follows:

Hm(ym; ¢) = 1{F(ym)/Hml(ym_1§¢)

Cm

+<I®sm_1>8%

where I denotes an identity matrix, of order dr in this case,
® denotes the Kronecker product, and vecF(y,,) denotes the
d?r? x 1 column vector obtained by stacking the columns of
the matrix F'(y,,) one on top of the other. The form of (22) is
particularly convenient for implementing the online parameter
estimator in a vector-based programming language such as
MATLAB. The d?r? x L matrix d[vec F(y,,)]'/0¢ is the
Jacobian of the vector-valued function [vec F(y,,)]" with re-
spect to the HBMM parameter ¢. The elements of the d?r? x L
Jacobian matrix d[vec F'(y,,)]'/O¢ are partial derivatives of
S (yYms Op), given as follows:

[vee F(ym)]' } (22)

0 a (ymveb)
= m;a ]-cL:ai e,l)=(b,5)}>
Olgectl)] ! Wmi O Lenr=(0.0)(e.0=0)
0 a (yﬂ% eb) ab (ym - /~Lb)2 - 0'13
8( ) = Jij (ymagb) O_:g 1{c=b},
DFEP (Y Ob) b Ym — Lbb
— =[5 (Ym; 0 =1 c=b}s
a(lu() ij (y b) o_g {c=b}

for (c,t), (e,1) € Z, where 1 4 denotes an indicator function on
the set A.

The computational complexity of the online estimator at each
step is dominated by the computation of the matrix H,,(y™; ¢)
in (22), which requires O((dr3)L) = O(d°r®) arithmetic op-
erations for the HBMM, assuming a straightforward sequen-
tial implementation. For the spectrum sensing application,
d = 2, so the complexity of the estimator grows as O(r®). In
practice, a larger value of r can yield more accurate parameter
estimates, but then more observation data would be required
for the estimator to converge. In our numerical experiments,
we have used values of r ranging from 1 to 5. We remark
that each iteration of the Baum algorithm proposed in [24] has
computational complexity O(r2T'), where T is the length of
the observation sequence used to compute the estimate and is
typically quite large (e.g., 7" = 2000). Furthermore, the Baum
algorithm may require many iterations to converge.
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IV. NUMERICAL RESULTS

In this section, we presents the results of a numerical study
to assess the accuracy of the proposed algorithm in estimating
the parameter of an HBMM and in estimating the state of the
PU for online spectrum sensing.

A. Implementation

The online HBMM parameter estimator was implemented
in MATLAB. The block size is chosen to be m = 20 and the
averaging procedure (9) is started after the basic recursion (8)
has been executed for 1,000 steps. For the projection step in (8),
we define the parameter space G as follows:

g= {¢ D e € (Hna)vga € (0,7),9ab(ij) € (g>§)ﬂ

Z gab(ij) =1 (a’i)’ (b7j) € Z}a

(b,7)€Z

where p1 = —10°, 1 =10%, 5 =100, g =105 and g =1 —
1075. The projection operator IIg in (8) can be implemented
in various ways. We have obtained good results using the
following approach. Let ¢ denote the bracketed expression
in (8). Recall that the parameter ¢ is the triplet [, o, G].
The components of q3n+1 are obtained from the corresponding
components of ) using

ﬂ(n+1) _ p’aa ﬂa € (Ha ﬂ)?
“ (™) otherwise,
~ (n_l,_l) _ 5.(17 &(L S (Qv 6))
O'a = . .
6™ otherwise,
for a € X and
A(n+1) /. . gab(zj)
g (i) = I (23)
b Z(b,j)el Gan (i)
where

(i) — L300 ) (143G =953 0) - Gl € (5:9),
’ QC(LZ) (i5), otherwise,
24

for (a,i),(b,j) € Z. The heuristic expression for gf;g“)(ij)
given by (23) and (24) provides a numerically stable estimator
for the transition matrix and allows a more aggressive weighting
sequence {7y,} to be chosen in the recursive procedure (8)
to achieve faster convergence. In our implementation, we set
Yn = Yon~ ¢, where 79 = 0.3 and € = 0.35. Note that in our
approach, the projection operator II; appearing in (8) depends
on g?)n In our numerical studies, we have found that computing
estimates of all components of the transition matrix G via (8)
and then normalizing, as in (23), results in significantly better
performance than computing estimates of only the independent
components of G. This provides a practical justification for
retaining the entire transition matrix as part of the HBMM
parameter.
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TABLE 1
ESTIMATES OF HBMM PARAMETER COMPONENTS
FOR THE OBSERVABLE PROCESS

|[ true [ Baum [ r=1 r=2 r=5 |
iz -112.40 | -112.38 -112.49 -112.50  -112.43
&1 3.77 3.79 3.75 3.73 3.74
ft2 -45.61 -45.67 -45.62 -45.57 -45.62
G2 1.77 1.77 1.78 1.76 1.77

B. Simulation Setup

For our spectrum sensing simulations, the true parameter
¢° of the HBMM was the one used in [24]. That parameter
was estimated from real spectrum measurements of a pag-
ing channel collected in [26] using the Baum algorithm. The
20 x 20 transition matrix of that parameter may be found in
[22]. The parameter components for the conditionally normal
distributions are given in Table I. This HBMM parameter was
used to generate the ground truth observation sequence in most
of our numerical experiments.

We varied the order r of the HBMM estimate, as well as
the length T" of the observation sequence generated by the true
parameter. We set the initial parameter ¢° using a randomly
generated transition matrix G*. In our simulation experiments,
the initial values of the HBMM parameter components associ-
ated with the conditionally Gaussian observable sequence are
given by (uj,o5) = (—120, 1) and (u5,05) = (—80, 2.24).
The choice of the order 7 involves a tradeoff among model ac-
curacy, computational efficiency, and the number of observation
samples required to obtain a “good” estimate. Choosing a larger
value of r generally requires more observation samples and
computation, but can potentially result in better estimates. Esti-
mating the transition matrix G is a much more difficult task than
estimating the conditionally normal parameter components.
Unless the initial transition matrix G*® is somewhat close to the
true transition matrix G, the estimate G typically appears to
be a rather poor representation of GG. Nevertheless, the sojourn
time distributions derived from G tend to closely approximate
the true sojourn time distributions, given a sufficient number
of observation samples. For the spectrum sensing application,
accuracy of the sojourn time distribution estimates, as obtained
from the parameter estimate using (3), is of primary concern, as
opposed to convergence of the parameter estimates themselves
[24]. Therefore, our results focus on the quality of the estimated
sojourn time distributions rather than on convergence of the
estimates of the transition matrix.

C. Results

We have tested the recursive parameter estimator developed
in this paper, and compared its performance with the Baum
algorithm proposed in [22], [24]. We have run the Baum
algorithm on 7" = 2000 observations using a predetermined
fixed number of iterations. This number was determined by
the ratio of the total number of observations available to the
recursive algorithm, and 7" = 2000. This approach allows us to
compare the two estimators using effectively the same number
of observations. For r = 1, 2, and 5, the number of Baum
iterations was set to 5, 10, and 25, respectively.
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Fig. 1. Estimated sojourn time distributions, » = 1 (HMM).

The estimated values of the components of the parameter
which correspond to the conditional Gaussian distributions, as
obtained by the Baum algorithm, are shown in Table I in the
column labelled ‘Baum’. We ran the online algorithm for the
same values of » =1, 2, 5 with observation sequence lengths
of 10000, 20000, and 50000, respectively. The estimates of
(tta, 0q) in this case are given in the columns marked r = 1,
r =2, and r = 5, respectively, in Table 1. In all cases, the
estimates were very close to the true parameter values. These
results underscore the relative ease with which the conditionally
Gaussian parameter components can be estimated.

Estimation of the transition matrix of the true model of
order r = 10, by either the recursive algorithm or the Baum
algorithm, has proven to be a much harder task. Our numerical
work suggests that for smaller order r of the true parameter,
e.g., r =2, 3, both algorithms often converge to an estimate
close to d)o, but this is not the case for higher orders. For the
spectrum sensing application, however, the accuracy of the esti-
mates is measured by their ability to represent the sojourn times
in the active and idle states. Both the recursive and the Baum
algorithms provided accurate estimates in this respect for higher
model orders of the true parameter, in particular, for r = 10.

The sojourn time distributions associated with the estimates
of G obtained by applying the online and Baum algorithms
for r =1, 2, 5 are shown in Figs. 1, 2, and 3, respectively.
For a given parameter estimate, the associated sojourn time
distribution is given by (3). When r = 1, i.e., when the HBMM
is an HMM, the estimated idle (X = 1) and active (X = 2)
state sojourn time distributions appear to be very different
from the true ones. The online and Baum algorithms seem to
perform similarly in this case. For r = 2, the estimated idle state
sojourn time distributions obtained using the two algorithms
lines up very closely with the true distribution. For the active
state distribution, the estimates obtained using the online and
Baum algorithms are still far from the true distribution, but
some improvement can be observed relative to the case r = 1.
Significant improvement in the active state sojourn time dis-
tribution estimate can be seen when r = 5. In this case, the
online estimate is superior to the Baum estimate. We note that

4111

Idle state (Xk =1)
1 T T T T T T
—True
—0- Ryden (r=2)
—d&=-Baum (r=2)

[ 3

& D b A

A

f
13

10

—
N
—
N

6 8
Slot number

Active state (Xk =2)
1 r T T T r T

—True
—0- Ryden (r=2)
—d&--Baum (r=2)

8
Slot number

Fig. 2. Estimated sojourn time distributions, r = 2.
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Fig. 3. Estimated sojourn time distributions, r = 5.

by increasing the number of iterations, the Baum algorithm will
eventually obtain an estimated sojourn time distribution which
closely matches that obtained by the online algorithm (cf. Fig. 8
in [24]). To converge in this sense, the Baum algorithm required
15 iterations when r = 2 and 50 iterations when r = 5.

The recursive algorithm can also be applied repeatedly to
a fixed observation sequence in an offline setup similar to
that of the Baum algorithm. We applied this alternative offline
algorithm, which we refer to as ‘online-rep,” to a sequence of
T = 2000 observation samples and 10 and 25 iterations for
model orders of r = 2 and 5, respectively. This is equivalent
to applying the online algorithm to observation sequences
of lengths 20000 and 50000, obtained by concatenating the
same sequence of 2000 observation samples 10 and 25 times,
respectively. We found that the accuracy of the sojourn time
distribution estimates obtained using ‘“online-rep” was very
similar to that obtained by applying the online algorithm to
sequences of length 20 000 and 50 000 generated, respectively,
using the true parameter. Fig. 4 compares the estimated sojourn
time distributions obtained using “online-rep” vs. those ob-
tained using the online algorithm (labelled “online” as before).
The two sojourn time distributions are very close to each
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Fig. 4. Estimated sojourn time distributions, r = 5.

other and both are more accurate than the estimated sojourn
time distributions obtained using an equivalent application of
the Baum algorithm (see Fig. 3). Relative to the ‘online-rep’
algorithm, the Baum algorithm required 50% more iterations
when r = 2 and 200% more iterations when r = 5 to obtain
the converged sojourn time distribution estimates.

An important advantage of the online parameter estimator
relative to the Baum algorithm is that it can adapt to changes
in the true parameter. To demonstrate this feature, we created
an observation sequence consisting of 80000 samples gener-
ated using of the true parameter of order » = 10 as above,
followed by 80 000 samples generated using a different HBMM
parameter of order » = 3. The sojourn time distributions in the
idle and active states of the second HBMM were identical.
Consequently, the PU is in the idle and active states with equal
probability, which makes state estimation and prediction more
difficult in the case of the second HBMM model, relative to
the first.

The recursive state prediction scheme (6) together with the
online parameter estimator (8), using an HBMM of order r = 5
and with n = 0.5, were applied to the concatenated observation
sequence of 160000 samples, The observation sequence was
divided into 80 groups of 2000 samples each. Fig. 5 shows the
real-time 7-step state prediction performance (7 =1, 3, 6, 9)
of the spectrum sensing scheme. The horizontal axis indicates
the group number, while the vertical axis represents the error
probability of the prediction scheme (6), FP,., computed by
averaging over each group of 2000 observation samples. The
online parameter estimator is initialized with a randomly cho-
sen initial parameter. At group number 40, the model changes to
the second HBMM parameter and a spike in P, as expected,
can be observed for all values of 7. For 7 = 1, the error
probability drops quickly at group 41 and reaches a steady-state
level of about 0.18 after an additional 2-3 groups of observation
samples. For the other values of 7, the error performance takes
1-2 additional groups of observation samples to attain steady-
state. To summarize, the error performance of the state predic-
tion scheme required fewer than 6000 observation samples to
converge to steady-state. On the other hand, as noted earlier, for
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Fig. 5. 7-step error probability for the state prediction scheme (r=>5,n7=0.5)
vs. observation group number.
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Fig. 6. ROC plot, 7 = 2.

the same order » = 5, about 50 000 observation samples were
required for the sojourn time distribution estimates to converge.
Thus, the error performance of the state prediction scheme con-
verges much faster than the sojourn time distribution estimates.

To gain further insight into the performance of the proposed
online spectrum sensing scheme, we consider the ROC perfor-
mance of the state estimator given by (6) when 7 = 0. We use
an HBMM parameter with the same transition matrix G for
r = 10 as before, but the parameters of the observable process
are modified to reflect a more prominent shadowing effect in
the wireless channel as in [24, Eq. (26)], as follows:

(1, 01) =(—112.40,3.77), (11, 02) =(—95.40,8.19). (25)

To obtain a ROC curve, we simulate a set of sample paths of
an HBMM characterized by the true parameter ¢°. For each
sample path, the online parameter estimator (8) and the state
detection scheme in (6), with a fixed detection threshold 7,
are applied. The false alarm and missed detection probabilities
corresponding to the fixed value of 7 are computed by averaging
over the set of samples paths. This procedure is repeated for
values of 7 in the interval (0, 1) to obtain the ROC curve.

Fig. 6 shows a family of ROC curves for parameter estimates
of order r = 2 obtained by applying the online procedure to
observation sequences of length 300, 500, 2000, and 20000
(labelled 0.3k, 0.5k, 2k, and 20k, respectively), which were
generated using the modified HBMM parameter of order r =
10. For a given parameter estimate, an ROC curve was obtained
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Fig. 7. ROC plot, r = 5.

by applying the state estimator in (6) with each new observation
group of length 20000. Observe that the parameter estimates
labelled 2k and 20k have similar ROC performance. We also
see that the ROC curves labelled 0.3k and 0.5k are close
to each other, while not being significantly far from the 2k
curve. These results suggest that it is not necessary for the
sojourn time distribution estimates to converge to achieve good
ROC performance; i.e., given a relatively small number of
observation samples, the online estimator yields estimates with
acceptable ROC performance. We remark that the ROC plots in
Figs. 6 and 7 are relatively insensitive to the choice of initial
parameter for the estimators.

Fig. 7 shows a family of ROC curves obtained using pa-
rameter estimates of order r = 5. In this case, five parameter
estimates were obtained using observation sequences of length
5000, 10000, 15000, and 50000 (labelled 5k, 10k, 15k, and
50k, respectively). All of these curves show superior perfor-
mance relative to the order » = 2 estimates from Fig. 6. On
the other hand, more observation samples are generally needed
to obtain good parameter estimates for higher values of the
model order r. There is a clear gap between the 5k and 50k
curves, but the difference between the curves is relatively small.
This again suggests that even with a relatively small number of
observation samples, the online parameter estimator provides
parameter estimates, which in combination with the recursive
state estimation scheme, result in good ROC performance.

V. CONCLUSION

We developed a computationally efficient online algorithm
for estimating the parameter of an HBMM for temporal
spectrum sensing. The proposed algorithm is based on a
block-recursive parameter estimator for HMMs developed by
Rydén [25]. Rydén’s algorithm was supplemented with an
efficient recursion to compute the score function. That recursion
was developed along the lines of a similar recursion for the
score function of an MMPP by Willy et al. [32]. The online
parameter estimator is able to adapt to changes in the true pa-
rameter and, in combination with the recursive state estimation
and prediction scheme proposed in [24], provides an effective
scheme for online temporal spectrum sensing. An alternative
recursive procedure for estimating the parameter of an HBMM,
which does not involve computation of the score function, is
developed in [6].
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We focused on temporal sensing for a narrowband channel
with lognormal shadowing, based on received signal strength
measurements. It would be of interest to consider applying
the HBMM-based spectrum sensing approach in multichannel
scenarios (cf. [30]) and with different channel models or re-
ceiver front-ends. To cope with severely shadowed environ-
ments, the proposed sensing approach could be extended to a
cooperative setup involving multiple cognitive radios (cf. [16],
[31]). The temporal sensing approach proposed here could also
be combined with spatial sensing to further increase spectrum
utilization (cf. [4]).
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