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Abstract— Collaborative spectrum sensing exploits multiuser
diversity by combining spectrum sensing information from
multiple secondary users to make joint decisions about spectrum
occupancy. In hard fusion schemes, each secondary user makes
a hard decision on spectrum occupancy and a fusion center
makes a final decision by combining the individual hard decisions
according to a fusion rule. In soft fusion schemes, each secondary
user provides a signal power measurement to the fusion center,
which performs further processing on the collection of all
observations to make a final decision. In this paper, we propose
hard and soft fusion collaborative spectrum sensing schemes
based on the online hidden bivariate Markov chain modeling
of the signals received by secondary users. Compared with
prior collaborative sensing schemes, the proposed model-based
schemes do not rely on precomputed thresholds or weights,
and achieve superior performance. The online estimation of
hidden bivariate Markov models provides predictive information
that can be used to improve the performance of the dynamic
spectrum access. Numerical results are presented to demonstrate
the performance and communication overhead tradeoffs of the
proposed collaborative spectrum sensing schemes.

Index  Terms— Cognitive  radio, spectrum  sensing,
collaboration, hidden Markov model, online recursive
estimation.

I. INTRODUCTION

OGNITIVE radio has been proposed as a promising

technology for reclaiming underutilized spectrum
resources to satisfy the increasing demand for more wireless
spectrum. In dynamic spectrum access networks, unlicensed
or secondary users (SUs) are permitted to make use of
portions of a licensed spectrum band that are left idle by
the licensed or primary users (PUs) as long as they do not
cause harmful interference to the PUs. In such a scenario,
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the SUs are equipped with cognitive radios that can detect
spectrum holes and make use of such holes for their
own communications. Spectrum holes can be characterized
in space, frequency, and time, or a combination thereof.
In this paper, we focus on temporal spectrum sensing of a
given channel, where the PU occupying the channel alternates
between an active and an idle state [1]-[3]. The duty cycle
and statistical behavior of the PU is unknown and may
vary on a slow time-scale. A group of SUs collaborate in
estimating the time intervals for which the channel is idle.
Note that temporal spectrum sensing is not necessary for
detecting TV white spaces, for TV broadcast signals are
known to be active with nearly 100% duty cycle. In these
situations, spatial spectrum sensing [4] or wideband spectrum
sensing techniques [5] are more appropriate. For bursting
PU signals, however, such sensing techniques are prone to
detection error, particular for low duty cycle signals or low
signal-to-noise ratio scenarios. The paging channel studied
in [2] provides an example of a bursting PU signal which
admits temporal opportunities for dynamic spectrum access.
Temporal sensing can also be combined with spatial and/or
wideband spectrum sensing techniques [6], [7].

Various approaches to temporal spectrum sensing have
been studied in the literature, including energy detection,
matched filter detection, and cyclostationary detection (cf. [8]).
Matched filter detection requires knowledge of the modulation
scheme employed by the PU. Cyclostationary detection can
achieve better performance than energy detection, but is much
more computationally intensive and requires longer sensing
times. In [2], an approach to temporal spectrum sensing
based on a hidden bivariate Markov model (HBMM) was
proposed. The HBMM extends the more traditional hidden
Markov model (HMM) by allowing for more general state
sojourn time distributions of the PU. The state sojourn times
of an HBMM have discrete phase-type distributions, whereas
those of an HMM are limited to geometric distributions. The
higher degrees of freedom afforded by the HBMM can provide
higher modeling fidelity than the HMM, which results in
better performance. Recently, a recursive parameter estimation
algorithm for the HBMM, based on Rydén’s [9] recursive
algorithm for the HMM, was developed in [10]. Together
with the state estimation and prediction recursions presented
in [2], the recursive HBMM parameter estimation algorithm
forms the basis for a fully online temporal spectrum sensing
scheme.
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In radio environments with severe shadowing and fading
effects, spectrum sensing by a single SU can lead to hidden
terminal effects and other errors which can result in harmful
interference to the PUs. Collaborative spectrum sensing
techniques leverage multiuser diversity to improve sensing
performance, particularly in severely shadowed environments
with hidden terminals. Collaborative sensing involves multiple
SUs in a joint decision-making process to determine when
a given channel is idle or active [11]. Collaborative sensing
schemes can be categorized into two main types: hard fusion
and soft fusion.

In hard fusion schemes, each SU makes an independent
decision on the state of the PU in a given time slot. The
1-bit decisions from a group of SUs are forwarded to a fusion
center, which combines the individual SU decisions into a
final decision for the state of the PU according to a fusion
rule. Hard fusion based on a majority voting rule is one of
the simplest suboptimal collaboration methods [12]. Majority
voting is a special case of a linear hard fusion rule, in which
a linear combination of the 1-bit decisions from the SUs is
compared to a threshold to obtain the final decision. In [13],
a more sophisticated hard fusion scheme is studied, which
takes the sensing throughput and the sensing time into account.
In this scheme, the 1-bit hard decisions are combined linearly
with weights that are precomputed based on the likelihood
ratio test (LRT) (cf. [14]). The differences in the reliability
of the 1-bit decisions made by different SUs are reflected in
the weights of the decisions at the fusion center. However, the
global optimum solution for the threshold of the fusion rule
and weights for SUs is more difficult to obtain than in soft
fusion schemes.

In soft fusion schemes, each SU forwards received signal
power measurements to the fusion center, which then processes
all of the measurements to estimate the state of the PU.
A popular class of soft fusion schemes computes a linear
combination of the measurements from the SUs according to a
set of weights, which is then compared to a threshold to obtain
the final decision. Linear soft fusion generally outperforms
hard fusion schemes in terms of detection accuracy, but
the weights and threshold for soft fusion must be chosen
appropriately, and the computational and communication
overhead tends to be much higher. In [15], a “softened”
hard fusion scheme with 2-bit communication overhead
per SU is proposed to achieve a good tradeoff between
detection accuracy and communication overhead. However, the
weights for linear combining are computed offline. In [16], a
linear soft fusion scheme is proposed in which the optimal
threshold and weights are determined jointly by optimizing a
so-called modified deflection coefficient, which characterizes
the probability distribution function of the global test statistic
at the fusion center. This approach has significantly lower
computational complexity compared to LRT-based linear soft
fusion, yet achieves comparable performance.

In this paper, we develop hard and soft fusion collaborative
sensing schemes based on online hidden bivariate Markov
chain modeling of the temporal dynamics of the PU as
well as the wireless channel conditions. Our approach relies
on the online parameter estimation algorithm for the single
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channel temporal spectrum sensing approach presented in [10].
As in [2] and [10], the detector frontend for each SU is
assumed to provide averaged power estimates obtained from
received signal power measurements, and the channel follows
a path loss model with lognormal shadowing. In our proposed
soft fusion scheme, the averaged power estimates from the
SUs are quantized and transmitted to the fusion center. Using
the vector of quantized power estimates from the SUs, an
estimate of the parameter of a hidden bivariate Markov model
is computed recursively and used to estimate the state of
the PU. In our HBMM hard fusion scheme, each SU computes
a hard decision on the active/idle state of the PU based on the
observed signal power measurements and an estimate of the
associated HBMM parameter as in [10]. The hard decisions
from the SUs are transmitted to the fusion center, which then
applies linear combining to obtain the final decision.

Our numerical results show that the HBMM soft fusion
scheme achieves significantly better performance than linear
soft fusion schemes, e.g., [13], [16]. Linear soft fusion
schemes typically require prior knowledge of channel
parameters to precompute the weights for linear combination
and the decision threshold. Thus, they are not able to adapt
to changes in the channel conditions. In a preliminary version
of our work [17], we showed how online HBMM parameter
estimation could be applied to compute the weights and
threshold for linear soft fusion in an online manner. However,
the HBMM soft fusion scheme developed here obviates the
need for linear soft fusion altogether. The HBMM hard
fusion scheme performs nearly as well as linear soft fusion,
with much lower bandwidth overhead, provided the HBMM
parameter used by each SU for state estimation is relatively
accurate. Such parameter could be estimated offline by means
of a training sequence. Alternatively, a compromise between
spectrum sensing accuracy and communication overhead could
be achieved by a hybrid scheme which employs HBMM
soft fusion to obtain a good HBMM parameter estimate and
then switches to HBMM hard fusion for PU state detection.
A further benefit of the HBMM approaches to collaborative
spectrum sensing is that they provide predictive information
on the PU state which can be leveraged to reduce harmful
interference to PU and improve spectrum utilization.

The remainder of the paper is organized as follows.
In Section II, we discuss the system model for collaborative
sensing. In Section III, we review the HBMM and online
estimation of the HBMM. In Section IV, we develop online
HBMM soft and hard fusion schemes for collaborative
spectrum sensing. In Section V, we present numerical results
to evaluate the performance of the proposed collaborative
sensing schemes. In Section VI, we provide concluding
remarks.

II. SYSTEM MODEL FOR COLLABORATIVE SENSING

We consider a system consisting of one PU transmitting
on a given narrowband channel and Q SUs performing
collaborative spectrum sensing. The PU alternates between an
active state, in which a signal of fixed power is transmitted
over the narrowband channel, and an idle state, in which
no signal is transmitted. We denote the idle state of the PU
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Fig. 1. A generic collaborative sensing scheme.

at time kA by Xy = 1, and the active state by X; = 2,
where A is a sampling period.! The transmitted signal goes
through a fading channel with additive white Gaussian noise.
The wireless propagation environment is assumed to be
governed by a standard path loss with lognormal shadowing
model [19, pp. 40—41]. We ignore fast fading since it can be
reduced effectively by an averaging filter (cf. [20]). Let u(¢)
denote the complex baseband demodulated PU signal. For a
particular SU, let c¢(¢) denote a random process representing
the fading, and let w(z) denote the additive thermal noise
of the receiver. The signal received by the SU is given by
y(t) = c(t)u(t) + w(t). The received baseband signal may be
envisioned as a phasor perturbed by the additive noise. The
received signal is sampled every A seconds, and each sample
is represented by the logarithm of its power.

Let Y; denote the logarithm of the power of the kth
sample of the received signal of the SU. Given the state
X = a of the PU, the samples {Y;} are assumed statistically
independent, and each Yj is assumed normally distributed
with some mean u, and variance a . This normal model
is motivated by the central limit theorem [21]. The relation
between {uq, o 2} and the parameters of the fading additive
noise channel is non-trivial. In [21, Corollary 5.6.3], the
statistics of the logarithm of the smoothed periodogram
of a stationary process with small dependence span, were
studied. The power of the baseband demodulated PU signal
may be seen as a value of the smoothed periodogram of
a broadband process measured at a particular frequency.
It was shown that the log-smoothed-periodogram at a given
frequency is asymptotically normal with mean that depends
on the underlying power spectral density, and a constant
variance that is independent of the underlying power spectral
density. In our model we allow both the mean and variance
of each Y, to depend on the state of the PU, and hence
on the underlying power of the received signal, in order to
accommodate possible deviations from the model of [21].
If the variance of Y; is somewhat independent of the
underlying hypothesis, then that will be reflected in its
estimated values. We shall use Yk(q) and X,((q) to denote
Yy and Xy, respectively, from the gth SU.

A block diagram of a generic collaborative sensing scheme
is shown in Fig. 1. In soft fusion, at each time k, the

In this paper, we follow the convention, common in the HMM literature,
in which states are numbered starting from 1, see, e.g., [9], [18].
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SUs transmit quantized versions of their received signals
Yk(l), R Yk(q) , to the fusion center, where they are used to
predict the state of the PU at time k + z for some nonnegative
integer 7. The state estimator is denoted by X k+zlk and takes
values in X = {1, 2}. For conventional fusion schemes that
do not have predictive capability, = = 0. In a lmear soft
fusion scheme, a weighted sum, Vi z 1quq of
the observations at time k is computed and compared to a
threshold y as follows [13], [15], [16]:

Rup = [1’ =, M
2, Vikezy,
where w1, ... w¢ are the weights. Typically, the threshold and
weights for soft fusion are computed offline [15], [16].

In [16], an approach to computing the weights for linear
soft fusion was proposed, based on maximizing a so-called
modified deflection coefficient (MDC). Numerical results
showed that this approach achieved near-optimal performance
for linear soft fusion. Let w = (wi,...,wp) denote the
vector of weights. Let ,u(q) and a}’“ denote, respectively,
the conditional mean and standard deviation of Y(q) given
X = a, for the gth SU. Define p, = (1 1 q=1,..., Q)
for a € X. Let Y = (Y(l) ,Yk(Q)) denote the vector
observation sample at time k. The channels observed by the
O SUs are assumed to be conditionally independent given the
PU state. Under this assumption, the conditional covariance
matrix of Y given X @ _ 4 is given by X, = diag([o, (q)

g=1,...,0). Then the optimal MDC weight vector derlved
in [16] is given by
2—1IL/
=2, 2
12, w12

where w = m, — pm; and ' denotes matrix transpose.
In Section V, we compare the performance of the proposed
HBMM soft fusion scheme against linear soft fusion based
on (2). The HBMM soft fusion approach is not restricted to
linear estimation, and the state of the PU is estimated from
current and previous observations from all SUs.

In a hard fusion scheme, at each time k, each SUg makes
an independent decision, X,E‘k) , on the PU state based on

the observations Yl(q) Y(q) The 1-bit SU hard decisions
are transmitted to the fus1on center, which computes a final
decision, denoted by )A(k‘k, according to a hard fusion rule.
For example, the “OR” rule decides that the PU is active,
i.e., state 2, if at least one of the SU hard decisions has the
value 2. The “majority voting” rule decides that the PU is
active if more than half of the Q SU hard decisions have
value 2. The OR-rule and majority voting rule are special
cases of the g-out-of-Q rule, where 1 < g < Q is an integer
constant. Here, the PU state is determined to be active if ¢
or more of the hard decisions are ‘active’; otherwise, the PU
state is determined to be idle. The OR and majority voting
rules are equivalent to the g-out-of-Q rule when ¢ = 1
and ¢ = [Q/2], respectively. The g-out-of-Q fusion rule
is in turn a special case of linear hard fusion (cf. [13]).
Under linear combining, the decision variable is computed as
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Vi = 21?:1 Wy )A(,(qu), where the w, are predetermined weights.
The decision variable V is then compared to a threshold y to
obtain the final decision X k& as in (1). The g-out-of-Q fusion
rule is a special case of linear hard fusion.

In conventional hard fusion schemes, each SU employs an
energy detector to obtain a hard decision at each time k, i.e.,
SUg estimates the PU state as follows:

(9)
X(q) — 1’ qu < Yq> (3)
o P

where y, denotes a threshold, which is usually computed
offline. Typically, a majority voting rule is applied at the
fusion center. In the HBMM hard fusion scheme, the state
estimate )A(,(qu) for each SUgq is a function of the current and

all previous observations, not just the current sample Yk(q).
In addition, the HBMM hard fusion scheme employs a linear
fusion rule based on the MDC weight vector given by (2).

III. HIDDEN BIVARIATE MARKOV MODEL
A. Definition and Parametrization

An HBMM is a trivariate process (Y, X,S), where
Y denotes an observable process with continuous alphabet, and
the underlying process, Z = (X, S), is a finite-state bivariate
Markov chain. In [10], HBMM was adopted to model the
temporal spectrum sensing for a single SU. Here, Y is used to
represent the received signal power at an SU and X represents
the state of the PU. The process S is introduced so that the
sojourn time of the process X in each state a € {1, 2} takes
on a discrete-time phase-type distribution [2].

For a general HBMM, we denote the state-space of X by
X ={1,...,d}, the state-space of S by S = {1,...,r}, and
we let Z = X x S denote the state-space of Z. The processes
Y and § are assumed to be conditionally independent given X.
Let f(yk;6,) denote the conditional density of Y; given
X = a at time k, where 6, is a parameter depending on a € X.
From our received signal model assumptions, f(yx;6,) is a
Gaussian density and we set 8, = (uq4, 04) to be the mean and
standard deviation of this density. The initial distribution of Z
is denoted by a 1 x dr row vector & = [ng : (a,i) € Z],
where 7,; = P(Z1 = (a,i)). The transition matrix of Z is
denoted by a dr xdr matrix G = [gap(ij) : (a,i), (b, j) € Z],
where gup(ij) = P(Zx = (b, j) | Zk—1 = (a,i)).

The parameter of the HBMM is given by (=x,8, G).
In practice, however, the effect of the initial probability
distribution 7 on the Markov chain fades quickly and
accurate estimation of it is not necessary. Therefore, we
assume the HBMM parameter to be ¢ = (0, G). The total
number of elements in ¢ is L = 2d + d*r?. We write
¢ =1lpe:€=1,...,L], where ¢, denotes the {th element
of ¢ under a given ordering scheme. Let ® C R’ denote
the space of feasible HBMM parameters. We note that when
r = 1, the HBMM reduces to the traditional HMM, where the
state sojourn time distributions are geometric.

B. Online Parameter Estimation

The online HBMM parameter estimation algorithm
developed in [10] is based on an algorithm for the HMM
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developed by Rydén [9], and a recursion for computing the
score function for an HMM from Lystig and Hughes [22]
(see also Willy et al. [23]). The parameter estimation
algorithm operates on a block of m observations at a time.
The nth observation block is denoted by y?n"’_l)m 41
{Y(i—=1)ym+1> - - - Yum}. For convenience, the first observation
block, y{", is denoted simply by y™. With a slight abuse of
notation, let ¢, denote the nth HBMM parameter estimate
computed by the online algorithm upon receiving the nth
observation block. The recursion for ¢, is given by

Pni1 = 1lg [¢>n + 70X (y,ﬁ',’,,ill)m ¢n)] 4)

n = 0,1,2,..., where IIg denotes a projection operator
mapping the estimate into a compact, convex set G C @,

lgr;r:;ll)m n) is the score function with respect to the

parameter ¢, applied to the (n 4 1)st observation block. The
sequence {y,} consists of positive step sizes y, that decrease
to zero as n — oo to enable convergence of the stochastic
approximation algorithm (4). We adopt from [9], y, = yon~¢
for some yo > 0, € € (0.5,1],and n = 1,2, . ...

The score function for the first observation block, y™, is
given as follows:

and y (y

m. o _ 0log pp(y™)
1" P) = o
d
= D> ——— ("t = (b, ). (5)
ez PpO™) 09

where py(y™) denotes the joint density of the observation
block y”. Under some mild assumptions, Rydén proved that
for HMMs, the sequence {¢,} converges to a point lying in the
set of Kuhn-Tucker points for minimizing the Kullback-Leibler
divergence with respect to the true parameter defined over G.
As discussed in [10], Rydén’s convergence results carry over
to the HBMM.

The summands in (5) can be organized into a dr x L
matrix H,, (y™; ¢) such that each row corresponds to one state
(b, j) and each column corresponds to one component of the
parameter ¢. The score function can then be obtained from

20™d) =1H,,(O"; ¢), (6)

where 1 denotes a column vector of all ones. It was
shown in [10] that the matrix H,,(y™; ¢). can be computed
recursively as follows, starting from the initial condition
Ho(y%; ¢) = 0, where 0 denotes a dr x L zero matrix:

1
Hi (Y ¢) = a[F(yk)/Hk—l(yk_lz ?)

d
+ U ®5k_1)%[vec FOol'i, (D

for k = 1,...,m, where I denotes the identity matrix of
order dr, ® denotes the Kronecker product, the dr x dr matrix
F(yr) is given by

F(y) = U5 (s 0b) = (a,1), (b, ) € Z], ®)

with f3°(yk; 0p) = gan(ij)f (yi: ), and vec F(yx) in (7)
denotes the column vector obtained by stacking the columns
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of the matrix F(yx) one on top of the other. The elements of
the Jacobian matrix 6[vec F(yx)]’/06 are partial derivatives
of fi‘;b(yk; 0p). The 1 x dr row vector & and scalar c; are
given by

1
& = afkle()’k), ck = &—1F(yi)l, 9

for k = 1,2, ..., with the initial condition & = «.

C. State Recursion

The estimate of the parameter ¢ can be applied to calculate
a forward recursion for the conditional state probabilities
given the observation sequence. Define the dr x dr block
diagonal matrix B(yx), with its diagonal blocks given by
{pk | Xk = a)l, a € X}, for k = 1,2,..., where [ is
an r x r identity matrix. Then the scaled forward recursion
for @(zx, Y*) = pg(zx | ¥¥) is given by (cf. [10, eq. (5)])
7 B(y1) ak—1G B(yk)

&1 = 9 ak =
c1 Ck

k=2,3,..., (10)

where ¢ = 7 B(y1)1, and ¢ = ax—1GB(y)1.

The conditional probability of the bivariate state at time
k + t given the observations up to and including time k can
then be computed as follows (cf. [2, eq. (22)]):

P rte 1Y) = D ppr 1Y) ppGrse | 20)

k€L

= Z a(zk, yk) [GT]Zk,Zk+r ’

k€L

Y

A detection scheme for the state of the PU at time k + 7 given
the received signal power y is specified by (cf. [2, eq. (23)]):

- L 3 pparre = (1,9) | Y = 1,
Ripop = | 12 2o Poltae Ta
2, otherwise,
for k =1,2,..., where 5 is a decision threshold, 0 < n < 1.

The detection scheme is a maximum a posteriori (MAP)
detector when # = 0.5. When 7 = 0, )A(k+,|k = )A(k|k is an
estimate of the current state X;. When 7 = 1,2, ..., )A(k+,|k
is the 7-step predicted estimate of the state X;4,. The current
and predicted state estimates )A(k+,|k can be directly applied
to make dynamic spectrum access decisions.

IV. MODEL-BASED COLLABORATIVE
SPECTRUM SENSING

In this section, we develop soft and hard fusion schemes for
collaborative spectrum sensing by expanding upon the online
HBMM estimation approach summarized in Section III.

A. HBMM Soft Fusion

Referrlng to Fig. 2, at each time k, the observation
sample Y, @ from each SUgq is transmitted directly to the
fusron center which forms the vector observation sample

= (Y(l) Y(Q) ). The proposed soft fusion scheme is
based on hldden blvarlate Markov chain modeling of the vector
observation sequence Y = {Y;; k =1, 2, ...} generated by the
QO SUs. Here, the conditional output density parameter is given
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Fig. 2.  HBMM soft fusion.
by 0 = (8, : a € X), where 0, = @,...,0/9), and 69

is the conditional output density parameter of each SUg when
the PU is in state a. With this definition of @, the parameter of
the HBMM is given formally by ¢ = (8, G), which we also
denote by ¢ = [¢pr : £ =1, L], where L =2dQ + d*r?.

Recursions for online parameter and state estimation of
the HBMM in the setup of Fig. 2 with vector observation
input can be obtained from those given in Section III, by
replacing the scalar sequence y* by the vector sequence y*
and 0 by 0. To compute f(y;;0,), we assume that the
O cognitive radio channels are conditionally independent
given the state of the PU, in which case, f(y;;0p) =
f(y(l) 9(1)) f(y(z) 9(2)) f(y,ﬁQ) H(Q)) The elements of
the d2r? x L Jacobian matrix d[vec F(y;)]'/0¢ are given as
follows

— i P(0ri 06) = £33 06) Lies=(ai),(e.))=(b,)))s
(q) (q)

£ (4 0p) = f,-‘;b<yk;eb>yk(7b 1

gce( D]

{c=Db}>
( (q)) O-lfq))z
(q))f " (i 05) = £ (34 00)
(J’/Eq) _ #ng))z _ (O,lfq))z Lo
: c=by>
(a,7)3

13)

for (c,1),(e,l) € Z, where 14 denotes an indicator
function on the set or condition A. When the state
recursion (10) is generalized for vector observation input, the
matrix B(yr) is replaced by the dr x dr block dlagonal matrix
B(yy) = BOy") - BG) -+ BOL?), where B(y?) is a
dr x dr block diagonal matrix with diagonal blocks given
by {p(y | Xg = a)l, a € X}, for k = 1,2,.... The
product form of B(y,) follows from assuming conditional
independence of the cognitive radio channels given the state
of the PU.

The complexity of the HBMM soft fusion scheme in each
time slot is dominated by the computation of H,,(y™; ¢),
which requires O(d3r3 - 2dQ + d*r?)) od*r3Q +
d’r’) = 030 + r’) when d = 2. Since Q is a small
constant in practice, the overall complexity of the proposed
soft fusion scheme is essentially the same as that of the hard
fusion scheme. If the linear combination weights and decision
threshold are precomputed, the complexity of soft linear
fusion becomes only O(Q). However, if these parameters
are estimated online using HBMM parameter estimation, as
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Fig. 3. Block diagram of SU for HBMM hard fusion.

proposed in [17], the complexity of the online soft linear fusion
scheme per time slot becomes O (r>). In practice, small values
of r in the range 2 to 5 are sufficient to represent the PU active/
idle sojourn time distributions accurately (see [2]).

B. HBMM Hard Fusion

The main advantage of hard fusion schemes relative to
soft fusion schemes is the low bandwidth overhead due to
the transmission of a 1-bit by each SU to the fusion center.
However, the local decision made by an individual SU may
not always be reliable, for example, when the received signal
at the SU has undergone severe shadowing. Incorporating an
HBMM to model the dynamics of the PU and the wireless
propagation environment, can lead to much better performance
under such conditions.

The architecture of each SUg cognitive radio transceiver in
our proposed hard fusion scheme is depicted in Fig. 3. In this
scheme, the online HBMM parameter estimation algorithm of
Section III-B is decoupled into two parts: 1) estimating the
transition matrix G, and 2) estimating the parameter #(9) of the
conditional output distribution for each SUq. The rationale for
separating the two blocks is that estimation of € is significantly
easier than that of the transition matrix. The estimate of G
can either be computed locally, based on the final decisions
fed back to each SU from the fusion center, or it could be
computed by the fusion center and broadcast to all SUs. Both
options are equivalent with respect to estimation of G. The
estimates of G are provided as input to the conditional output
parameter estimation block. The transition matrix estimates
are updated less frequently than the sensing decisions, so a
small delay in the feedback loop from the fusion center to the
SUs will not adversely affect the overall performance of the
scheme.

Consider first the conditional output density parameter
estimation block for the gth SU. To simplify notation, we
shall drop the superscript (g) in the following discussion. The
parameter of interest, § = (0, : a € X), can be estimated
in a block-recursive manner using (4) with 8 replacing ¢,
where the score function is a 1 x 2d row vector given by (6),
and H,,(y™; 0) in (6) can be computed recursively using (7).
In this case, the elements of the d2r? x 2d Jacobian matrix
o[vec F(yr)]'/00 are given as follows:

afi;l'b(YM Op) Yk — Ub

ab
= {4 . . 1
Bre i ks Op) p {e=b}>
of % (yk; Ob) Ok — up)? — o}
L = [ i Op) - T Lpemp), (14)
00, o},

for ¢ € X.
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Estimation of G is also performed using the recursive
algorithm of Section III-B. Since in estimating G, the
observation data comes from the final decisions of the fusion
center, the observable process Y in the recursive algorithm
may be taken to be X, with values in the state-space X,
i.e., the HBMM reduces to a bivariate Markov chain. Here,
the parameter G = [gup(ij) : (a,i), (b, j) € Z] is estimated
by using (4), (5), and (7), but with fijl.b(yk; 6p) in (8) given as
follows:

f,-j’-b(yk; Op) = 8av (i) f (ks Ob) = 8an(ij) L(y=p}. (15)

In addition, the elements of the d?r? x d%r? Jacobian matrix
O[vec F(y(k))]’/GG in (7) are given as follows:
af,-jl-b(yk; Op)
0lgee )]
for (c,1), (e, 1) € Z.

Each SU computes a local estimate of the PU state based
on the observation data and HBMM parameter estimate. The
mean and standard deviation for the conditional density is
updated after each block of observation data. Since the HBMM
parameter ¢ = (6, G) is estimated online, an estimate of the
state at time k, as well as a predicted estimate at time k + 7,
where 7 > 0, can be computed. The state detection scheme for
the gth decision block is given formally by (12), dropping the
superscript in the notation for )A(,({‘_’F)ﬂ ¢ The local SU decisions
are sent to the fusion center, which then makes a final decision
on the state of the PU at time k via a fusion rules. In our
numerical experiments, the best performance was achieved
when a linear fusion rule of the form (1) was used, with
weights determined according to (2).

The complexity of the conditional output density estimation
block in each time slot is dominated by the computation of
H,,(y™; ), which requires O (d>r3-2d) = 0(d*r?) arithmetic
operations. The computation of the transition matrix estimation
block is dominated by the computation of H,,(y™; G), which
requires O(d>r3 - d*r?) = O(d’r’) arithmetic operations.
Given the parameter ¢ = (6, G), the state detection scheme
has complexity O(d?r?) [2]. Therefore, the computational
complexity for each SU is O(d>r°) = O(r>), when d = 2.
Since linear fusion has complexity O(Q), the overall
complexity of HBMM hard fusion is given by O@> + Q)
per time slot, which in practice reduces to O (r°).

= Ly=b,(c.)=(a,i),(e.)=(b, )}  (10)

V. NUMERICAL RESULTS

The performance of the proposed hard and soft fusion
spectrum sensing schemes were evaluated using simulation in
MATLAB and compared with the linear soft fusion scheme
of [16].

A. Simulation Setup

For the online parameter estimation algorithm given in (4),
we set y, = yon_ ¢ with yo = 0.3 and ¢ = 0.35. We set the
block size m = 20. The parameter space G and projection
operator Ilg in (4) are the same in [10]. To improve the
convergence speed and stability, a warmup period is introduced
to provide a good initial estimate for the conditional output
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TABLE I

MEAN AND STANDARD DEVIATION OF CONDITIONAL
DENSITIES FOR SCENARIO 1

[ W7o [ 7o ]

SUI (-105.00,6.32) | (-88.00,8.94)
SU2 || (-100.00,5.91) | (-86.00,8.36)
SU3 || (-103.00,6.71) | (-98.00,8.06)

mean and standard deviation vectors for both of the proposed
collaborative sensing schemes. We use a sequence y"0 of
length no = 200 to establish the initial parameter value using
the following initialization procedure:
1) Let A {k € {1,...,n0} : yx < (max(y™) +
min(y"))/2} and A, = {1,...,n0}\A|, where
\ denotes set-theoretic subtraction.
2) The initial estimates ¢ = (u},oc)) are computed as
follows:

1
S N
== E k> Oq =
A Yo Ta
ke,

Z |yk— w12,

A7)

|A

where | - | denotes set cardinality and a € X.

The probability vector z° is initialized with a uniform
distribution and the initial transition matrix estimate G* is
generated randomly.

In our experiments, we considered a collaboration model
with three SUs (i.e., Q = 3). For the true parameter ¢>0, the
state transition matrix G is specified by a 20 x 20 transition
matrix adopted from [24], such that d = 2 and r = 10.
The true transition matrix was estimated from real spectrum
measurements of a paging channel collected in [25] using
the Baum algorithm. For the estimation blocks we have set
d = 2 and r = 10, but a smaller value of r could be
used to trade off accuracy for a reduction in computational
complexity. We consider two scenarios, which differ only in
the parameter values associated with SU2. For scenario 1, the
true mean and standard deviations of the conditional output
densities for three SUs are given in the Table 1. For scenario 2,
all of the parameters are as in scenario 1, except that the
conditional output parameters for SU2 are given as follows:
(u?,6P) = (=102,5.91), (1P, 6?) = (—95,8.36). Thus,
the signal-to-noise ratio for SU2 is lower in scenario 2.
In each of the simulation runs for HBMM based sensing,
T observation samples are applied to estimate the HBMM
parameter. The final estimate of the parameter of the HBMM
is then used on a different data set of 7 observations. This
way, our testing is done in the so-called open set fashion,
over-fitting of the data is avoided, and transitional parameter
values of the algorithm obtained prior to its convergence are
discarded. The values of T and T are specified below for each
set of experiments.

B. Hard Fusion

We evaluated the performance of the HBMM hard fusion
scheme described in Section IV-B. From 7 = 6000
observation samples, estimates of the conditional mean and
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Fig. 5. ROC plot of hard fusion scheme in scenario 2.

standard deviation are obtained using the estimation block
in Fig. 3. The estimate of the transition matrix is computed
from the sequence of hard fusion decisions. The transition
matrix estimate may be computed either at the fusion center
and fed back to the SUs, or locally at each SU based on the
decisions fed back from the fusion center.

In Figs. 4 and 5, receiver operating characteristic (ROC)
curves for various detections schemes are shown,
corresponding to scenarios 1 and 2, respectively. Each
ROC curve is a plot of detection probability P; vs. false
alarm probability Pr,. For each scenario, the ROC curve
labelled “HBMM hard fusion” shows the performance of
the HBMM hard fusion scheme described in Section IV-B.
At each SU, the estimation block in Fig. 3 is used to compute
estimates of the conditional mean and standard deviation. The
estimate of the transition matrix is computed based on the
final hard fusion decisions. The transition matrix estimate may
be computed at the fusion center and fed back to the SUs,
or locally at each SU based on the decisions fed back from
the fusion center. Given the HBMM parameter estimate,
the ROC curve is generated by applying 77 = 10000
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new observation samples to the detection scheme (12)
with 7 = 0.

In each of Figs. 4 and 5, the ROC curve labelled “HBMM
hard fusion (known)” is obtained by applying the same
T1 = 10000 observation samples and detection scheme used
to obtain the “HBMM hard fusion” curve, but with the true
HBMM parameter rather than the estimate. The curve marked
“Conventional hard fusion” was obtained by applying the
T: observation samples with energy detectors at each SU and
a majority voting rule at the fusion center. The curves labelled
“HBMM SUgq,” where g = 1, 2,3 show the performance of
the non-collaborative HBMM-based spectrum sensing scheme
from [10] applied to each of the SUs individually. Thus, each
SU obtains a local estimate of the HBMM parameter from
T = 6000 observation samples. Given the HBMM parameter
estimate, 77 = 10000 observation samples are then applied to
the detection scheme (12) (r = 0) in order to generate the
corresponding ROC curve.

From Fig. 4, we see that individually, SUl and SU2
both outperform SU3 in scenario 1. In this scenario, the
performance gain achieved by collaborative sensing can be
seen clearlyy HBMM hard fusion with known estimated
parameter significantly outperforms conventional hard fusion.
When the true HBMM parameter is known, the HBMM hard
fusion approach to spectrum sensing achieves even better
performance. The ROC performance for scenario 2 is shown
in Fig. 5. From Fig. 5, we see that SU2 and SU3 have
worse performance than SUI. In this case, the performance
of conventional hard fusion is inferior to that of SUI1, but
better than that of SU2 and SU3. The performance of the
HBMM hard fusion scheme is intermediate between that of
conventional hard fusion and SUIl. Interestingly, when the
HBMM parameter is known, HBMM hard fusion performs
slightly better than the non-collaborative HBMM-based
sensing scheme applied at SUI.

C. Soft Fusion

We carried out simulation experiments to compare the
performance of the HBMM soft and hard fusion schemes,
as well as that of the near-optimal linear soft fusion scheme
developed in [16]. To apply the linear soft fusion scheme,
the channel parameters are assumed to be known and the
weights for linear combination and the decision threshold are
computed offline according to [16]. As discussed in [17], the
channel parameters can be estimated online by incorporating
HBMM parameter estimation, which can then be used to
compute the weights and threshold for linear soft fusion in
an online manner. The performance of such a scheme was
found to be nearly as good as that of linear soft fusion
with precomputed weights and thresholds from known channel
parameters.

For scenario 1, T = 40000 observation samples were
applied to the HBMM hard fusion, HBMM soft fusion,
and linear soft fusion (with precomputed weights) schemes.
A larger number of samples was used here to ensure that a
sufficiently accurate estimate of the HBMM parameter could
be obtained for soft fusion. The corresponding ROC curves
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Fig. 6. ROC plot of hard and soft fusion schemes in scenario 1.

were then computed based on 77 = 10000 subsequent
observation samples, and the results are shown in Fig. 6.
As expected, both soft fusion schemes perform significantly
better than hard fusion. The computational overhead of
HBMM soft fusion is higher than that of linear soft fusion
when the channel parameters are assumed known, but not
significantly higher when online HBMM parameter estimation
is applied to update the weights and threshold. From Fig. 6, we
see that the performance of HBMM soft fusion significantly
outperforms linear soft fusion. This performance gain is
primarily due to fact that the linear soft fusion scheme does
not take into account the temporal dynamics of the PU
signal. Interestingly, in comparison to linear soft fusion, the
performance of HBMM hard fusion is slightly worse when
the false alarm probability Py, < 0.15, and approximately the
same when Pr, > 0.15.

In scenario 2, the number of observation samples used for
parameter estimation was increased to 7 = 50000. As before,
T1 = 10000 additional observation samples were applied to
obtain ROC curves, which are shown in Fig. 7. As expected,
the performance for each of the collaborative sensing schemes
is degraded relative to that for scenario 1. The performance
gap between HBMM soft fusion and linear soft fusion is larger
in scenario 2 than in scenario 1. An even larger performance
gap can be seen between the linear soft fusion and hard fusion
schemes for the two scenarios.

D. Predictive Spectrum Sensing

A useful feature of model-based spectrum sensing is the
ability to predict the future state of the PU [2], [10].
A prediction of the state at a future time could be used
to augment the information provided by an estimate of the
current state, thereby facilitating more proactive dynamic
spectrum access. For example, even when the current state
estimate indicates that the PU is idle, if the predicted state
indicates that the PU will become active, an SU can vacate the
channel in advance to avoid potential interference with the PU.
Conversely, if the PU is detected as active in the current time
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Fig. 8. 7-step HBMM soft fusion prediction performance in scenario 2.

slot but idle in a future time slot, an SU can proactively prepare
for channel access in anticipation of a temporal spectrum hole.
In multichannel scenarios, predictive state information can be
used for selecting among multiple channels that have been
detected as idle.

We ran simulation experiments to evaluate the predictive
performance of the HBMM fusion scheme in scenario 2. Fig. 8
shows ROC curves for soft fusion prediction performance
in scenario 2 for step sizes v = 0,1,2,5,10. Clearly,
the prediction performance degrades as t is increased.
Interestingly, in this scenario the performance for 7 = 2 is
nearly as good as for ¢ = 1, though this does not hold
in general. By comparing Figs. 7 and Fig. 8, we see that
the performance of 1-step prediction is slightly better than
state estimation using conventional hard fusion. The predictive
performance of HBMM hard fusion, with unknown transition
matrix, was rather poor, even for ¢ = 1. However, when the
transition matrix is known, the performance of HBMM hard
fusion is quite close to that of HBMM soft fusion.
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E. Coarsely Quantized Soft Fusion

The soft fusion experiments assumed a 32-bit representation
of the observation samples, such that the bandwidth overhead
was 32/A bits/s, where A represents the time slot duration
in seconds. The bandwidth overhead can be reduced, at the
expense of performance, by applying coarser quantization
of the observation samples. We conducted simulation
experiments to evaluate the impact of coarse quantization of
the observation data on the performance of the soft fusion
schemes. For simplicity, we adopted a uniform quantization
scheme. The quantization range for the received signal power
measurements was set to [—140, 0] dBm and the quantization
resolution is determined by the number of bits. At each SUgq,
the observation sample Y, kq) is quantized and encoded before
being transmitted to the fusion center, which then decodes
the quantized sample for further processing. In Fig. 9, ROC
curves obtained for scenario 2 are shown for linear soft fusion
with 8-bit samples and HBMM soft fusion with 4-bit and
6-bit samples. The degradation in performance for HBMM
soft fusion can be clearly seen as the number of bits per
sample is reduced from 6 to 4. We also see that HBMM soft
fusion with 4-bit samples outperforms linear soft fusion with
8-bit samples. When 3-bit samples are used, the HBMM soft
fusion scheme performs worse than HBMM hard fusion, and
thus loses its performance advantage.

VI. CONCLUSION

We have developed two fully online schemes for
collaborative spectrum sensing based on hidden bivariate
Markov chain modeling of the received signal at the cognitive
radios. In the HBMM hard fusion scheme, each SU makes
an independent decision on the active/idle state of the PU and
sends it to a fusion center, which applies a linear fusion rule to
obtain a final decision. In the HBMM soft fusion scheme, each
SU transmits an observation sample to the fusion center, which
performs online parameter and state estimation of an HBMM
with vector input. The hard fusion scheme incurs much lower
transmission overhead than the soft fusion scheme, but has
significantly poorer performance. For the soft fusion scheme,
a tradeoff between transmission overhead and performance
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was demonstrated by quantizing the observation data to a
desired bit rate. Moreover, the model-based approach provides
predictive information on the state of the PU, which can be
leveraged in proactive dynamic spectrum access schemes.

Simulation results show that the HBMM soft fusion scheme
achieves significantly better performance than near-optimal
linear soft fusion schemes. The HBMM hard fusion scheme
performs better than conventional hard fusion based on
energy detectors, but markedly worse than linear soft fusion.
When the underlying transition matrix is assumed known,
the performance gap between HBMM hard fusion and linear
soft fusion decreases significantly. A hybrid scheme, which
employs HBMM soft fusion until a suitable estimate of the
transition matrix is obtained and then switches to HBMM
hard fusion, could provide another means of obtaining a
suitable tradeoff between transmission overhead and detection
performance.
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