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Abstract—We propose two algorithms for real-time tracking of the location and dynamic motion of a mobile station in a cellular

network using the pilot signal strengths from neighboring base stations. The underlying mobility model is based on a dynamic linear

system driven by a discrete command process that determines the mobile station’s acceleration. The command process is modeled as

a semi-Markov process over a finite set of acceleration levels. The first algorithm consists of an averaging filter for processing pilot

signal strength measurements and two Kalman filters, one to estimate the discrete command process and the other to estimate the

mobility state. The second algorithm employs a single Kalman filter without prefiltering and is able to track a mobile station even when a

limited set of pilot signal measurements is available. Both of the proposed tracking algorithms can be used to predict future mobility

behavior, which can be useful in resource allocation applications. Our numerical results show that the proposed tracking algorithms

perform accurately over a wide range of mobility parameter values.

Index Terms—Cellular networks, mobility model, geolocation, pilot signal strengths, Kalman filter.
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1 INTRODUCTION

AS wireless services become more pervasive and loca-
tion-aware, the need to locate and track mobile stations

accurately and efficiently becomes increasingly important.
A key technical challenge for modern wireless networks is
to provide seamless access and quality-of-service (QoS)
guarantees for mobile users. QoS provisioning can only be
achieved by means of efficient mobility management to
handle the frequent handoffs and rerouting of traffic that
are experienced by a typical mobile station. We distinguish
between mobility tracking, in which the position, velocity,
and acceleration of the mobile user are estimated, versus
conventional geolocation techniques, which only estimate
the position coordinates. Knowledge of velocity and
acceleration information can be used to predict the future
locations of the mobile stations, which in turn can be used
to optimize resource allocation in the network.

One application of great practical interest is fast handoff in
cellular networks. If the occurrence of a handoff from one cell
to another can be predicted ahead of time, the handoff
procedure can be initiated in advance [1], [2]. These predic-
tions can provide a “handoff pretrigger” incorporated in IP
mobilityprotocols discussed in [3], [4], toprovide transparent
network layer mobility management. Another application
area of interest is location-aware services, for example, E911
andWeb caching (cf. [5]). In such applications, better quality-
of-service can be achieved if the location of the mobile can be
predicted in advance, even on a short time-scale.

Many geolocation technologies have been developed that
canpinpoint theposition of amobile user on the surface of the
earth. Themost popular technology in current use, theGlobal

Positioning System (GPS), provides the user with position
estimates accurate towithin a radius of 10meters or better by
means of at least four satellites from a system of 24 satellites,
spaced equally in six orbital planes [6], [7]. To operate
properly, however, GPS receivers require a clear view of the
sky, in the line-of-sight of the satellites, which precludes their
use in indoor or RF-shadowed environments. Moreover, the
cost and size of GPS receivers may be prohibitive for small
devices (e.g., sensors)with very limited battery lives thatmay
be used in pervasive computing environments. AssistedGPS
(AGPS) [8], [9] can work in indoor environments as well as
outdoors, but this technology requires additional signaling
equipment, i.e., AGPS receivers.

Geo-location techniques based on time of arrival (TOA),
time difference of arrival (TDOA) [10], angle of arrival
(AOA) [11], [12], timing advance, and location fingerprint-
ing [13] offer inexpensive network-based alternatives to
GPS, but are far less accurate. These techniques use the
radio signals transmitted by the users instead of additional
satellite signals. However, some of these techniques have
additional infrastructure requirements; for example, AOA
requires an adaptive antenna array to measure the angle of
arrival and the location fingerprinting scheme requires a
large amount of memory to maintain a location database.

While geolocation techniques focus on pinpointing the
locationof theuserat agiven instantof time,mobility tracking
requires an underlying model to characterize the user’s
mobility. Construction of mobility patterns for analysis and
simulation has attracted considerable attention in recent
years (cf. [14], [15], [16], [17]). Such models can be used to
drive simulation models of the wireless network. Several
works have modeled mobile behavior as a random walk or
Brownian motion [18]. In [19], a stochastic model of mobility
based on a pair of coupled differential equations called the
Markovian highway Poisson arrival location model (PALM)
is proposed. A semi-Markov model proposed in [5] incorpo-
rates user mobility and requirements. The aforementioned
mobility models, while useful for driving simulations of
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mobile networks, have limitations in the range of mobility
that canbe captured. Toour knowledge, noneof thesemodels
is suitable for tracking the velocity and acceleration of a
mobile station in real-time.

Liu et al. [1] proposed a mobility model for wireless ATM
networks based on a dynamic linear system model in which
the mobility state consists of the position, velocity, and
acceleration of the mobile. Originally introduced by Singer
[20] (cf. [21]) for tracking targets in tactical weapons systems,
the dynamic system model can capture a wide range of
realistic usermobility patterns. Based on thismodel, Liu et al.
[1] developed an algorithm (which we refer to as the LBC
algorithm) for estimating the mobility state using a modified
Kalman filter with observations taken from three indepen-
dent pilot signal strength measurements, also called RSSI
(Received Signal Strength Indication) measurements, from
three different base stations. In our numerical experiments,
we have found that the LBC algorithm can perform poorly,
particularly when the mobile trajectory includes rapid
changes in acceleration. As discussed later in this paper, the
poor performance of the LBC algorithm is due to some
inaccurate assumptions in the estimation process.

The inaccuracy of the LBC estimator has also been
pointed out by Yang and Wang [2], who proposed an
alternative estimation scheme based on sequential Monte
Carlo (SMC) filtering. The SMC scheme can achieve better
performance than the LBC scheme, but is computationally
intensive and, hence, might not be suitable for real-time
location tracking. The SMC scheme relies on updating and
storing a large number of sample weights. Moreover, the
SMC scheme can suffer from numerical instability, which
necessitates the use of a resampling procedure [2]. However,
we have observed that resampling does not solve the
problem completely and the estimation sometimes has to
be terminated prematurely. A comparison of the perfor-
mance of the SMC algorithm and the mobility estimators
proposed in this paper is provided in Section 5.

In this paper, we propose two new mobility tracking
algorithms based on RSSI measurements and Kalman
filtering.1 The first algorithm, which we call MT-1, differs
from the LBC algorithm in that the RSSI measurements are
preprocessed with an averaging filter to obtain coarse
position estimates, which are then provided as inputs to a
modified Kalman filter. In contrast to the LBC algorithm, the
modified Kalman filter is used only to generate estimates of
the discrete commandprocess. A key component of theMT-1
algorithm is a secondKalman filter, which producesmobility
state estimates from the raw RSSI measurements and the
discrete command estimates. Our numerical results show
that the MT-1 algorithm performs far more accurately than
the LBC algorithm. The rationale behind the performance
improvement is discussed later in the paper.

Our tracking algorithms can also utilize alternative types
of observation data such as time-of-arrival (TOA) informa-
tion or coarse tracking information obtained from GPS.
Several schemes have been developed for estimation of
TOA parameters from received signals such as code
tracking and acquisition in spread spectrum systems using
delay lock loop (DLL) or tau-dither loop as described in

[23]. Moreover, the GPS receivers can be used to provide
coarse location information, whenever available, to estimate
the mobility state of the mobile station.

In thepresentpaper,wealso showhowthemobilitymodel
can be used to predict the mobile’s future movements.
Mobility prediction can be used in resource management
algorithms that preallocate resources in anticipation of the
future position of the mobile user. In realistic mobile
networkingscenarios, theremaybe limitationson theamount
of observation data available. We consider two such limita-
tions: 1) RSSImeasurement samples fromagiven base station
maynot be available at every time slot and 2) fewer than three
independentRSSImeasurementsmaybeavailable. In the first
case, there may be an insufficient number of observation
samples to perform the averagingproperly, as required in the
MT-1 algorithm.

To avoid this problem, we propose a simplified mobility
tracking algorithm called MT-2, which consists of only a
single (extended) Kalman filter, without a prefilter. For the
second limitation on observation data, mobility tracking
may still be possible due to the inherent prior knowledge
retained in the estimation process. This issue is discussed
later in the paper using the concept of observability from
systems theory. Our numerical results show that the MT-2
estimator is able to track mobility adequately with only two
RSSI observations, even when the availability of measure-
ment samples precludes the use of the MT-1 estimator.
When the above limitations on observation data are not
present, MT-1 performs better than MT-2. Both MT-1 and
MT-2 outperform the LBC algorithm under a wide range of
mobility scenarios.

Section 2 discusses the dynamic linear system mobility
model on which our mobility tracking algorithms are based.
Section 3 presents our proposed MT-1 and MT-2 mobility
tracking algorithms anddiscusses howmobility behavior can
be predicted under the dynamic mobility model. We point
out why the LBC algorithm performs poorly and justify our
proposed schemes for mobility tracking. Section 4 discusses
issues related to mobility tracking under limited observation
data. Section 5 presents numerical results demonstrating the
accuracy and robustness of our proposed mobility tracking
algorithms. Finally, Section 6 concludes the paper.

2 DYNAMIC MOBILITY STATE MODEL

In this section, we discuss a dynamic mobility state model
that was originally developed for tracking maneuvering
targets in tactical weapons systems [20], [21]. The mobility
state model can capture a wide range of mobility scenarios,
including sudden stops and changes in acceleration. More
recently, Liu et al. [1] applied the model to characterize the
mobility of a mobile station in a wireless ATM network.
Our discussion is based on [1], but we correct several errors
which appeared in that paper.

The mobile station’s state at time t is defined by a
(column) vector2

ssðtÞ ¼ ½xðtÞ; _xxðtÞ; €xxðtÞ; yðtÞ; _yyðtÞ; €yyðtÞ�0; ð1Þ

where xðtÞ and yðtÞ specify the position, _xxðtÞ and _yyðtÞ specify
the velocity, and €xxðtÞ and €yyðtÞ specify the acceleration in the x
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and y directions in a two-dimensional grid. The state vector
can be written more compactly as

ssðtÞ ¼ xxðtÞ
yyðtÞ

� �
; ð2Þ

where xxðtÞ ¼ ½xðtÞ; _xxðtÞ; €xxðtÞ�0 and yyðtÞ ¼ ½yðtÞ; _yyðtÞ; €yyðtÞ�0.
The acceleration vector, aaðtÞ ¼ ½€xxðtÞ; €yyðtÞ�0, is modeled as

follows:

aaðtÞ ¼ uuðtÞ þ rrðtÞ; ð3Þ

where uuðtÞ ¼ ½uxðtÞ; uyðtÞ�0 is a discrete command process
and rrðtÞ ¼ ½rxðtÞ; ryðtÞ�0 is a zero-mean Gaussian process
chosen to cover the gaps between adjacent levels of the
process uuðtÞ. The command processes uxðtÞ and uyðtÞ are
modeled as semi-Markov processes that take values from a
finite set of acceleration levels L ¼ fl1; � � � ; lmg. Thus, the
process uuðtÞ takes values in the set M ¼ L�L. The
autocorrelation function of rrðtÞ is given by

Rrð�Þ ¼ E½rrðtÞrr0ðtþ �Þ� ¼ �21e
��j� jI2; ð4Þ

where �21 is the common variance of rxðtÞ and ryðtÞ, � is the
reciprocal of the acceleration time constant, and Ik denotes
the k� k identity matrix for any positive integer k.

The process rrðtÞ can be generated by passing a zero-mean,
white Gaussian random process, wwðtÞ ¼ ½wxðtÞ; wyðtÞ�0,
through a single pole filter as follows:

_rrrrðtÞ ¼ ��rrðtÞ þ wwðtÞ: ð5Þ

The autocorrelation function of wwðtÞ is given by

Rwð�Þ ¼ 2��21�ð�ÞI2; ð6Þ

where �ð�Þ is the Dirac delta function. Using (5), the linear
system describing the state evolution in the x-direction can
be written as:

_xxxxðtÞ ¼ ~AA1xxðtÞ þ ~BB1uxðtÞ þ ~CC1wxðtÞ; ð7Þ

where

~AA1 ¼
0 1 0
0 0 1
0 0 ��

2
4

3
5; ~BB1 ¼

0
0
�

2
4

3
5; ~CC1 ¼

0
0
1

2
4
3
5: ð8Þ

Similarly, the state equation for the y-direction is given by

_yyyyðtÞ ¼ ~AA1yyðtÞ þ ~BB1uyðtÞ þ ~CC1wyðtÞ: ð9Þ

Combining (7) and (9) yields the overall state equation

_ssssðtÞ ¼ ~AAssðtÞ þ ~BBuuðtÞ þ ~CCwwðtÞ; ð10Þ

where3

~AA ¼ I2 � ~AA1; ~BB ¼ I2 � ~BB1; ~CC ¼ I2 � ~CC1; ð11Þ

and � denotes the Kronecker matrix product (cf. [24]).
By sampling the state once every T time units, the system

can be characterized in terms of the discrete-time state
vector ssn ¼ ssðnT Þ. The corresponding discrete-time state
equation is given by

ssnþ1 ¼ Assn þBuun þ wwn; ð12Þ

where

A ¼ e
~AAT ;B ¼

Z tþT

t

e
~AAðtþT��Þ ~BBd� ð13Þ

and

wwn ¼
Z ðnþ1ÞT

nT

e
~AAðtþT��Þ ~CCwwð�Þd�: ð14Þ

The vector wwn is a 6� 1 column vector.4 The matrices A and
B are given in Appendix A. The process wwn is a discrete-
time zero mean, stationary Gaussian process with auto-
correlation function RwðkÞ ¼ �kQ, where �0 ¼ 1 and �k ¼ 0
when k 6¼ 0 [20]. The matrix Q, the covariance matrix of wwn,
is given in Appendix B.

In a cellular network, the distance between themobile unit
anda reachablebase station canbe inferred fromtheReceived
Signal Strength Indication (RSSI) or pilot signal of the base
station. The RSSI, measured in dB, is typicallymodeled as the
sumof three terms: path loss, shadow fading, and fast fading.
Fast fading is assumed to be sufficiently attenuated using a
lowpass filter. Therefore, the RSSI received at themobile unit
from the base station in cell iwith coordinates ðai; biÞ at timen
is given by (cf. [25], [26], [27], [28])

pn;i ¼ �i � 10� logðdn;iÞ þ  n;i; ð15Þ

where �i is a constant determined by the transmitted
power, wavelength, antenna height, and gain of cell i, � is a
slope index (typically, � ¼ 2 for highways and � ¼ 4 for
microcells in a city),  n;i is a zero mean, stationary Gaussian
process with standard deviation � typically from 4-8 dB,
and dn;i is the distance between the mobile unit and the base
station, given by

dn;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � aiÞ2 þ ðyn � biÞ2

q
: ð16Þ

To locate the mobile station in the two-dimensional plane,
threedistancemeasurements to neighboring base stations are
sufficient. Thus, the observation vector consists of the three
largest RSSIs denoted pn;1, pn;2, pn;3, given as follows:

oon ¼ ðpn;1; pn;2; pn;3Þ0 ¼ hðssnÞ þ   n; ð17Þ

where   n ¼ ð n;1;  n;2;  n;3Þ0 and

hðssnÞ ¼ ��� 10� logðddnÞ; ð18Þ

where �� ¼ ð�1; �2; �3Þ0 and ddn ¼ ðdn;1; dn;2; dn;3Þ0. The covar-
iance matrix of   n is given by R ¼ �2 I3.

To estimate the mobility state vector ssn, the observation
equation, (17), is linearized as follows:5

oon ¼ hðss�nÞ þHn�ssn þ   n; ð19Þ

where ss�n is the nominal or reference vector and �ssn ¼
ssn � ss�n is the difference between the true and nominal state
vectors. In an extended Kalman filter,6 the nominal vector is
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obtained from the estimated state trajectory ŝsssn, i.e., ss
�
n ¼ ŝsssn.

The matrix Hn is given by

Hn ¼ @h

@ss
ss¼ŝsssnj : ð20Þ

An explicit expression for Hn is given in Appendix C.
We assumed that the model parameters, i.e., �i, �, and � 

are known constants for our simulation studies. These
parameters, however, may vary over a serving area. In
practice, the base stations in many modern cellular net-
works (e.g., Sprint PCS) are capable of estimating the
propagation model parameters � and � using the training
field data consisting of pilot signals, mobile’s location
information, terrain information, etc. The parameter �i can
be determined from the transmission characteristics of the
base station i. As an example, the “deciBel Planner”
software [29] developed by Northwood Technologies7

provides this capability.
We also note that the mobility tracking algorithms

described in this paper can use signal measurements other
than RSSI. For example, some networks provide time-of-
arrival (TOA) information [23]. If TOA information were
used, (17) and (19) would change. An advantage of TOA is
that we would not have to rely on the signal propagation
model described in (15). On the other hand, TOA measure-
ments require additional infrastructure involving delay lock
loops.

3 MOBILITY TRACKING ALGORITHMS

In this section, we present two mobility tracking algorithms,
MT-1 and MT-2, and discuss their accuracy and effective-
ness in comparison with the LBC algorithm. We also
describe how the algorithms can be used to predict the
mobile’s future trajectory.

3.1 MT-1 Algorithm

Fig. 1a illustrates the overall structure of our proposed MT-1

mobility estimator, consisting of a prefilter, a modified

Kalman filter, and an extended Kalman filter.

3.1.1 Prefilter

The prefilter consists of an averaging filter and a coarse

position estimator, as shown in Fig. 1b. The prefilter outputs

a vector of position estimates denoted by ôooon ¼ ½x̂xn; ŷyn�0,
which are used as the observation data for the modified

Kalman filter. The averaging filter reduces the shadowing

noise considerably, without significantly modifying the

path loss. The averaged RSSI measurements are then used

to generate coarse estimates of the position coordinates.
The observation vector oon as given in (17) consists of the

path loss and the shadowing component. The averaging

filter reduces the shadowing component in the observa-

tions. Different filters can be used for this purpose.

Applying a rectangular window, the output ~oooon of the

averaging filter is given as

~oooon ¼ 1

N

Xn
i¼n�Nþ1

ooi; ð21Þ

whereN is the lengthof thewindow.For smallN , the residual

shadowing component is quite large and yields erroneous

position estimates; however, for large N , the path loss is

modified and induces errors in the position estimates. Our

solution to this problem is to use a bank of averaging filters in

series, each with small length N , instead of a single filter of

larger length. In the filter bank arrangement, each filter

performs an averaging operation according to (21) and

provides its output as input to the next filter in series.
This averaging scheme preserves path loss and reduces

shadowing noise to a satisfactory level. Results using this

averaging scheme are shown in Fig. 2. The parameter values

are selected according to the high mobility scenario discussed

in Section 5 with shadowing standard deviation set to 6 dB.

The upper plot shows the averaged signal strength and

actual path loss of the mobile.
The averaged observations ~oooon are used to generate coarse

position coordinates ôooon ¼ ½x̂xn; ŷyn�0, which are obtained as

follows:

a1 � a2 b1 � b2

a1 � a3 b1 � b3

� �
x̂xn

ŷyn

� �
¼ 0:5

�e
�1�~oooonð1Þ

5� þ e
�2�~oooonð2Þ

5� þ a21 � a22 þ b21 � b22

�e
�1�~oooonð1Þ

5� þ e
�3�~oooonð3Þ

5� þ a21 � a23 þ b21 � b23

2
4

3
5;

where ðai; biÞ; i ¼ 1; 2; 3 are the base station coordinates for

cell i. Fig. 2b shows the estimates of position generated from

the averaged RSSI and the actual position in 2-dimensional

coordinates.
From the linear dynamic mobility model, it can be

shown that the probability density function of the

prefiltered observation vector ôooon conditioned on ÔOOOn�1,

i.e., fðôooonjÔOOOn�1Þ, is approximately Gaussian. This property

is crucial in the application of the modified Kalman filter

to be discussed next.
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3.1.2 Modified Kalman Filter

The conventional Kalman filter is modified to take into
account the discrete command process uun. A Bayesian-based
estimator for uun is integrated into the extendedKalman filter,
resulting in the “modified Kalman filter” structure (cf. [1],
[20], [21]). In the MT-1 estimator, it is important to note that
the input to the modified Kalman filter is the vector of
prefiltered observations ôooon, rather than the vector of raw
observations oon, as in the LBC algorithm [1].

In the MT-1 algorithm, the Bayesian-based estimator for
uun is an approximation of the conditional mean of uun given
the sequence, ÔOOOn ¼ ½ôooo1; � � � ; ôooon�0, of all prefiltered observa-
tions up to time n:

ûuuun ¼
X
ll2M

llP̂Pfuun ¼ lljÔOOOng; ð22Þ

where the conditional probability Pfuun ¼ lljÔOOOng is approxi-

mated by

P̂Pfuun ¼ lljÔOOOng ¼ cfðôooonjuun ¼ ll; ÔOOOn�1ÞP̂Pfuun ¼ lljÔOOOn�1g; ð23Þ

with the constant c chosen such thatX
jj2M

P̂Pfuun ¼ jjjÔOOOng ¼ 1:

The density fðôooonjuun ¼ ll; ÔOOOn�1Þ is approximatelyGaussian:

NðHpreðAŝsssn�1 þBllÞ; HpreMnjn�1H
0
preÞ; ð24Þ

where

Hpre ¼
1 0 0 0 0 0
0 0 0 1 0 0

� �
: ð25Þ

The approximate probability P̂Pfuun ¼ lljÔOOOn�1g can be calcu-

lated using the transition probability, all;jj, of the semi-

Markov process uun as follows:

P̂Pfuun ¼ lljÔOOOn�1g �
X
jj2M

all;jjPfuun�1 ¼ jjjÔOOOn�1g: ð26Þ

The probability estimates are initialized with the initial

discrete command state probabilities �ll ¼ Pfuu0 ¼ llg as

follows: P̂Pfuu0 ¼ lljÔOOO�1g ¼ �ll.

The modified Kalman filter is specified as follows: The

state estimate at time n is defined by ŝsssnjn ¼4 EðssnjÔOOOnÞ, with

the initialization step ŝsss0j�1 ¼ 0, where 0 is the 6� 1 vector

of all zeros. The Kalman gain matrix is denoted by Kn. The

covariance matrix is defined by Mnjn�1 ¼
4
CovðssnjÔOOOn�1Þ and

is initialized by M0j�1 ¼ I6.

Recursion steps for MT-1 modified Kalman filter (time n):

1. P̂Pfuun ¼ lljÔOOOn�1g ¼
P

jj2M all;jjPfuun�1 ¼ jjjÔOOOn�1g:
2. P̂Pfuun ¼ lljÔOOOng ¼ cfðôooonjuun ¼ ll; ÔOOOn�1ÞP̂Pfuun ¼ lljÔOOOn�1g:
3. ûuuun ¼

P
ll2M llP̂Pfuun ¼ lljÔOOOng:

4. Kn ¼Mnjn�1H
0
preðHpreMnjn�1H

0
preÞ

�1:
5. ŝsssnjn ¼ ŝsssnjn�1 þKnðôooon �Hpreŝsssnjn�1Þ[Correction step].
6. ŝsssnþ1jn ¼ Aŝsssnjn þBûuuun [Prediction step].
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7. Mnjn ¼ ðI �KnHpreÞMnjn�1ðI �KnHpreÞ0:
8. Mnþ1jn ¼ AMnjnA

0 þQ:

In the recursion part of the filter, the first three steps

correspond to the Bayesian-based estimator and the

remaining steps implement a conventional Kalman filter.

3.1.3 Extended Kalman Filter

The modified Kalman filter described above provides the

mobility state estimates ŝsssnjn and discrete command esti-

mates ûuuun. However, the accuracy of the mobility state

estimates ŝsssnjn is largely dependent on the performance of

the prefilter. Since the coarse position estimates are used as

the observations for the modified Kalman filter, the best the

filter can do is to track the coarse position coordinates. Any

inaccuracy and error in the prefilter can cause the estimator

to diverge.
To avoid this problem, we have introduced a second

(extended) Kalman filter to produce the mobility state

estimates. The extended Kalman filter, as shown in Fig. 1a,

takes the averaged pilot signal strengths ÔOOOn as observations

and the estimated discrete command states ûuuun from the

modified Kalman filter and generates the mobility state

estimate ŝsssnjn. The extended Kalman filter consists of a

recursion similar to that of Section 3.1.2 (cf. [7]).

Recursion steps for MT-1 extended Kalman filter (time n):

1. Hn ¼ @h
@ss ss¼ŝsssnjn�1

��� :
2. Kn ¼Mnjn�1H

0
nðHnMnjn�1H

0
n þRresÞ�1:

3. ŝsssnjn ¼ ŝsssnjn�1 þKnð~oooon � hðŝsssnjn�1ÞÞ[Correction step].
4. ŝsssnþ1jn ¼ Aŝsssnjn þBûuuun [Prediction step].
5. Mnjn ¼ ðI �KnHnÞMnjn�1ðI �KnHnÞ0 �KnRresK

0
n:

6. Mnþ1jn ¼ AMnjnA
0 þQ:

The matrix Rres is used in the Kalman filter recursion as

the covariance matrix of the residual noise in the averaged

RSSI’s. A suitable matrix for Rres is �I3, where � � 0:01. The

overall performance of the MT-1 mobility estimator in

Fig. 1a does not depend strongly on the performance of the

prefilter since the residual noise of the prefilter is removed

by the extended Kalman filter.

3.2 MT-2 Algorithm

As discussed before, the prefilter used in the MT-1 mobility

estimation scheme requires a relatively high frequency of

pilot signal samples to be received from the same base

station, i.e., one sample per time slot, in order for the

averaging filter to reduce the shadowing noise sufficiently.

In real-time wireless systems, it is not always possible to

meet this requirement on the observation data. At times, it

is difficult to obtain a collection of measurements from the

same base station because the mobile may move out of

range from the base station or an obstruction might make

the corresponding signal difficult to measure accurately.
We have developed the MT-2 algorithm as an alternative

estimation scheme to deal with scenarios where the prefilter

cannot be used to obtain coarse position estimates effec-

tively (cf. Section 3.1.1). Under such scenarios, the discrete

command process cannot be estimated accurately by the

MT-1 algorithm. As shown in Fig. 3, the MT-2 algorithm

consists of a single extended Kalman filter and the discrete

command process is treated as additional noise. Here, the
total noise covariance matrix is given by

~QQ ¼ QþBE½ðuun �E½uun�Þðuun � E½uun�Þ0�B0; ð27Þ

where the matrix Q, the covariance matrix of wwn, is given in
Appendix B. The discrete command process uun consists of
two zero-mean independent semi-Markov processes, so the
covariance matrix of uun is given by

E½ðuun �E½uun�Þðuun �E½uun�Þ0� ¼ �2uI2; ð28Þ

where �2u is the variance of ux and uy. Although the noise
process in this case, i.e., Buun þ wwn, is not white noise, we
ignore the correlation between the noise samples.

The recursion steps in the extended Kalman filter of Fig. 3
are similar to that of the extended Kalman filter described in
Section 3.1.3 and are given as follows:

Recursion steps for MT-2 extended Kalman filter (time n):

1. Hn ¼ @h
@ss ss¼ŝsssnjn�1

��� :
2. Kn ¼Mnjn�1H

0
nðHnMnjn�1H

0
n þRÞ�1:

3. ŝsssnjn ¼ ŝsssnjn�1 þKnðoon � hðŝsssnjn�1ÞÞ[Correction step].
4. ŝsssnþ1jn ¼ Aŝsssnjn [Prediction step].
5. Mnjn ¼ ðI �KnHnÞMnjn�1ðI �KnHnÞ0 �KnRK

0
n:

6. Mnþ1jn ¼ AMnjnA
0 þ ~QQ:

3.3 Comparison with LBC Algorithm

The LBC estimator proposed in [1] consists only of the

modifiedKalman filter,which takes the rawobservation data

as input and produces mobility state estimates. In this case,

the Bayesian-based estimator in the modified Kalman filter

approximates the conditional probability density of the pilot

signal strengths given the vector of previous observations

OOn�1 with a Gaussian density, i.e., NðHnðAŝsssn�1 þBûuuun�1Þ;
HnMnjn�1H

0
n þRÞ (cf. (43) of [1]). The matrix Mnjn�1 ¼

4

CovðssnjOOn�1Þ is the covariancematrix and the transformation

matrix Hn is given in (20). This assumption turns out to be

inaccurate and can lead to divergence of the LBC estimator.

An approximation for the conditional probability density

function of each element of the observation vector, i.e., the

pilot signal strengths pn;i, conditioned on the past observa-

tions is given in Appendix D.
In our numerical studies (see Section 5), we have found

that the Bayesian-based estimator can give inaccurate
estimates of uun, primarily due to the approximation of the
density fðoonjOOn�1Þ by a Gaussian density. The inaccuracy in
the estimates ûuuun leads to divergence of the modified
Kalman filter. Consequently, the LBC estimator is not able
to track a mobile station that undergoes sudden changes in
acceleration. To solve this inherent problem of the LBC
estimator, the MT-1 algorithm preprocesses the RSSI
measurements using the prefilter to extract the observations
suitable for the modified Kalman filter. In MT-1, the
modified Kalman filter from the LBC scheme is retained,
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but its input consists of coarse position estimates from the
prefilter, rather than the raw RSSI measurements. Further-
more, in the MT-1 algorithm, the modified Kalman filter is
used only to generate estimates of the discrete command
process and a second (extended) Kalman filter is used to
yield mobility state estimates using the discrete command
estimates and averaged RSSI measurements as inputs. The
combination of two Kalman filters in the MT-1 estimator
performs much better than the LBC estimator.

In the MT-2 algorithm, the discrete command process uun
is not estimated explicitly, but is treated as additional noise.
The structure of the MT-2 estimator is simpler than that of
the LBC estimator because it does not include the Bayesian-
based estimator for the discrete command process. Thus,
the MT-2 algorithm avoids the inherent inaccuracy of the
Bayesian-based estimator used in the LBC algorithm. Our
numerical results (cf. Section 5) show that MT-2 consistently
outperforms the LBC algorithm.

3.4 Mobility Prediction

Under the dynamic mobility model discussed in Section 2,
knowledge of the mobility state information at a given time
t0 allows us to predict the mobility state at a time t in the
future. The predicted state ~sssst of a mobile node at time t is
given as follows, assuming that the state estimate ŝssst0 at time
t0 is available:

~sssst ¼ Aðt� t0Þŝssst0 ; ð29Þ

where Aðt� t0Þ ¼ I2 �A1ðt� t0Þ. The matrix A1 is given in
(32). The error covariance matrix Mt�t0 for the predicted
mobility state is given by

Mt�t0 ¼ Aðt� t0ÞMt0Aðt� t0Þ0 þ �2uBðt� t0ÞBðt� t0Þ0
þQðt� t0Þ; ð30Þ

whereMt0 ¼ Covðŝssst0Þ,�2u is thevariance ofux anduy,Bðt� t0Þ
¼ I2 �B1ðt� t0Þ, and Qðt� t0Þ ¼ 2��21I2 �Q1ðt� t0Þ. The
matrices B1 and Q1 are given in (32) and (33).

Mobility prediction can play a key role in advanced
resource management schemes that anticipate the future
resource needs of a mobile station. Some promising
applications include smooth handoff [1] and fast wireless
Internet service provisioning [5]. It is important to note that
in using the mobility prediction information (29), one must
take into account the degree to which the prediction error
grows with time, as indicated by (30).

4 MOBILITY STATE OBSERVABILITY

As discussed before, three measurements of pilot signals are
needed to locate themobile unit in two-dimensional space. In
real systems, it is not always possible for themobile to obtain
signal measurements from three independent base stations.
At times, the mobile may not be able to obtain accurate
measurements from at least three pilots as the signals coming
from farther base stations may become very weak. In the
estimation scheme of Liu et al. [1], the observation set at each
sampling instant is assumed to consist of independent RSSI
measurements from three different base stations. However,
by considering the observability properties of the mobility
model,weshall showthatmobility trackingcanbeperformed
with fewer than three independent RSSI measurements. It is
well-known that the Kalman filter can yield meaningful

estimates of the system state only if the underlying system is
observable [30].

Since the RSSI measurements are nonlinear functions of
the mobility state as given in (17), the Jacobian of the
transformation function hðssnÞ, i.e., Hn (cf. (20) and
Appendix C) is used to determine observability of the
system. The system of (12) is observable over the interval
½n0; n1� if and only if the columns of the matrix OobsðnÞ ¼
Hn�ðn0; nÞ are linearly independent functions of n over
½n0; n1�, where �ðn0; nÞ is the state-transition matrix of the
system (cf. [31]). For the discrete-time realization of the
system (cf. (12)), the matrix �ðn0; nÞ ¼ An�n0 , where A is
given in Appendix A. By examining the structure of the
observability matrix OobsðnÞ ¼ HnA

n�n0 , as given in Appen-
dix E, the system observability can be characterized more
simply as follows:

Proposition 1. The system of (12) is observable over the interval
½n0; n1� if and only if xxðnÞ 6¼ cyyðnÞ for each n over ½n0; n1�,
where c is a constant, xxðnÞ ¼ ðxn � a1; xn � a2; xn � a3Þ, and
yyðnÞ ¼ ðyn � b1; yn � b2; yn � b3Þ.

Proposition 1 implies that the system is observable
under fairly general conditions when three independent
RSSI measurements are available at each time slot, as
should be expected from geometric considerations. When
only two RSSI measurements per time slot are available,
say from base stations 1 and 2, the observability condition
reduces to the inequality of the vectors ðxn � a1; xn � a2Þ
and cðyn � b1; yn � b2Þ as functions of n over the interval
½n0; n1�. Therefore, in principle, two independent RSSI
measurements per time slot can be sufficient for mobility
tracking. Similarly, with only one RSSI measurement, say
from base station 1, the observability condition reduces to
the inequality of the functions ðxn � a1Þ and cðyn � b1Þ over
the interval ½n0; n1�. In this case, if the movement of the
mobile remains linear for the length of the interval ½n0; n1�,
then the observability condition is not satisfied, i.e.,
ðxn � a1Þ ¼ cðyn � b1Þ, and estimates of the mobility states
cannot be found.

We remark that collecting observations beyond a certain
time window has a negligible effect on the observability of
the system. The bound on the effective observation window
is due to the characteristics of the linear dynamic system
model of user’s mobility. In this model, the autocorrelation
between the random acceleration of the mobile station at
time t and tþ � decays exponentially as � increases
(cf. Section 2). This decay depends on the time-coefficient
of acceleration �, with larger � implying faster decay. From
Appendix E, one can see that the effect of larger � is to
reduce the effective observation window, as subsequent
observations beyond the window become less relevant to
mobility state estimation at the initial time n0.

Of course, besides the observability criterion of Proposi-
tion 1, there are other factors involved in determining the
effectiveness of the mobility tracking. In general, the
estimation error is reduced when more independent
observations are available. Our numerical results (see
Section 5) show that the simplified mobility tracking
algorithm MT-2 performs well even when only two
independent RSSI measurements are available.
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5 NUMERICAL RESULTS

In our numerical experiments, random mobile trajectories
are generated in Matlab using the dynamic state model
given in (12). The position coordinates are specified in units
of meters. The parameters determining the autocorrelation
function of the random acceleration process rrðtÞ are set as
follows (cf. (4)): � ¼ 1000 s�1 and �1 ¼ 1 dB. The covariance
matrix R of   n (cf. (17)) is determined by setting the
parameter � ¼ 6 dB. The state vector ssðtÞ is initialized to
the zero vector.

The discrete command processes uxðtÞ and uyðtÞ are
independent semi-Markov processes, each taking on five
possible levels of acceleration comprising the set L ¼ f�5,
�2:5, 0, 2:5, 5g in units ofm=s2. This set of acceleration levels is
capable of generating a wide range of dynamic motion. We
refer to this selectionas thehighmobility scenario.Thesampling
interval is set to T ¼ 0:1s. The initial probability vector �� for
theHSMM is initialized to the uniformdistribution. The total
duration of each sample trajectory isN ¼ 600 sample points,
which corresponds to 2 minutes. The elements of the
transition probability matrix Ah are initialized to a common
value of 1=5. We assume that the dwell times in each state are
uniformly distributed with a commonmean value of 2 s. The
parameter �i is assumed to be zero for all cells i.

Fig. 4 shows a typical sample mobile trajectory,8 gener-
ated by the dynamic state model with the given parameter
values. The figure also shows estimated trajectories obtained
from the LBC algorithm and the MT-1 algorithm, respec-
tively. The figure shows that the LBC algorithm fails to track
the actual trajectory, particularly when there are sharp or
sudden changes in direction. We remark that standard GPS
techniques would also fail to track the sudden accelerations
produced by the dynamic state model with the given
parameter settings. On the other hand, MT-1 is able to follow
the curves of the actual trajectory with reasonably good

accuracy.We remark that the sample trajectories correspond-
ing to the specified parameter values are considerably more
dynamic than those of an actual mobile station in a live
network environment. They provide a good benchmark to
evaluate the robustness and accuracy of mobility tracking
algorithms.

We use root mean squared error (RMSE) as a figure of
merit to compare a given trajectory fxn; yng and its
estimated trajectory fx̂xn; ŷyng:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

½ðx̂xn � xnÞ2 þ ðŷyn � ynÞ2�

vuut : ð31Þ

Table 1 shows the sample mean and variance of the RMSE
statistic computed using more than 500 independently
generated sample trajectories. We denote the selection of
acceleration levels between�5 to 5 m=s2 as the high mobility
scenario in Table 1. To evaluate the comparative perfor-
mance of MT-1 and MT-2 with LBC under low mobility
conditions more typical for actual cellular networks, we also
perform a set of simulations for the discrete command levels
selected fromL ¼ f�0:5;�0:25; 0; 0:25; 0:5gm=s2. The respec-
tive results are listed under the “low mobility scenario”
column in Table 1. In the scenarios of Table 1, three base
stations provide independent RSSI measurements at each
time slot. The performance of the mobility tracking algo-
rithms is evaluatedwhen the parameter � is set to 6 dB and 8
dB. Recall that � determines the covariance matrix of the
observation noise (cf. (17)).

Table 1 provides a quantitative comparison of the relative
merits of the MT-1, MT-2, and LBC estimators, which
confirms the qualitative implications of Fig. 4. The table
shows that under perfect observation conditions for prefilter-
ing, the MT-1 estimator achieves the best performance. The
MT-2 estimator performs reasonably well and clearly out-
performs theLBCestimator. Theperformancedegradation of
the LBC estimator is observed to bemuch greater than that of
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MT-1andMT-2when thenoise level in theobservationdata is
increased.

Table 1 also shows performance degradation for the LBC
estimator when the trajectories are more dynamic although
the other tracking algorithms show stable or even better
performance for the highmobility scenario. In our numerical
analysis, we also performed simulations for the lower
mobility conditions andMT-1 andMT-2 consistentlyperform
better than LBC. We conclude that MT-1 and MT-2 achieve
better performance than LBC over a wide range of mobility
scenarios and wireless propagation environments.

Table 1 also provides a quantitative performance
comparison of MT-1 and MT-2 with the sequential Monte
Carlo (SMC) approach to mobility tracking (cf. [2]). The
number of samples is selected to be 800 corresponding to
the best estimator described in [2]. The initial mobility state
samples are initialized as zero vectors and their respective
weights are initialized to unity. Table 1 shows that although
SMC provides better performance than LBC, the MT-1 and

MT-2 estimators both outperform the SMC estimator for all
tested scenarios of mobility and propagation environments.
The MT-1 and MT-2 estimators are also computationally
simpler than the SMC algorithm.

Fig. 5 shows a sample trajectory of a mobile user in a
cellular network, along with the estimated and predicted
trajectories under the MT-1 algorithm. The predicted
trajectory is a straight line that starts in the upper right-
hand corner of the figure at the point ð�125;�85Þ. Observe
that the predicted trajectory initially stays close to the
estimated trajectory and then deviates from it over time.
The deviation indicates the increase in prediction error or,
more precisely, the prediction uncertainty. An important
point to be noted here is that although prediction error
increases with time, the estimation error is independent of
time once the Kalman filter reaches the steady state.

The performance of the mobility tracking algorithms
under a scenario of limited observation data is shown in
Fig. 6. In the scenario for Fig. 6, themobile unit selects, in each
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time slot, three RSSI measurements from a set of nine base

stations in its vicinity to forman active set. Inpractice, the three

strongest RSSI measurements would be selected. In order to
simulate the effect of the dynamic changes to the active set of

three base stations over time, the active set changes from time

slot to time slot in the sequence f1; 2; 3g, f4; 5; 6g, f7; 8; 9g, and
repeats. Thus, anRSSImeasurement fromagivenbase station

is available onlyonce every three time slots. This scenariowas
chosen to reflect similar patterns observed in test drives of an

actualCDMAnetwork.As can be seen in Fig. 6, only theMT-2

algorithm is able to track the mobile trajectory accurately. In

this case, the prefilter in the MT-1 algorithm is ineffective,

resulting in inaccurate discrete command estimates. In the

LBC algorithm, the discrete command estimates are also
inaccurate, although for a different reason (cf. Section 3.3).

In Fig. 7a, a sample trajectory is estimated using the MT-2

algorithmfor the followingdifferent casesof observationdata

availability:

. w 1 obs, 1 BS: One RSSI measurement per time slot
from one base station.

. w 1 obs, 2 BS: One RSSI measurement per time slot
alternately from two base stations.

. w 2 obs: Two independent RSSI measurements per
time slot.

. w 3 obs: Three independent RSSI measurements per
time slot.

The initial position of the sample trajectory of Fig. 7a is
shown by “*” whereas the estimated trajectories are
initialized at the origin. When three independent RSSI
measurements are available per time slot, the MT-2
estimator converges fastest to the true trajectory. When
two RSSI measurements are available per time slot, con-
vergence occurs more slowly. The worst case shown is when
only one observation from a single base station is available
throughout the course of trajectory estimation. In this case,
the MT-2 estimator fails to track the given trajectory.

An explanation of this last case in terms of the observa-
bility arguments of Section 4 is given as follows: Since � ¼
1000 s�1 and T ¼ 0:1 s, the observation window is approxi-
mately 5, i.e., 0.5 seconds (see Appendix E). During this short
time window, the movement of the mobile remains
approximately linear and, consequently, the system is not
observable (cf. Section 4). However, the estimation perfor-
mance improves significantly if two base stations supply one
observation per sampling interval alternately. Thus, invol-
ving RSSI measurements from another base station helps to
satisfy the observability criterion.

For the cases where fewer than three observations are
available, the estimation performance is largely determined
by the observability criteria. The estimators are not depend-
able for the intervals when the system is unobservable. Also,
more observations provide more redundancy to overcome
the observation noise. In the case where three observations
are available, the estimator performs equally well regardless
of whether or not prior knowledge of the mobile (i.e., initial
location) is known.

In Fig. 7b, the performance of MT-2 is shown for different
numbers of observations available at each sampling instant
when some prior knowledge of the initial position of the
mobile unit is given. This situation may occur when, for
example, the number of independent RSSI measurements
suddenly reduces from three to two and the most recent
position estimate effectively initializes the future iterations
of the tracking algorithm on the reduced observation data
set. In practice, pilot signals from one or more of the base
stations in the active set may become corrupted due to path
obstructions during a call and, hence, the active set may have
to be reduced in size. With prior knowledge of the mobile’s
position, the availability of two independent RSSI measure-
ments yields similar performance as in the case with three
independent RSSI measurements. When only one observa-
tion is available in alternate time slots from two base
stations, we observe a reduction in tracking performance. As
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shown in Fig. 7b, when observations are available only from

a single base station, the MT-2 estimator diverges, even

though the initial position of the mobile is given.

6 CONCLUSION

We have proposed two algorithms, called MT-1 and MT-2,

for mobility tracking in cellular networks using RSSI

measurements. BothMT-1 andMT-2 are based on a dynamic

system model of mobility and employ variants of the

Kalman filter in the estimation process. The mobility model,

originally proposed for tracking targets in tactical weapons

systems, can capture a large range of mobility by modeling
acceleration as driven by a discrete command process. The
proposed mobility tracking algorithms are able to follow
mobile trajectories more accurately than the LBC algorithm
proposed earlier by Liu et al. [1]. A defect of the LBC
algorithm is that it relies on the incorrect assumption that the
probability density of the current observation at any time
conditioned on the previous observations is Gaussian. As a
result, the LBC algorithm can diverge even under relatively
simpler mobility scenarios.

The MT-1 algorithm avoids this problem by 1) employ-
ing a prefilter to obtain coarse position estimates prior to the
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application of the modified Kalman filter and 2) decoupling

mobility state estimation from estimation of the discrete

command process. The MT-2 algorithm consists of a single

extended Kalman filter, wherein the discrete command

process is treated as additional noise. Under certain

scenarios of limited observation data where MT-1 fails,

MT-2 is able to track mobility with adequate accuracy. In all

of our numerical experiments, both MT-1 and MT-2

outperform the LBC algorithm by a large margin. The

MT-1,2 algorithms also compare favorably against the SMC

mobility tracking algorithm proposed in [2].
Requirements on the observation data for the tracking

algorithms were also investigated and observability argu-

ments from systems theory suggested that mobility tracking

could be achieved with fewer than three independent RSSI

measurements from base stations. Our numerical results

showed that two independent RSSI measurements were

sufficient for mobility tracking but a single RSSI measure-

mentwasnot. Theproposedmobility tracking algorithms can

be used in mobility-based resource allocation schemes such

as fast IPhandoff [3] andprecaching ofWebproxy servers [5].

APPENDIX A

STATE EQUATION MATRICES

The matrices A and B are given by:9

A ¼ e
~AAT ;B ¼

Z tþT

t

e
~AAðtþT��Þ ~BBd�:

Using standard techniques from matrix algebra, the

matrices can be written as

A ¼ I2 �A1ðT Þ; B ¼ I2 �B1ðT Þ;

where

A1ðT Þ ¼
1 T a
0 1 b
0 0 e��T

2
4

3
5; B1ðT Þ ¼

c
�a
�b

2
4

3
5; ð32Þ

and

a ¼ ð�1þ �T þ e��T Þ=�2;

b ¼ ð1� e��T Þ=�;

c ¼ ð1� �T þ �2

2
T 2 � e��T Þ=�2:

APPENDIX B

COVARIANCE MATRIX OF DISCRETE WHITE NOISE

The matrix Q is given by10

Q ¼ 2��21I2 �Q1ðT Þ;

where Q1ðT Þ ¼ ½qij� is a symmetric 3� 3 matrix with upper

triangular entries given as follows:

q11 ¼ ð1� e�2�T þ 2�T þ 2�3T 3=3� 2�2T 2 � 4�Te��T Þ
=ð2�5Þ;

q12 ¼ ðe�2�T þ 1� 2e��T þ 2�Te��T � 2�T þ �2T 2Þ=ð2�4Þ;
q13 ¼ ð1� e�2�T � 2�Te��T Þ=ð2�3Þ;
q22 ¼ ð4e��T � 3� e�2�T þ 2�T Þ=ð2�3Þ;
q23 ¼ ðe�2�T þ 1� 2e��T Þ=ð2�2Þ;
q33 ¼ ð1� e�2�T Þ=ð2�Þ:

ð33Þ

APPENDIX C

TRANSFORMATION MATRIX OF LINEARIZED
OBSERVATIONS

The matrix Hn in the linearized observation (19) is given by

Hn ¼ �5�
hhn;1
hhn;2
hhn;3

2
4

3
5;

where hhn;i is the ith row of Hn with

hhn;i ¼
2

d2n;i
ðxn � ai; 0; 0; yn � bi; 0; 0Þ;

for i ¼ 1; 2; 3.

APPENDIX D

PROBABILITY DENSITY FUNCTION OF RSSI

The conditional probability density function (pdf) of the

mobility state vector conditioned on the past observations is

approximately Gaussian (cf. [1]), i.e.,

fðssnjOOn�1Þ � N ðAŝsssn�1 þBûuuun�1;Mnjn�1Þ; ð34Þ

where OOn�1 ¼ ðoon�1; ::::; oo1Þ and the matrix Mnjn�1 ¼
4

CovðssnjOOn�1Þ is the covariance matrix. Thus, the position

coordinates of the mobile ðxn; ynÞ conditioned on OOn�1 can

be approximated by Gaussian random variables with (mean,

variance) given by ð	x; �2xÞ and ð	y; �2yÞ, respectively. These
quantities can be obtained from the mean and covariance

matrices of the mobility state vector as defined in (34). The

pdf of the distance, dn;i, of the mobile from a base station in

cell i at sampling time n is given by

fdn;ið
Þ ¼



2��x�y
gð
Þ;

where

gð
Þ ¼4
Z 2�

0

exp

� 
 cos �� ð	x � aiÞð Þ2

2�2x
�


 sin �� ð	y � biÞ
� �2

2�2y

 !
d�;

and ðai; biÞ are the coordinates of base station i. The path

loss for cell i is hi ¼ �i � 10� logðdn;iÞ, where the pdf of hi is

given by
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fhið�Þ ¼
1

20���x�y
e
�i��
5� g e

�i��
10�

� �
:

The conditional pdf of the pilot signal strength pn;i given

the previous observations is approximated by

fpn;ið
jOOn�1Þ ¼
1

20���x�y

1ffiffiffiffiffiffiffiffiffiffiffi
2��2 

q Z 1

�1
e
�i��
5� e

�ð
��Þ2

2�2
 g e

�i��
10�

� �
d�:

The above expression cannot be evaluated in closed form.

Numerical integration might be a possible solution, but is

time-consuming and, therefore, unsuitable for real-time

mobility estimation.

APPENDIX E

OBSERVABILITY MATRIX

The observabilitymatrixOobsðnÞ ¼ HnA
n�n0 can bewritten as

OobsðnÞ ¼ �10�½Oobs;xðnÞ; Oobs;yðnÞ�; ð35Þ

where

Oobs;xðnÞ ¼
px;1 px;1ðn� n0ÞT px;1pn
px;2 px;2ðn� n0ÞT px;2pn
px;3 px;3ðn� n0ÞT px;3pn

2
4

3
5 ð36Þ

and Oobs;yðnÞ is defined similarly, except that the subscript x

is replaced by y. Here,

px;i ¼
xn � ai
d2n;i

; py;i ¼
yn � bi
d2n;i

; i ¼ 1; 2; 3;

and

pn ¼ 1

�2
�1þ ðn� n0Þ�T þ e�ðn�n0Þ�T
� �

:

We remove the constant �10� in (35) and perform the

following column operations on OobsðnÞ, where Ci denotes

the ith column:

1. C3 ¼ �2C3 and C6 ¼ �2C6, and
2. C3 ¼ C3 þ C1 � �C2 and C6 ¼ C6 þ C4 � �C5

to obtain a reduced matrix ~OOobsðnÞ ¼ ½ ~OOobs;xðnÞ; ~OOobs;yðnÞ�,
where

~OOobs;xðnÞ ¼
px;1 px;1ðn� n0ÞT px;1e

�ðn�n0Þ�T

px;2 px;2ðn� n0ÞT px;2e
�ðn�n0Þ�T

px;3 px;3ðn� n0ÞT px;3e
�ðn�n0Þ�T

2
4

3
5 ð37Þ

and ~OOobs;yðnÞ is defined similarly.
Note that the third and sixth columns of ~OOobsðnÞ consist

of exponentials which go to zero as ðn� n0Þ increases. This
implies a limit on the effective observation window size. For

example, if � ¼ 1000 s�1 and T ¼ 0:1 s, then e�ðn�n0Þ�T � 0

for ðn� n0Þ ¼ 5, which implies that only the first five

observations from n0 are useful for estimating the system

state at time n0.
From (37), one sees that observability of the system, or

the linear independence of columns of ~OOobsðnÞ over an

observation interval ½n0; n1�, depends on the position

coordinates ðxn; ynÞ of the mobile. The system is observable

over the interval ½n0; n1� if and only if xxðnÞ 6¼ cyyðnÞ for each

n over ½n0; n1], where c is a constant and xxðnÞ and yyðnÞ are
the vector functions xxðnÞ ¼ ðxn � a1; xn � a2; xn � a3Þ and

yyðnÞ ¼ ðyn � b1; yn � b2; yn � b3Þ.
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