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Abstract—We propose an integrated scheme for tracking the mobility of a user based on autoregressive models that accurately

capture the characteristics of realistic user movements in wireless networks. The mobility parameters are obtained from training data

by computing Minimum Mean Squared Error (MMSE) estimates. Estimation of the mobility state, which incorporates the position,

velocity, and acceleration of the mobile station, is accomplished via an extended Kalman filter using signal measurements from the

wireless network. By combining mobility parameter and state estimation in an integrated framework, we obtain an efficient and

accurate real-time mobility tracking scheme that can be applied in a variety of wireless networking applications. We consider two

variants of an autoregressive mobility model in our study and validate the proposed mobility tracking scheme using mobile trajectories

collected from drive test data. Our simulation results validate the accuracy of the proposed tracking scheme even when only a small

number of data samples is available for initial training.

Index Terms—Mobility model, geolocation, autoregressive model, Kalman filter, Yule-Walker equations.

Ç

1 INTRODUCTION

USER mobility is a fundamental characteristic of wireless
mobile networks that profoundly impacts network

performance. To perform optimally, a wireless network
should be designed to take into account the mobility of the
user. In this regard, two issues of fundamental importance
are: 1) the development of suitable models of user
mobility to drive realistic simulations of wireless networks
and 2) efficient real-time tracking of user mobility to
enable seamless connectivity and quality of service in a
wireless network. The two issues are closely interrelated,
since accurate real-time tracking of user mobility must be
based on an appropriate mobility model that can be used
to anticipate the future mobility state of the user.
Conversely, in order to generate realistic mobility patterns
for the purpose of simulating a wireless network, actual
mobile trajectories from live networks should be fit to a
model that can capture the salient characteristics of user
mobility. Furthermore, accurate mobility tracking requires
that the parameters of the mobility model be matched as
closely as possible to the available data.

Some of the more prominent mobility models (cf. [1], [2])
that have been proposed in the literature include random
walk models [3], the random waypoint model [4], Brownian
motion models [5], Gauss-Markov models [6], and Markov
chain models [7]. Such models have the important feature of
simplicity, making them amenable for use in simulation and
in some cases analytical modeling of wireless network

behavior. However, more recent studies have shown that
many of them do not accurately represent actual user
trajectories in real wireless networks [2], [8], [9], [10].
Consequently, such models may provide misleading char-
acterizations of network performance.

Another class of mobility models employs additional
information to improve the accuracy of mobility represen-
tation. The additional information may consists of a terrain
map or street layout [11], [12], traffic conditions [13],
hotspots or regions of interest [14], [15], obstacle’s shapes
and locations [16], behavioral rules to represent typical
human responses [17], etc. However, the applicability of
such models may be limited since the parameters for one
scenario may not be usable in other environments. Since the
modeling assumptions are not validated with real data and
compared with other models, the accuracy achieved by this
class of models is difficult to evaluate quantitatively.
Moreover, such models are not sufficiently rich to enable
accurate and precise real-time mobility tracking.

A linear system model of mobility has been applied to
real-time mobility tracking via various state estimation
methods, such as Kalman filters [18], [19], [20], sequential
Monte Carlo filtering [21], particle filters [22], and pre-
dictive methods [6]. In this model, the mobility state
consists of position, velocity, and acceleration. The linear
system model is capable of capturing realistic user mobility
patterns, but specification of an optimal set of model
parameters is not straightforward. Mobility tracking
schemes derived from the linear system model are accurate
as long as the model parameters match the mobility
characteristics of the user. However, accuracy of the model
parameters is difficult to achieve in practice.

In this paper, we study two models of mobility based on
autoregressive (AR) models, which are amenable to para-
meter estimation. The first is a sampled version of an
underlying continuous-time, first-order AR model. We refer
to this model as the AR-1 model. In the AR-1 model, the
mobility state consists of the position, velocity, and
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acceleration of the mobile at a given time instant. The AR-1
model was first introduced in [23]. A more comprehensive
study, including comparative analysis with other mobility
models, convergence issues, effects of training data, and
efficacy of the AR-1 model in representing a broader range
of trajectories, is given in the present paper.

The AR-1 model is a variant of the linear system model
with the key feature that it is amenable to Minimum Mean
Squared Error (MMSE) estimation of the model para-
meters. Optimal parameter estimation is generally not
possible with the linear system model of mobility used in
[18], [19], [21]. The AR-1 model is sufficiently simple to
enable real-time mobility tracking, but general enough to
accurately capture the characteristics of realistic mobility
patterns in wireless networks by means of optimal
estimation of model parameters.

The second AR-based model, which we call the Position-
AR model, is a discrete-time model in which the mobility state
consists of the mobile’s position at consecutive time points.
In the Position-AR model, velocity and acceleration are
represented as finite differences of position coordinates. As
we shall discuss in this paper, parameter and state estimation
algorithms for the Position-AR model have smaller compu-
tational complexity than those for the AR-1 model. Our
numerical results also show that the Position-AR model
requires less training data for parameter estimation.

Based on the AR-1 and Position-AR mobility models, we
develop a mobility tracking scheme that integrates MMSE
estimation for the unknown model parameters with
mobility state estimation using Kalman filtering. The
mobility tracking scheme can adapt to changes in the
mobility characteristics over time, since the model para-
meters are continuously reestimated using new observation
data. Our numerical results using drive test data show that
the AR-1 and Position-AR models can accurately capture
realistic mobility patterns. Without a systematic approach
to parameter estimation, other mobility models cannot
make a similar claim.

The main contribution of this paper is a mobility tracking
scheme that simultaneously estimates both the mobility
state of a mobile user and the unknown parameters of the
mobility model, in this case, the AR-1 and Position-AR
models. As discussed earlier, other models of mobility
proposed in the literature are not amenable to parameter
estimation and hence cannot be used, in practice, to
accurately model real mobility traces. Our numerical results
show that the proposed mobility tracking algorithm, based
on either the AR-1 or the Position-AR model, converges
quickly and yields accurate performance when a sufficient
amount of training data is provided for initialization. The
algorithm is computationally feasible for real-time tracking
applications, as it requires a small number of Kalman
filtering and MMSE estimation steps to be performed at
each discrete-time instant. Comparison between the AR-1
and Position-AR models shows that the Position-AR model
yields a mobility tracking scheme that has smaller compu-
tational complexity and is more robust to variations in
operational settings such as the number of available
training samples and the distance between mobile nodes
and base stations.

The remainder of the paper is organized as follows:
Section 2 describes the AR-1 and Position-AR models.
Procedures for optimal estimation of the model parameters
in the MMSE sense are developed in Section 3. The
parameter estimation procedure is one component of an
integrated scheme for real-time mobility tracking. Section 4
discusses the second component of mobility state estima-
tion via Kalman filtering using various types of signal
measurements from the wireless network as observation
data. Section 5 presents a detailed validation of the AR-1
and Position-AR mobility models and their associated
mobility tracking schemes using drive test data. Finally,
Section 6 concludes the paper.

2 AUTOREGRESSIVE MOBILITY MODELS

Autoregressive models have been used to model mobility in
wireless networks, such as the Gauss-Markov model [6], the
position and velocity model [20], etc. The Global Positioning
System (GPS) uses a variety of autoregressive-based
models, including one called the position, velocity, and
acceleration (PVA) model [24]. However, the issue of how
to select the appropriate model parameters to represent
realistic mobility patterns has not been treated for these
models, nor in the available literature on mobility modeling
for wireless networks (cf. [1], [2]). In this section, we
propose two variants of autoregressive models to represent
user mobility in a wireless network. Parameter estimation
for these models is discussed in Section 3.

2.1 AR-1 Model

The AR-1 model is a discrete-time model of mobility such
that the mobility state at time index n is given by
ss1;n ¼ ½xn; _xn; €xn; yn; _yn; €yn�0, where xn and yn denote the x

and y coordinates, _xn and _yn represent the velocity, and €xn
and €yn represent the acceleration of a mobile unit at
discrete-time instant n in two-dimensional space. The
notation 0 indicates the matrix transpose operator. If
mobility state information is needed in three dimensions,
the ss1;n vector can be augmented by ½zn; _zn; €zn�0, where the
vector elements represent position, velocity, and accelera-
tion in the z dimension. We characterize the dynamics of the
mobility state process fss1;ng by a first-order autoregressive
(AR-1) model given as follows:

ss1;nþ1 ¼ A1ss1;n þ ww1;n; ð1Þ

where A1 is a 6� 6 transformation matrix and ww1;n is a zero
mean, white Gaussian vector process with covariance
matrix Q1. The matrices A1 and Q1 can be estimated from
the trajectory data using Yule-Walker equations as will be
discussed in Section 3.

2.2 Position-AR Model

Position-AR is also a discrete-time model of mobility but the
mobility state at time index n is given by ss2;n ¼ ½xn; xn�1;

xn�2; yn; yn�1; yn�2�0, where xn and yn denote the x and
y coordinates of the mobile unit at discrete-time index n. The
dynamics equation of the Position-AR model is given by

ss2;nþ1 ¼ A2ss2;n þ ww2;n; ð2Þ
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where A2 is a 6� 6 transformation matrix and ww2;n is a zero
mean, white Gaussian vector process with covariance
matrix Q2.

The elements of the matrix A2 specify the relationships
among position, velocity, and acceleration from time nT to
time ðnþ 1ÞT , where T is the time interval between
successive samples. In the x-direction,

xnþ1 ¼ xn þ T _xn þ
T 2

2
€xn: ð3Þ

Using finite differences, _xn and €xn can be approximated
as follows:

_xn ¼
xn � xn�1

T
; ð4Þ

€xn ¼
_xn � _xn�1

T
¼ xn � 2xn�1 þ xn�2

T 2
: ð5Þ

Substituting (4) and (5) into (3), we obtain

xnþ1 ¼ 2:5xn � 2xn�1 þ 0:5xn�2: ð6Þ

A set of equations analogous to (6) can be written to
characterize the system dynamics in the y-direction. Hence,
the matrix A2 is given as

A2 ¼
Ax 03�3

03�3 Ay

� �
; ð7Þ

where 03�3 is the 3� 3 matrix of all zeros and

Ax ¼ Ay ¼
2:5 �2 0:5
1 0 0
0 1 0

2
4

3
5:

Since A2 is a constant matrix, as opposed to the unknown A1

matrix of the AR-1 model, estimation of the covariance matrix
Q2 completely specifies the Position-AR mobility model.

2.3 Comparison with Other Mobility Models

Comparing the state equation (1) with that of the linear
system model discussed in [18], the linear system model
includes an extra term Buun, where B is a 6� 2 matrix and
uun is a vector of two independent semi-Markov discrete
command processes that drive the acceleration of the model
in the two-dimensional plane. In the linear system model of
[18] and [19], the matrices A and B are specified in terms of
the sampling interval T and a parameter �. The command
process uun is specified by a set of discrete command levels,
a transition probability matrix, and probability distributions
for the durations in each command level. An outstanding
issue for the linear system model is the question of how to
specify an appropriate set of parameters.

The Position-AR and AR-1 models are more general than
the Gauss-Markov model proposed in [6]. In the Gauss-
Markov model of [6], the mobility state consists of position,
velocity, and direction, but does not explicitly represent
acceleration. A key feature of the Gauss-Markov model with
respect to simpler mobility models is that the correlation
between successive velocity states is explicitly modeled via a
gain parameter �. A similar model was used in [20] as the
basis for a location-tracking scheme. The AR-1 model
captures not only the correlation between velocity states,
but also the correlation between acceleration states. Similarly,

the Position-AR model incorporates the last three successive
position coordinates in order to represent the current position
so that the effect of velocity, as well as acceleration is
incorporated into the model.

A significant benefit of the Position-AR and AR-1 models
is that they can be used to provide predictive mobility
information. If the state information or estimate ŝsn at a
given time n is available, it is possible to predict the
mobility state at any time nþm in the future. From the
theory of autoregressive processes (cf. [25]), the optimal
predicted state ss�nþmjn of a mobile node in the MMSE sense,
given the state estimate ŝsn at time n, can be obtained as

ss�nþmjn ¼ E½ssnþmjŝsn� ¼ Amŝsn; ð8Þ

where A could be A1 or A2 and the mobility state ŝsn could
be ŝs1;n or ŝs2;n, depending on which of the two mobility
models is used. The associated covariance matrix for the
predicted mobility state at time nþm, denoted M�

nþmjn ¼
Cov½ss�nþmjŝsn�, is given by

M�
nþmjn ¼ AmMnA

0m þ
Xm�1

l¼0

Am�1�lQA0m�1�l; ð9Þ

whereMn ¼ Cov½ŝsn� andQ could beQ1 or Q2. Knowledge of
the predicted mobility state can be used to devise antici-
patory resource allocation schemes for wireless networks.
For example, the predicted mobility state could be incorpo-
rated into IP mobility management protocols [26], [27] to
provide more seamless handoffs (cf. [28]). Existing geoloca-
tion systems generally track only the current location of the
mobile and do not provide this predictive capability.

According to Bettstetter’s nomenclature for mobility
models [1], the AR-1 and Position-AR models maybe
classified as microscopic mobility models. A microscopic
model describes the movement, i.e., position, velocity, etc.,
of an individual vehicle or person as opposed to a model
describing group behavior such as the fluid flow model,
group mobility model [29], gravity models [30], map or
activity-based models [31], [32], etc. Such composite
mobility models are constructed from microscopic models
(cf. [2]). Thus, the AR-1 and Position-AR models could be
used as building blocks to develop more sophisticated
models of mobility for various network scenarios.

3 MOBILITY PARAMETER ESTIMATION

In this section, we discuss algorithms for obtaining the
MMSE estimates of the parameters for the AR-1 and
Position-AR models based on training data. Using the
parameter estimates, the AR-1 and Position-AR models can
be used to generate realistic mobility patterns for simulation
purposes, given a suitable set of training samples obtained
from the field.

3.1 AR-1 Parameter Estimation

Using the Yule-Walker equations [25], an optimal estimate

of A1 in the MMSE sense, denoted Â
ðnÞ
1 , where n specifies

the amount of training data available, can be found from the

mobility state data ss1;1; . . . ; ss1;n as follows:

Â
ðnÞ
1 ¼ RðnÞss ð1ÞRðnÞss ð0Þ

�1; ð10Þ
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where

RðnÞss ð1Þ ¼
1

n� 2

Xn�1

i¼1

ss1;iss
0
1;iþ1; ð11Þ

RðnÞss ð0Þ ¼
1

n� 1

Xn
i¼1

ss1;iss
0
1;i: ð12Þ

The estimator Â
ðnÞ
1 is an MMSE estimator and can be directly

derived from the orthogonality principle. The noise covar-
iance matrix Q̂

ðnÞ
1 is estimated using the residual estimation

error, eei ¼4 ss1;i � ÂðiÞ1 ss1;i�1, as follows:

Q̂
ðnÞ
1 ¼

1

n� 1

Xn
i¼1

eeiee
0
i: ð13Þ

An extended Kalman filter, described in Section 4.2, is
used to generate the mobility state estimates ŝs1;n from the
wireless measurements oon at time n. The state estimates ŝs1;n

are used to reestimate the model parameters at time n. The
recursive model parameter estimator is given below.

Recursive parameter estimation (time n ¼ 1; 2; . . . ):

1. RðnÞss ð0Þ ¼ 1
n�1 ½ðn� 2ÞRðn�1Þ

ss ð0Þ þ ŝs1;nŝs
0
1;n�,

2. RðnÞss ð1Þ ¼ 1
n�2 ½ðn� 3ÞRðn�1Þ

ss ð1Þ þ ŝs1;n�1ŝs
0
1;n�,

3. Â
ðnÞ
1 ¼ RðnÞss ð1ÞRðnÞss ð0Þ

�1,

4. een ¼ ŝs1;n � ÂðnÞ1 ŝs1;n�1,

5. Q̂
ðnÞ
1 ¼ 1

n�1 ½ðn� 2ÞQ̂ðn�1Þ
1 þ eenee0n�.

Here, we have assumed that a sufficient amount of training
data is available to initialize Rð0Þss ð0Þ and Rð0Þss ð1Þ. In practice,
some information maybe available to initialize or train the
mobility estimator. For example, our mobility tracking
method maybe used alongside GPS to cover the holes in
satellite coverage; in this case, the GPS data may provide
training samples for the mobility estimator. We can also use
relationships between position, velocity, and acceleration,
as in (3), to initialize Â

ð0Þ
1 . Initialization of parameter

estimation without any training data is also discussed in
Section 5.

3.2 Position-AR Parameter Estimation

As discussed above, the Position-AR mobility model is
completely specified by the covariance matrix Q2 of the
noise. The MMSE estimators for Q2, denoted by Q̂2, can be
obtained from (13) when residual error is defined as
eei ¼4 ss2;i �A2ss2;i�1. Similarly, the recursive estimation for
noise covariance matrix designed for the AR-1 model can be
used with the Position-AR covariance matrix when the
residual errors are calculated with A2 and ŝs2;n and the initial
estimate Q̂

ð0Þ
2 is determined from a set of training samples as

discussed above.

4 MOBILITY TRACKING SCHEME

Our proposed mobility tracking scheme consists of the
parameter estimation algorithms discussed in Section 3
combined with mobility state estimation, which we shall

discuss in this section. The integrated mobility tracking
scheme is shown in Fig. 1. In Fig. 1, the state estimate ŝsn
could be ŝs1;n or ŝs2;n depending on whether the underlying
mobility model is AR-1 or Position-AR. Similarly, Q̂ could
be Q̂1 or Q̂2 and Â could be Â1 or A2, since the
transformation matrix is fixed in the case of the Position-
AR model. Although not explicitly shown in Fig. 1, the
Kalman filter includes a prefilter (cf. [33]) to reduce the
effects of measurement noise.

4.1 Observation Data in Wireless Networks

To perform mobility state estimation, we assume that either
received signal strength indicators (RSSIs) or time of arrival
(TOA) measurements from at least three base stations are
available. We remark that the angle of arrival (AOA) of the
mobile’s signal at multiple base stations is often used for
location tracking [34], [35], [36]. The AOA is typically
estimated using antenna arrays at the base station. How-
ever, AOA information is not suitable for use in conjunction
with an extended Kalman filter, since the AOA measure-
ments are noncontinuous functions of mobility state that are
generally not differentiable. Another measurement used to
locate the mobile callers is the time difference of arrival
(TDOA) of the signals from two base stations [34], [37], [38].
However, calculation of the TDOA requires time synchro-
nization of the base stations. Moreover, when three base
stations are used to provide TDOA measurements, there is
often more than one localization solution and, as observed
in [34], [39], there is no way to determine the correct
solution without the help of additional information, e.g.,
additional TOA measurements as suggested by [39].

4.1.1 Pilot Signal Strengths

In a wireless cellular network, the distance between the
mobile and a reachable base station can be inferred from the
RSSI or pilot signal strength from the base station. Pilot
signal strengths are more readily available in wireless
networks than TOA, TDOA, and AOA signals, which
require specialized infrastructure to collect useful data.
On the other hand, the effectiveness of using RSSI to infer
distance information depends on the accuracy of the signal
propagation model. The lognormal shadow fading model
has proved to be accurate for a large class of urban and
suburban environments [40]. According to this model, the
RSSI, in units of dB, received at the mobile unit from base
station i, located at position ðai; biÞ at time n is given as
follows [41]:

pn;i ¼ �i � 10� logðdn;iÞ þ  n;i; ð14Þ
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where �i is a constant determined by the transmitted power,
antenna height, wavelength, and gain of the base station i, �
is a slope index (typically, � is between 2 and 5),  n;i is a zero
mean, stationary Gaussian process with standard deviation
� typically from 4 to 8 dB, and dn;i is the distance between
the mobile node and base station i:

dn;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � aiÞ2 þ ðyn � biÞ2

q
: ð15Þ

The noise process  n;i models shadowing or slow fading,
while fast fading is neglected in (14), under the assump-
tion that it is attenuated sufficiently via low-pass filtering
(cf. [18], [42]).

Distance measurements to three independent base
stations are sufficient to locate the mobile unit in the two-
dimensional plane. For mobility estimation based on RSSI
information, we construct an observation vector consisting
of the three largest RSSI measurements, denoted by pn;1,
pn;2, pn;3, as follows:

oon ¼ ðpn;1; pn;2; pn;3Þ0 ¼ hðssnÞ þ   n; ð16Þ

where ssn could be the mobility state defined for either the
AR-1 or the Position-AR model,   n ¼ ð n;1;  n;2;  n;3Þ0, and

hðssnÞ ¼ ��� 10� logðddnÞ; ð17Þ

where �� ¼ ð�1; �2; �3Þ0 and ddn ¼ ðdn;1; dn;2; dn;3Þ0. The covar-
iance matrix of   n is given by R ¼ �2

 I3 where I3 is the
3� 3 identity matrix.

4.1.2 Time of Arrival

Time-based methods of geolocation using TOA and TDOA
measurements rely on accurate estimates of the time of
arrival of the signals received at several base stations from
the mobile station or at the mobile station from several base
stations [34], [37]. Several approaches have been developed
for estimation of these parameters from received signals,
such as code tracking and acquisition in spread spectrum
systems using delay-locked loop (DLL) or tau-dither loop as
described in [34]. In the presence of measurement noise, the
time delay estimate of the signal �n;i, from base station i
measured at the mobile station, at time instant n using DLL
is given by

�n;i ¼ dn;i=cþ  n;i; ð18Þ

where dn;i is given in (15), c is the speed of light. In contrast
to the RSSI model (14), here  n;i represents zero mean,
white Gaussian noise, with a typical standard deviation of
� ¼ 1 �s [43].

As in the case of pilot signal strengths, three TOA
measurements to neighboring base stations are sufficient for
mobility state estimation. The observation vector for TOA-
based mobility estimation consists of the three TOA
measurements, denoted by oon ¼ ð�n;1; �n;2; �n;3Þ0. In this case,
the observation equation is given by

oon ¼ hðssnÞ þ   n; ð19Þ

where ssn could be the mobility state defined for either the
AR-1 or the Position-AR model,   n ¼ ð n;1;  n;2;  n;3Þ0, and
hðssnÞ ¼ ddn=c, where ddn ¼ ðdn;1; dn;2; dn;3Þ0. As in (16), the
covariance matrix of   n is denoted by R ¼ �2

 I3.

4.2 Application of Kalman Filter

To apply the extended Kalman filter for state estimation, the
observation equation given in (16) and (19) can linearized
as follows:

oon ¼ hðss�nÞ þHn�ssn þ   n; ð20Þ

where ss�n is the nominal or reference vector and �ssn ¼
ssn � ss�n is the difference between the true and nominal state

vectors. In the extended Kalman filter (cf. [24]), the nominal

vector is obtained from the estimated state trajectory, ŝsn, i.e.,

ss�n ¼ ŝsn. The matrix Hn is given by

Hn ¼
@h

@ss

����
ss¼ŝsn

: ð21Þ

Expressions for the matrix Hn, for both RSSI and TOA
measurements, are given in the Appendix.

Let ooji ¼ ðooi; . . . ; oojÞ denote the set of observations from
time i to time j for j > i. The Kalman filter estimates are
denoted as follows:

ŝsnjn ¼ E½ssnjoon1 � and ŝsnjn�1 ¼ E½ssnjoon�1
1 �:

The covariance matrices corresponding to these estimates
are denoted by

Mnjn ¼ Cov½ssnjoon1 � and Mnþ1jn ¼ Cov½ssnþ1joon1 �;

respectively. The Kalman filter procedure for state estima-
tion is then given as follows:

Mobility state estimation (time n ¼ 2; 3; . . . ):

1. Hn ¼ @h
@ss

��
ss¼ŝsn ,

2. Kn ¼Mnjn�1H
0
nðHnMnjn�1H

0
n þR Þ�1,

3. ŝsnjn ¼ ŝsnjn�1 þKnðoon � hðŝsnjn�1ÞÞ [Correction step],

4. Mnjn ¼ ðI �KnHnÞMnjn�1ðI �KnHnÞ0 �KnR K
0
n,

5. ŝsnþ1jn ¼ ÂðnÞŝsnjn [Prediction step],

6. Mnþ1jn ¼ ÂðnÞMnjnÂ
ðnÞ0 þ Q̂ðnÞ.

In the above procedure, the matrices ÂðnÞ and Q̂ðnÞ

correspond to the nth estimate of the transformation and
covariance matrices of both mobility models, as indicated in
Fig. 1. For the Position-AR model, the matrix ÂðnÞ is
replaced by the constant matrix in (7). The matrix Kn is
referred to as the Kalman gain matrix. The mobility state
estimate at time n is then defined by ŝsn ¼4 ŝsnjn. The
initialization of the Kalman filter is specified by

ŝs1j0 ¼ E½ss1� and M1j0 ¼ Cov½ss1�:

In practice, we set the initial parameters for both mobility
models as follows:

ŝs1j0 ¼ ðx̂1; 0; 0; ŷ1; 0; 0Þ0 and M1j0 ¼ I6;

where ðx̂1; ŷ1Þ is the best available estimate of the initial
position of the mobile unit. In practice, some information
maybe available to initialize the mobility estimator. For
example, knowledge of the approximate location of the
mobile user, e.g., the median coordinate values of the cell
sector in which the user resides, could be used to initialize
the mobility state vector. As another example, our mobility
tracking method maybe used alongside GPS to cover the
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holes in satellite coverage; in this case, the GPS data may

provide initial state vector along with training data for

model parameter estimation.

4.3 Relationship to EM Algorithm and Convergence

The mobility tracking scheme of Fig. 1 is related to the

Expectation-Maximization (EM) algorithm (cf. [44]). The

E-step of the EM algorithm corresponds to the estimation

of a hidden state sequence from observations (or

incomplete data) by finding (cf. [44])

ŝsn ¼ E½ssnjoon1 ; �n�1�; ð22Þ

where �n denotes the nth estimate of the unknown model

parameters, e.g., ÂðnÞ and Q̂ðnÞ for the AR-1 model and Q̂ðnÞ

for the Position-AR mobility model. Equation (22) holds for

the Kalman filter [24], and holds approximately for the

extended Kalman filter, provided the difference between the

true and nominal trajectory, i.e., �ssn ¼ ssn � ss�n ¼ ssn � ŝsnjn�1,

remains small.
The M-step of the EM algorithm [44] relates to parameter

estimation. Let �̂n denote the nth estimate of an unknown

parameter �. In the M-step, �̂n is computed such that it

maximizes the expectation of the log-likelihood of the

mobility state and observation sequences, given the ob-

servations and the current parameter estimate [44], i.e.,

�̂n ¼ arg max
�
E½log p

�
ssn1 ; oo

n
1 j�
�
joon1 ; �̂n�1�; ð23Þ

where ssn1 ¼ ðss1; . . . ; ssnÞ denotes the sequence of mobility

states from time 1 to n. Using the first-order autoregressive

property of the AR-1 and Position-AR mobility models and

the assumption that (22) holds, the M-step in (23) can be

written as

�̂n ¼ arg max
�

�
� n

2
log ð2	Þ6jQj
� 	

� 1

2

Xn
i¼1

ðŝsi �Aŝsi�1ÞQ�1ðŝsi �Aŝsi�1Þ0
�
:

ð24Þ

The maximization in (24) yields an estimate for A of the

form (10) and an estimate for Q of the form (13).
As long as �ssn is kept small, convergence properties

for the EM algorithm carry over to the proposed mobility

tracking scheme. In particular, it can be shown that under

certain conditions, the estimates for A and Q will converge

to a stationary point of the likelihood function, which

could be a global or local maximum or a saddle point (cf.

[45, Section 2.1]). Convergence of the mobility state

estimator depends on issues related to extended Kalman

filters. An important factor to reduce numerical roundoff

errors is to initialize the filter with proper initial estimates

(cf. [24, pp. 260-264, 346]). Convergence of Kalman filters

is also dependent on the observability of the system [24].

In [33], the observability issue was investigated in the case

of the linear dynamic system model. Similar analysis for

the AR-1 and Position-AR models shows that the extended

Kalman filter is observable under fairly general conditions

when three or more observations are used.

5 NUMERICAL RESULTS

In this section, we present some representative numerical

results to validate the effectiveness of the AR-1 and Position-

AR models and the associated mobility tracking schemes.

We apply both models to mobility patterns obtained from

drive tests, as well as those generated by alternative mobility

models such as the random waypoint and linear system

models and compare the respective estimation results under

various operating conditions.

5.1 Data Collection

We collected three sets of drive test GPS location data
containing more than 1,200 sample points each. One set
of data was collected from a suburban area while another
set was obtained from a downtown city environment
with an orthogonal street layout. The third drive test was
carried out by a walking subject in the Fairfax campus of
George Mason University (GMU). The drive test data
consisted of a sequence of ðx; yÞ-coordinates characteriz-
ing the trajectory of the mobile user. For each data set,
we construct a corresponding mobility state sequence
fss1; . . . ssNT

g for both models, where NT denotes the total
number of data points.

The data of interest, collected from the drive test,

consisted of latitude and longitude values of the mobile user

at predefined measurement time intervals. The drive test was

converted from latitude/longitude (Lat/Long) coordinates,

in decimal format, to two-dimensional Cartesian coordinates

ðx; yÞ as follows:

x ¼ C 	 cos ðLat0Þ
180

ðLong0 � LongÞ; ð25Þ

y ¼ C 	

180
ðLat� Lat0Þ; ð26Þ

where C ¼ 6;378;137 and ðLat0;Long0Þ correspond to the

latitude and longitude, in decimal format, of the origin ð0; 0Þ
of the local Cartesian coordinate system. Using the GPS

data, RSSI and TOA measurement data were generated

using (14) and (18), respectively, with fixed parameter

values for all drive test scenarios. The simulated observa-

tion data along with the drive test trajectories allowed us to

conduct a detailed performance study of the proposed

mobility estimators and their dependence on various factors

and operational settings.
For the urban scenario only, we were able to collect three

or more RSSI measurements for every position sample,

which allowed us to perform mobility tracking based on

real RSSI data rather than simulated RSSI data generated

from GPS location data. This result is shown in Fig. 4, which

demonstrates the effectiveness of the proposed mobility

tracking scheme in the presence of propagation modeling

error in a challenging urban environment. As discussed

above, the other mobility tracking experiments based on the

drive test data were performed using simulated RSSI and

TOA measurement data generated from the GPS data.

5.2 Validation of Mobility Model

To validate the accuracy of the mobility model, we use the
multiple coefficient of determination, denoted by R2 (cf.
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[46], [47]). For each of the mobility state sequences, we use
the first N mobility states as training samples to obtain
estimates Â1 and Q̂1 for the AR-1 model and Q̂2 for
the Position-AR model, as discussed in Section 3. The
remaining mobility states, ssNþ1; . . . ; ssNT

, are then used to
compute the R2 metric as follows:

R2 ¼ 1�
PNT

i¼Nþ1 jssi �Assi�1j2PNT

i¼Nþ1 jssi � �ssj2
; ð27Þ

where ssi is the ith mobility state for either model and

�ss ¼ 1

NT �N
XNT

i¼Nþ1

ssi

is the sample average of the mobility state sequence after
the first N states. The value of R2 always lies in the
interval ½0; 1�. A value of R2 close to 1 indicates a strong
model fit. Table 1 shows the R2 values for the three data
sets for the AR-1 and Position-AR models. The results
demonstrate that statistically accurate mobility character-
izations in terms of the AR-1 and Position-AR models can
be achieved.

The sampling interval of one second is relatively short

compared to the dynamics of our drive test trajectories.

Hence, each of the sampled trajectories closely follows the

corresponding actual trajectory even though the mobility

trace may appear to be highly nonlinear. Consequently,

both the AR-1 and Position-AR mobility estimators perform

well with respect to the R2 metric, as shown in Table 1. Note

that slightly lower R2 value is obtained for the walking

scenario compared to the suburban scenario. Similarly,

compared to the suburban and walking scenarios, five times

the number of training samples is needed in the urban

scenario to achieve an R2 value of 0.95 or higher for both

estimators. These results can be explained in terms of Fig. 5,

which visually shows that both the walking and urban

trajectories contain more turns and bends than the sub-

urban trajectory.
The noise terms in the AR-1 and Position-AR models are

assumed to be zero mean white Gaussian noise processes.
To check the validity of this assumption, we use residual
error analysis (cf. [47]). The residual error for a data point
si is defined as ei ¼ si � ŝi. The plots in Fig. 2 show that
the residual errors in the x and y dimensions seem to be
independent of the data points. These plots were generated
for the Position-AR model using the suburban trajectory
data with model parameter estimation as described in
Section 3. Other data sets also show similar characteristics.
Fig. 3 shows two Q-Q plots (cf. [47]) for residual errors for

the Position-AR model in the x and y dimensions. The
close straight-line fit observed in both plots confirms the
validity of the assumption that the residual errors or model
noise can be modeled accurately by white Gaussian
processes. Similar graphs for the AR-1 model are presented
in [23].

5.3 Validation of Mobility Estimation Scheme

As discussed in Section 5.1, we were able to obtain a
sufficient quantity of RSSI measurements in one set of
drive test data collected from the urban scenario. Although
one experiment is not sufficient to provide a comprehen-
sive validation of our mobility estimation scheme, it shows
the feasibility of our method in a real-world setting. Since
the parameters of (14) are not known for the RSSI
observation data collected in the urban scenario, we
employ least-squares estimation to determine �i, �, and
� for all base stations. In the urban scenario drive test
experiment, 41 base stations supplied 3 or more RSSI
values after every 2 second interval. The least-squares
estimates �̂i, �̂, and �̂ for propagation model parameters
are given as follows:
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TABLE 1
R2 Values for Sample Data Sets

Fig. 2. Independence of residual errors, Position-AR model.

Fig. 3. Q-Q plots for residual error, Position-AR model.



�̂i ¼
1

N

XN
n¼1

ðpn;i þ 10�̂ log dn;iÞ;

�̂ ¼ 1

N

PN
n¼1 pn;i log dn;i� 1

N

PN
n¼1 pn;i

PN
n¼1 log dn;iPN

n¼1ðlog dn;iÞ2 � 1
N

PN
n¼1 log dn;i

� 	2
;

�̂ ¼
1

N

XN
n¼1

ðpn;i � �̂i þ 10�̂ log dn;iÞ2:

Here, the value of N is selected to be 10 to allow the
parameter estimates adapt to the dynamic changes in the
urban propagation environment. The performance of
mobility tracking based on the AR-1 model in this scenario
is shown in Fig. 4, where the initial 300 samples of the drive
test trajectory are used as training samples.

Next, we generated simulated observation data from the
drive test trajectories in all scenarios to validate the
effectiveness of the mobility estimation scheme based on
the AR-1 and Position-AR models (cf. Section 4). The use of
simulated observation data allowed us to study the effects
of different operational settings, such as number of training
samples and cell size, on mobility tracking performance. We

assume that the service area is subdivided into a rectan-
gular grid with square cells. Each cell contains one base
station located in the center of the cell. In our simulation
experiments, a mobile user moving along a drive test
trajectory receives signals (either RSSI or TOA) from the
base stations and employs the integrated mobility estimator
to determine the mobility state as well as the parameters of
the underlying AR-1 or Position-AR model. A training set
consisting of the first few data points in the actual mobility
state sequence is used to obtain the initial estimates Â1 and
Q̂1 of the AR-1 model and Q̂2 of the Position-AR model.

The RSSI measurements are generated using (14) with
the parameter � assumed to be zero for all base stations and
� set to 5 for all scenarios. Typical values for the shadowing
noise standard deviation, i.e., � , range from 4 to 8 dB [41].
The shadowing standard deviation is taken as 8 dB. The
TOA measurements are generating using (18). The error
noise in the TOA measurements is assumed to be a white
Gaussian process with a standard deviation of � � 1 �s
[43]. To reduce measurement noise, two prefilters are
applied to the observation data prior to the extended
Kalman filter (cf. [33]).

Fig. 5 depicts the mobile trajectories obtained from three
drive test scenarios: urban, suburban, and walking. The cell
size is approximated by a 1 km� 1 km square and 100 initial
samples are used as training data in all scenarios. The
mobility state estimation procedure generates a sequence of
mobility state estimates fŝs2; . . . ; ŝsNg. Fig. 5 also shows, for
each scenario, the estimated trajectory obtained using the
AR-1 mobility estimator with TOA observations.

The sequence of position estimates fðx̂n; ŷnÞg can be
compared quantitatively against the sequence of actual
positions fðxn; ynÞg in terms of root-mean-squared error
(RMSE) as a figure of merit, defined by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
n¼2

½ðx̂n � xnÞ2 þ ðŷn � ynÞ2�

vuut : ð28Þ

Fig. 6 shows the RMSE performance of mobility estimation
schemes based on the AR-1 and Position-AR models for
three data sets using RSSI and TOA measurements when
different number of training samples are used to initialize
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Fig. 4. Actual and estimated trajectories using AR-1 model and real
RSSI data obtained from urban scenario.

Fig. 5. Actual and estimated trajectories using AR-1 model and TOA observations in (a) urban, (b) suburban, and (c) GMU walking scenarios.



model parameters. Each point in the graphs of Fig. 6 shows
the average RMSE, i.e., �RMSE, over 50 experiments and the
error bars represent ��RMSE for each point. Line segments
connecting the data points are only used to enhance the
clarity of the plots. The cell size is approximated by a
1 km� 1 km square.

From the graphs of Fig. 6, we observe that more training
samples result in better RMSE performance for the scenarios
of our study. A training set which is an accurate representa-
tion of the trajectory would be an ideal choice for parameter
initialization. However, we are choosing the first few
samples of the trajectories which might not represent the
whole trajectories accurately. This difference is evident in
Fig. 6, where the mobility tracking results for the suburban
trajectory are smoother than those of the rest of the data sets
as it is mostly comprised of straight-line segments with
fewer bends. The urban data set was obtained from a
downtown area with orthogonal streets and walking
scenarios is also comprised of more curved segments. In
such scenarios, a larger training set is recommended.

We also note that the Position-AR model requires the
estimation of fewer parameters than the AR-1 model and
hence requires fewer training samples for proper initializa-
tion. Furthermore, the Position-AR model shows stable
performance when the training set size is varied, in
contrast to the AR-1 model, which performs poorly for
small training sets. With a sufficient training set, the RMSE
performance of the AR-1 model can be better than that of
the Position-AR model, as the matrix A1 in the AR-1 model
adapts to be changed in the mobility characteristics. With
typical values of noise variance, the mobility tracking
performance with TOA measurements was superior to that
with RSSI measurements for all scenarios considered in
this study.

Table 2 shows the performance of mobility tracking
based on the AR-1 and Position-AR models when no
training data are provided. In both models, the noise
covariance matrices Q̂

ð0Þ
1 and Q̂

ð0Þ
2 are each initialized to the

6� 6 identity matrix and the initial state vector estimate,
ŝs1j0, is initialized to the zero vector. For the AR-1 model, the
transformation matrix is initialized as follows, using similar
relationships as in (3):

Â
ð0Þ
1 ¼

Ax 03�3

03�3 Ay

� �
; ð29Þ

where

Ax ¼ Ay ¼
1 T T 2=2
0 1 T
0 0 �

2
4

3
5;

T is the sampling interval, and � is given an arbitrary value

of 0.5. We have removed the first 50 estimated location

points from RMSE calculations to focus on the steady state

behavior of the mobility estimators. From Table 2, one sees

that even without training data, the mobility estimator

based on the Position-AR model tracks the mobile user with

reasonable accuracy. By contrast, the AR-1 based mobility

estimator produces large errors, especially when RSSI

observations are used.
The last factor considered in our study is cell size, to

show the effect of observation data from distant base

stations. Training data size is kept at 100 samples for all

data sets and two filters are used in the prefiltering step (cf.

[33]) for this experiment. Fig. 7 shows the RMSE perfor-

mance for different cell sizes. The x-axis in Fig. 7 shows the

length of each side of the square cell. An increase in cell size

generally reduces estimation accuracy. TOA-based mobility

tracking outperforms RSSI-based tracking in all of our

experiments. Also, Fig. 7 shows that tracking based on TOA

measurements is more resilient than that based on RSSI

when distances between the mobile user and the base

stations increase.
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TABLE 2
RMSE of Estimation Algorithms

When No Training Data are Available

Fig. 6. RMSE performance versus number of training samples for (a) urban, (b) suburban, and (c) GMU walking scenarios.



The simulation results show that the mobility state

estimators performed with reasonable accuracy under the

three different mobility scenarios with appropriate selection

of operating conditions. In general, a larger training set is

preferable if available and the three largest signal measure-

ments should be chosen among all available values. A

training phase could also be used to bootstrap the opera-

tional settings of the mobility estimation scheme, e.g., the

number of prefilters (cf. [33]), noise covariance value, etc.

5.4 Comparison with Other Mobility Models

The AR-1 and Position-AR models can accurately represent
trajectories generated by other stochastic mobility models.
Models such as the random waypoint model may be used
for generating mobility patterns in simulation environ-
ments, but generally cannot be used to track mobility in real
time as it is not straightforward to estimate the model
parameters for real scenarios. The linear system model of
mobility, discussed in [18], can be used to develop a mobility
state estimator [33]. However, the parameters of the model
cannot be estimated in an optimal way. The estimator
performs well only if the model parameters represent
accurately the dynamic behavior of the mobile unit.

We generated trajectories, containing more than 1,000 data

points, using the linear dynamic system model [18], [19] and

the random waypoint model [4], [48]. We then used the

proposed mobility estimation scheme to track the generated

trajectories. In applying the mobility estimator, we assumed

that training sets of 100 data points for the linear system

model trajectory and 300 samples for the random waypoint

trajectory were available to initialize the AR-1 and Position-

AR models. The cell size was set as 1;000 m� 1;000 m and

two prefilters are used prior to the extended Kalman filter

(cf. [33]).

The parameters of the linear system model of mobility

were set as follows (cf. [18], [19]): � ¼ 1;000 s�1, T ¼ 1 s, and

�1 ¼ 1 dB. The discrete command processes uxðtÞ and uyðtÞ
are independent semi-Markov processes, each of which was

assumed to take on five possible levels of acceleration

comprising the set f�0:5;�0:25; 0; 0:25; 0:5g in units of m=s2.

The initial probability vector 		 for the semi-Markov model

(SMM) governing uxðtÞ and uyðtÞwas initialized to a uniform

distribution. The elements of the transition probability

matrix for the SMM were initialized to a common value of

1=5. We assumed that the dwell times in each state were

uniformly distributed with a common mean value of 2T . The

RSSI and TOA measurements were generated in a similar

manner to that specified in the test scenarios.
The sample mean and standard deviation of RMSE

statistics collected from 50 simulations are given in Table 3.
The result shows that the estimators based on the AR-1
and Position-AR models were able to obtain appropriate
model parameters and accurately track the trajectory
generated by the linear dynamic system model with both
RSSI and TOA measurements.

We also generated trajectories using the random way-
point model and applied our proposed integrated mobility
estimator. The trajectories were generated within an area of
2;000 m� 2;000 m, centered at the origin. The speed of the
mobile unit was uniformly distributed in the interval
½0; 60� m=s2 and the mean pause time was assumed to be
1 s. The random waypoint model tends to generate
trajectories with sharp turns, which are quite different
from realistic mobility patterns. Nevertheless, the mobility
estimator was able to accurately track the trajectory, as
shown in Table 3.

The standard deviation of the RMSE is higher for the
linear system model, as shown in Table 3, than for the
random waypoint model because the mobility patterns
generated by the random waypoint model largely consist of
straight-line segments in which the mobile user moves at a
constant speed (i.e., zero acceleration). The autoregressive-
model-based estimators are able to track the speed quite
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TABLE 3
RMSE of Estimation Algorithm—Stochastic Models

Fig. 7. RMSE performance versus cell size for (a) urban, (b) suburban, and (c) GMU walking scenarios.



accurately along these straight-line path segments. Most of

the error in the tracking occurs at the waypoints at which a

random destination point and speed are chosen according

to the random waypoint model. We also performed some

experiments with the random waypoint mobility model

using different speed distributions, such as a constant speed

of 30 m=s and exponential distribution with a mean speed

of 30 m=s. In both cases, we observed similar location-

tracking performance as shown in Table 3. The estimation

performance does not seemed to be affected by the speed

distributions chosen for the random waypoint model.

6 CONCLUSION

We proposed a mobility tracking scheme based on two

autoregressive models of mobility, which we refer to as the

AR-1 and Position-AR models. The AR-1 and Position-AR

models are relatively simple, yet to provide more accurate

representation of realistic mobility patterns than other

mobility models. Both models were validated using mobile

trajectory data obtained from a cellular network, as well as

simulated data obtained from the random waypoint and

linear system models of mobility. The proposed mobility

tracking scheme consists of an integrated scheme of MMSE

parameter estimation and mobility state estimation based

on Kalman filtering using observations of RSSI and TOA

from the network. The scheme provides a viable solution to

the two important issues of realistic mobility modeling and

real-time mobility tracking for wireless networks.
We have also analyzed the effects of different operational

settings on the performance of mobility estimation scheme

using both models and both observations. The Position-AR

model requires a smaller number of training samples for

initialization than the AR-1 model and is more resilient to

perturbations in operating conditions. With typical values

of noise variance for both types of observation data,

mobility tracking performance using TOA measurements

was superior to the performance using RSSI measurements

in our experiments.
The proposed mobility tracking schemes can enable

mobility-aware applications, which can improve perfor-

mance or provide new services in wireless networks. In

cellular networks, for example, the mobility estimation

scheme could be used to predict cell crossings for smoother

handoffs and more efficient resource allocation [18]. The

mobility tracking scheme could also be adapted for mobile

ad hoc networks (cf. [49]).

APPENDIX

The matrix Hn in (21) is given by Hn ¼ ðhh0n;1; . . .hh0n;mÞ
0,

where hhn;i is the ith row of Hn for i ¼ 1; 2; 3. For RSSI,

hhn;i ¼
�10�

ðdn;iÞ2
ðxn � ai; 0; 0; yn � bi; 0; 0Þ: ð30Þ

For TOA,

hhn;i ¼
1

cðdn;iÞ
ðxn � ai; 0; 0; yn � bi; 0; 0Þ: ð31Þ
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